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Abstract

Accurate	forecasts	of	passenger	flow	entering	and	leaving	metro	stations	is	an	important	work	for	Metro	operation	management,	

such as for the automatic adjustment of train operation diagrams or station passenger crowd regulation planning measures. In this 

study,	Grey	theory	is	introduced	to	develop	a	time	series	GM	(1,	1)	model	for	total	passenger	forecasting.	Two	modification	factors	

determined by two minimum mean square error principles are proposed to decrease the discreteness of input data and thus improve 

the	forecast	accuracy.	Moreover,	the	Markov	chain	approach	is	further	used	to	optimize	the	residual	error	series.	Passenger	flow	data	

entering	and	leaving	the	Xiaozhai	station	of	Xi'an	Metro	Line	2	from	September	1-30,	2015,	were	utilized	to	verify	the	effectiveness	of	

the proposed method; the forecast results show that this novel Markov-Grey model performs well in terms of forecast accuracy with 

smaller	SMSE	and	MAPE	values.	To	this	effect,	the	proposed	method	is	especially	well-suited	to	smooth	passenger	flow	forecasting	

compared to other forecast techniques.
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1 Introduction
Passenger flow forecasts of mass rail transit (MRT) serve 
to evaluate and determine the volume of passenger flow 
at peak hours or within a total day up to a year in the 
future. The information returned by these forecasts can 
be utilized for a wide array of applications related to 
public transit (Lalinská et al., 2017; Zhang et al., 2017). 
At the planning stage, more importantly, the choice of 
subway, light rail transit, or streetcar mainly depends on 
the volume of passenger flow; this affects the prelimi-
nary decisions on planning networks as well as the loca-
tion and design of individual stations and the process of 
constructing them, including land allocation and supply 
investment. During the operation period, the passenger's 
choice of MRT, bus, or other modes of traffic is affected 
by a variety of uncertain factors including land use type, 
fees, and convenience of arrival / departure. All of these 
factors can vary over space and time (Ding et al., 2018; 
Ni et al., 2017). In practice, then, it is impossible – or at 
least very difficult – for forecasters and planners to accu-
rately and comprehensively ascertain the future passen-
ger demands of public transit.

The passenger flow volume of Guangzhou Metro 
Line 1 was predicted to reach 290,000 in 1998 accord-
ing to an official assessment, but from its opening day on 
June 28, 1997, through the end of 1998, the subway car-
ried 175,000 ~ 180,000 individuals daily – only about 60 % 
of the expected value. Its total amount of passengers then 
reached 66,291,300 in 2002, representing annual growth of 
0.45 %. When the Metro Line 2 opened on June 28, 2003, 
however, the volume of passenger flow exceeded 1 mil-
lion, marking an increase of 20 % over the previous year. 
This figure reached 164 million in 2004. In Xi'an City, 
the 20.5 km first section of Metro Line 2 from the North 
Railway station to the Qujiang International Conference 
and Exhibition Center was officially opened at midday 
on September 16, 2011, with services operating at 9.5 min 
headways from 6:30 to 21:30; the route's average daily pas-
senger flow volume grew from 151,000 in 2011 to 196,300 
before the opening of Metro Line 1 on September 15, 2013. 
The line now accommodates a passenger volume of 
approximately 600,000 daily, with a peak of 742,900 pas-
sengers on October 1, 2015. Such differences between the 
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forecasted and actual values of passenger flow represent 
serious challenges (e.g., spacious or crowded platforms and 
carriages) to the operating management, thus necessitating 
more reliable and more accurate approaches to passenger 
flow forecasting (Li, X. et al., 2018; Zhang et al., 2017).

Previous researchers have established several approaches 
to passenger flow forecasting, but from a more general per-
spective (Zhao et al., 2011). For example, data sequences 
are generally used and mathematical modeling is generally 
the focus in developing these techniques (Leng et al., 2013; 
Li, L. et al., 2018), but they are lacking in accuracy overall. 
Grey system theory is a multidisciplinary theory that was 
firstly proposed in early 1980s by Deng to describe systems 
such as passenger flow (Deng, 1982); the theory has indeed 
proven superior to conventional statistical models in deal-
ing with systems that have both partially known and par-
tially unknown parameters (Liu et al., 2011). Over recent 
decades, Grey system theory has garnered research atten-
tion across a variety of fields and has been successfully 
applied to systems such as economy, finance, transpor-
tation, mechanics, geology, military, and medical care 
(Carmona Benítez et al., 2013; Yin et al., 2017; Zhou and 
He, 2013). The GM (1, 1) model is the main forecasting 
model applicable to Grey theory, and has achieved satisfac-
tory results in field use though its forecasting precision and 
applicability merit further improvement.

Two of the deficiencies in the methods described 
above constituted the primary motivation of this paper. 
First, explored an approach to improving the accuracy 
of the general GM (1, 1) model in forecasting the passen-
ger flow of mass rail transit; and second, we attempted 
to combine the Markov process with the proposed Grey 
model to enhance forecasting efficiency. The remainder of 
this paper is structured as follows: Section 2 describes our 
process in designing the proposed Markov-Grey method, 
and Section 3 presents its application in forecasting the 
passenger flow of Xiaozhai station of Xi'an Metro Line 2. 
Concluding remarks are provided in Section 4.

2 Methodology
2.1 Grey forecast model
Let an original non-negative time series with n records 
be x x x x n0 0 0 0

1 2
( ) ( ) ( ) ( )= ( ) ( ) … ( ) , , , , then the mono-

tonically increasing sequence x(1) can be cumulatively 
generated as x x x x n1 1 1 1

1 2
( ) ( ) ( ) ( )= ( ) ( ) … ( ) , , , ,  

where x x1 0
1 1

( ) ( )( ) = ( )  and x k x i1 0( ) ( )( ) = ( )∑ , 
i = 1, 2, …, k (k = 2, …, n). The raw data x(0) are then 
ranked as σ σ σ σ= ( ) ( ) … ( )[ ]2 3, , , n , where 

σ k x k x k( ) = −( ) ( )( ) ( )0 0
1 , k = 2, 3, …, n, and satisfy 

the Grey model if the sequence falls within the range  
0.1345-7.389 (Deng, 1982).

According to Grey theory, the original Grey model 
can be expressed as x az k b0 1( ) ( )= − ( ) + , k = 2, 3, …, n, 
where z k x k x k1 1 1

1 2
( ) ( ) ( )( ) = ( ) + −( )[ ] . This differential 

equation is:

dx k
dt

ax k b
1

1
( )

( )( )
+ ( ) =  (1)

with initial condition x x1 0
1 1

( ) ( )( ) = ( ) ; such replace-
ment is defined as "whiteness processing" (Deng, 1982). 
Optimal coefficients a and b can both be estimated by the 
minimum least square method as [a, b]T = (BTB)−1BTY, where 
B is the accumulated matrix and Y is the constant term vec-
tor (Deng, 1982), and then substituted into the differential 
equation to obtain the approximate relation for k = 2, 3, …, n:

x k x b
a
e b

a
a k1 0 11( ) ( ) − −( )( ) = ( ) −





+ˆ  (2)

where x x1 01 1( ) ( )( ) = ( )ˆ , for k = 2, 3,…, n. The forecast value 
of the series can be restored via the following inverse 
accumulated generating operation:

x k e x b
a
ea a k0 0 11 1( ) ( ) − −( )( ) = −( ) ( ) −





.ˆ  (3)

Precision checking was conducted to determine the 
residual errors e(k) between actual x k0( ) ( )  and predicted 
x k0( ) ( )ˆ , respectively, as x k x k x k0 0 0100( ) ( ) ( )( ) − ( )[ ]× ( )%ˆ ;  
the precision index was calculated to be 1 − e(k). We uti-
lized the Standard Mean Square Error (SMSE) and the 
Mean Absolute Percentage Error (MAPE) to verify the 
performance of residual error e(k) as given by Eqs. (4), (5). 
Here, the acceptable MAPE was set to be 0.2 for daily 
passenger flow forecasting and an average precision of 
1-MAPE exceeding 80 % was considered to indicate excel-
lent model forecast efficiency.

SMSE
n

x k x k
k

n

=
−

( ) − ( )[ ]( ) ( )

=
∑1
1

0 0 2

2

ˆ  (4)

MAPE
n

x k x k
x kk

n

=
−

( ) − ( )
( )

×
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( )
=
∑1
1

100
0 0

0
2

% .
ˆ  (5)

2.2 Precision modification
According to Grey theory, forecast accuracy is affected sig-
nificantly by two parameters: a and b. Their solution depends 
on the background value. In establishing the GM (1, 1) 
model, z k z k x k x k1 1 1 1

1 1
( ) ( ) ( ) ( )( ) ( ) = ( ) + −( ) −( ). α α  was 
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considered as the smoothing value, where α is the weight-
ing factor, and α = 0.5 is chosen as a special case but may 
not be the optimal result (Hsu and Chen, 2003). When the 
original data sequence x k0( ) ( )  changes smoothly, the 
proposed GM (1, 1) model yields more accurate fore-
cast results (Hui et al., 2013). Therefore, the forecast data 
x k0( ) ( )ˆ  requires further modification. Suppose the approx-
imate relation of x k0( ) ( )ˆ  is modified as follows:

x k x b
a
e b

a
a k1 0 1

1
( ) ( ) − −( )( ) = ( ) + −





+δ  (6)

and thus reaches �x k x k e ea a k0 0 11( ) ( ) − −( )( ) = ( ) + −( )δˆ ,  
k = 2, 3, …, n, where δ is the modification factor. Two cri-
teria are proposed here to determine the value of δ.
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cumulative data series
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CRITERIA 2: Minimum mean square error forecast of 
original data series
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Using δ1 and δ2, therefore, we obtained two improved 
GM (1, 1) models by plus δ i

a a ke e1 1−( ) − −( )  (k = 2, 3, …, n), 
respectively. The optimal model (with relatively fewer errors) 
was then used for the remainder of the forecasting process.

2.3 Markov process
To reduce forecast errors, Markov approach is integrated 
into the model described above to process the forecast 
error series e k k n( ) = …{ }, , , ,2 3 . Let e(k) be divided 
into q states (R1, R2, …, Rq) by appealing to the equiprob-
ability principle, and Eli and Eui represent the lower and 
upper bounds of each state, respectively. Let current state 
be Ri and another state be Rj, then the transition prob-
ability Pij from state Ri to Rj after w steps is written as 
P m Mij
w

ij
w

i
( ) ( )= , i j q, , , ,= …1 2 , where mij

w( )  is the fre-
quency of transition from state Ri to Rj in w steps and Mi is 
the value of state Ri (Samet and Mojallal, 2014). Thus, the 
transition probability matrix can be expressed as:

P

p p p
p p p
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w w
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w w
q
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
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


� pqq

w
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Considering w = 1, if the residual errors e(k) falls 
in the ith state, then check the ith row of transition prob-
ability matrix P(1). If MaxPij

(1) = PiL, then state L is likely 
to be the next transition of forecast state (Samet and 
Mojallal, 2014). The forecast residual error value e(k) can 
be modified into e(k) − (Ak + Ck) ⁄ 2 by the lower and upper 
bounds of AL and CL. Subsequently, the forecast value can 
be appropriately modified.
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3 Illustrative Example and Analysis
The first and second phases of Xi'an Metro Line 2 were offi-
cially opened on September 16, 2011, and June 16, 2014, 
respectively. The line runs between the new North 
Railway station and Weiqunan along a straight north-
south corridor passing directly through the city centre, 
covering the Administrative Centre, Bell Tower commer-
cial area, Xiaozhai, Qujiang International Conference and 
Exhibition Center, and other important passenger distri-
bution centres. It is currently 26.8 km long with 21 stations 
and is known to provide a safe, comfortable, convenient, 
and swift transportation service for about 600,000 passen-
gers from 6:00 a.m. to 11:10 p.m. daily.

As discussed in the Introduction, passenger flow volume 
forecasting has long been regarded as a critical require-
ment for mass rail transit scheduling and operations man-
agement (Leng et al., 2013; Li, L. et al., 2018). We selected 
Xiaozhai station, a major transfer station of Metro Line 2, as 
a case study and gathered its daily passenger flow data for 

September, 2015. Each record in the data set provided here 
refers to the number of passengers entering and leaving this 
station. The sample data 20150901-20150922 were used for 
model fitting, as shown in Table 1, and 20150923-20150930 
were reserved for forecasting and accuracy testing.

The primary data sequence x(0) is given as 
[38745, 43633, …, 42124], and the one-order cumulative 
sequence is generated as x(1) = [38745, 82378, …, 1069172]. 
The σ series is then [0.8880, 0.9911, …, 1.4551], with val-
ues ranging between 0.1345 and 7.389; this indicates that the 
selected sample data are suitable for constructing the Grey 
forecast model for passenger flow in Xiaozhai metro station.

Two parameters, a and b, were estimated by minimum 
least square method as −0.0057 and 45957.7945, respec-
tively, yielding an original GM (1, 1) model expressed as 
x k0( ) ( )ˆ  = 46047.2816 e0.0057(k − 1), k = 2, 3, …, n with the ini-
tial condition x 10( ) ( )ˆ  = x 0

1
( ) ( )  = 38745. After substituting 

k = 2, 3, …, n into Eq. (1), the forecast data of passenger 
flows from 20150902 to 20150922 were obtained as well 

Table 1 The observed and forecasted passenger flow using three GM(1,1) models

Data

Passengers GM(1,1) GM(1,1) with δ1 GM(1,1) with δ2

x(0) x 0( )ˆ e/% 1
x 0( ) e/% 2 State x 0( ) e/% 3

201509014 38745 38745 — 38745 — — 38745 —

20150902 43633 46311 −6.14 44104 −1.08 3 44462 −1.90

20150903 44026 46575 −5.79 45004 −2.22 3 44716 −1.57

20150904 43497 46841 −7.69 44978 −3.40 3 44972 −3.39

20150905 54755 47109 13.96 57006 −4.11 5 45229 17.40

20150906 63344 47379 25.20 66489 −4.97 6 45488 28.19

20150907 49411 47649 3.57 52824 −6.91 5 45748 7.41

20150908 54040 47922 11.32 58236 −7.76 5 46009 14.86

20150909 37999 48196 −26.83 42101 −10.79 1 46272 −21.77

20150910 39227 48471 −23.57 43861 −11.81 2 46537 −18.63

20150911 41868 48748 −16.43 47144 −12.60 2 46803 −11.79

20150912 49486 49027 0.93 55778 −12.71 4 47070 4.88

20150913 60949 49307 19.10 68672 −12.67 6 47339 22.33

20150914 51189 49589 3.13 58927 −15.12 4 47610 6.99

20150915 39448 49872 −26.42 46863 −18.80 1 47882 −21.38

20150916 40840 50158 −22.82 48891 −19.71 2 48156 −17.91

20150917 43009 50444 −17.29 51801 −20.44 2 48431 −12.61

20150918 44328 50733 −14.45 53820 −21.41 3 48708 −9.88

20150919 54049 51023 5.60 65178 −20.59 4 48986 9.37

20150920 71911 51314 28.64 85798 −19.31 6 49266 31.49

20150921 61294 51608 15.80 74847 −22.11 5 49548 19.16

20150922 42124 51903 −23.21 54060 −28.34 2 49831 −18.30
1 SMSE = 8913.42, MAPE = 15.14 %, 2 SMSE = 7568.37, MAPE = 13.18 %, 3 SMSE = 9128.64, MAPE = 14.34 %
4 Volume of passengers entering and leaving Xiaozhai Station of Metro Line 2 on September 1, 2015
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as the residual errors e(k) between x k0( ) ( )  and x k0( ) ( )ˆ  
(see Table 1). The values of e(k) vary between −26.83 % 
and 28.64 %, and the corresponding SMSE and MAPE are 
8913.42 and 15.14 %, respectively.

Modification factor δ was introduced to improve 
the forecasting performance of the original GM (1, 1) 
model. Criteria 1 and 2 yield δ1 = 520646.1540 and 
δ2 = −323352.0908, respectively, thus the proposed GM (1, 1) 
model is improved into x k0( ) ( )  = 49006.5228 e0.0057(k − 1)  
and x k0( ) ( )  = 44209.4176 e0.0057(k − 1) for k = 2, 3, …, n. 
We obtained the data sequence of x k0( ) ( )  by substi-
tuting k = 2, 3, …, n into the two improved forecasting 
models. These results as well as the corresponding SMSE 
and MAPE values are presented in Table 1. We conclude, 
accordingly, that x k0( ) ( )  = 49006.5228 e0.0057(k − 1) is a 
well-fitted forecast model.

These error series were further divided into six states: 
State 1 for −∞ – −20 %, state 2 for −20 % – −10 %, state 3 
for state 2 for −10 % – 0, state 4 for 0 % – 10 %, state 5 
for 10 % – 20 %, and state 6 for 20 % – +∞, according 
to the precision requirements for forecasting. The state 
divisions of error series − − … −{ }1 08 2 22 28 34. , . , , .  are 
given in Table 1. The state matrix S and one-step transi-
tion probability matrix P(1) are:

S =



























0 2 0 0 0 0

0 2 1 1 0 0

0 0 2 1 1 0

1 0 0 0 0 2

1 1 0 0 1 1

0 0 0 1 2 0

aand

P 1

0 1 0 0 0 0

0 0 5 0 25 0 25 0 0

0 0 0 5 0 25 0 25 0

0 33 0 0 0 0 0 67

0 25 0 2

( ) =

. . .

. . .

. .

. . 55 0 0 0 25 0 25

0 0 0 0 33 0 67 0

. .

. .

.



























The new time series of k = 23, 24, …, 30 were then 
substituted into the general GM (1, 1) model and novel 
GM (1, 1) model improved by modification factor δ1 to 
obtain the forecast values and performance indicators, 
which were then compared against the statistical data 
59602 53752 60297 59195 58567 50608 56664, , , , , , ,{  
60760}  as shown in Table 2. The error series from the novel 
Grey forecast model were further processed via Markov 
approach. For example, the error 6.79 of 201509230 data 
remains at state 4 and 0.67 is the maximum element in row 
4 of P(1). So, this error is most likely to turn to state 6 asso-
ciated with residual error of −5.10 %. Clearly, the Markov-
Grey model exhibits remarkable forecasting accuracy 
with relatively small SMSE and MAPE values.

4 Conclusion
Metro passenger flow forecasting is an estimation of the 
future traffic demand for a certain station, metro line, or 
overall metro network. Quick, comprehensible forecasts 
are required to provide sufficient travel information for 
passengers, and to allow relevant personnel to adjust train 
operation diagrams dynamically; accurate forecast infor-
mation also allows personnel to make effective emer-
gency management decisions for stations encountering 

Table 2 Performance comparison of passenger flow forecast

Data

Passengers GM(1,1) GM(1,1) with δ1 Markov-GM(1,1) with δ1

x(0) x 0( )ˆ e/% 1
x 0( ) e/% 2

x 0( ) e/% 3

20150923 58602 52199 10.93 55554 5.20 —4 —

20150924 59752 52498 12.14 55871 6.49 61849 −3.51 

20150925 60297 52798 12.44 56191 6.81 62220 −3.19 

20150926 62195 53100 14.62 56512 9.14 62730 −0.86 

20150927 58067 53403 8.03 56835 2.12 61714 −6.28 

20150928 61608 53708 12.82 57160 7.22 63321 −2.78 

20150929 63164 54015 14.48 57487 8.99 63802 −1.01 

20150930 60986 54324 10.92 57815 5.20 63913 −4.80 
1 SMSE = 6596.64, MAPE = 10.67 %, 2 SMSE = 3539.32, MAPE = 5.53 %, 3 SMSE = 2190.62, MAPE = 3.20 %
4 Data unavailable due to lack of four-step transition probability matrix
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an outburst of passengers. Passenger flow forecasting 
is often largely inaccurate due to various uncertainties 
(Li, L. et al., 2018; Zhao et al., 2011) that merit special 
consideration in ATC application.

In this paper, we simultaneously propose a passenger 
flow forecast method comprised of a novel Markov-Grey 
model which includes modification factors δ1 and δ2, as 
determined by two minimum mean square error principles, 
to improve the forecast precision; the Markov approach 
is utilized to further process the residual error series. 
Flow data for passengers entering and leaving the Xiaozhai 
station of Xi'an Metro Line 2 from September 1-30, 2015, 
were used to construct the Grey forecast model. Our anal-
ysis results revealed that the proposed method has better 
forecasting performance, with smaller SMSE and MAPE 
values than the original method; Markov processing fur-
ther decreases the residual errors.

This study arguably has some methodological lim-
itations. For one, because the Grey forecast model is the 
form of exponential function, better forecasting per-
formance would be possible if the original input x 0( ){ }  
strictly increases (or decreases) the time series data; but 
the data series would yield large residual errors if x 0( ){ }  is 
harsh. The model proposed here also does not include the 
stochastic characteristics of metro passenger flow series. 
In future work, we plan to extend this methodology to 
incorporate the uncertainty of metro passenger flow fore-
casting using a fuzzy rule-based approach.
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