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Abstract 
This article provides a new approach to searching solutions 
of the ship transport optimalization problems. It brings a new 
variant of one algorithm of searching for the Minimum Span-
ning Tree. The new element in the algorithm is that it uses 
the Weighted Adjacency Matrix. This Weighted Adjacency 
Matrix is suitable for searching for the Minimum Spanning 
Tree (MST) of the graph. It shows how it could be used in cases 
where weighted edges of the graph are given. This creates a 
new procedure of searching for the MST of the graph and com-
pletes previously known algorithms of searching for the MST. 
In the field of transportation it could be succesfully used for 
solutions of optimizing transportation routes where smallest 
costs are wanted. Proposed Weighted Adjacency Matrix could 
be used in similar issues in the field of the graph theory, where 
graphs with weighted edges are given. The procedure is shown 
on the attached example.
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1 Introduction
One of the important aims in the field of shipping traffic is 

to find the ideal combination of shipping traffic routes so as 
to ensure the serviceability of all places, and to reduce costs 
of transport connections as low as possible. It is necessary to 
reach each hub and to reduce transport costs to the minimum. 
Hubs are ports and transport routes are shipping lanes.

Graph theory offers useful tools for solving problems in this 
area. To model this situation we create a connected weighted 
graph where vertices represent sea ports and the edges represent 
the routes between the ports through which ships transporting 
goods. The weight of an edge between two vertices represents 
the energy consumed to drive the boat between these ports.

At the beginning there is a situation where ships transport 
goods between hubs over many different routes and in different 
ways, but the transport links are inefficient and expensive as a 
whole.

The task of our algorithm is now to optimize the connections 
between hubs, so that the cost of transport links between all 
ports were minimal with the condition that every port is reach-
able through traffic routes.

To search for optimal transport connection we can use the 
tool spanning tree from the graph theory. This tool is useful 
to optimize the connections between all hubs to be as simple 
as possible. Another tool is the minimum spanning tree, which 
ensures that this unique connection will be the least expensive. 
For searching the minimum spanning tree we offer here a new 
algorithm, which complements the previously known algo-
rithms and demonstrates new and original approach.

2 Description of the MST issues
All graphs in this article are finite, simple and connected. 

The system of shipping traffic routes we can transform into 
the graph where vertices represent sea ports, edges represent 
transport routes and weights of edges represent the energy con-
sumed to drive the boat between two ports. To model this sit-
uation we create a connected graph  G = (V, E)  with weighted 
edges. The optimal traffic connection of the system is repre-
sented by the spanning tree of the graph. And the problem of 
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the cheapest traffic system means that we must find the mini-
mum spanning tree.

The spanning tree of a connected graph G is a subgraph G´ 
which connects all vertices and which does not contain any 
cycles (Kleinberg and Tardos, 2006). The minimum spanning 
tree we denote  T = (V, E´) , where  V´ = V  and E´ is the set of 
n – 1  edges of the minimum spanning tree, and it applies that 
E´ ⊆ E . In the subsequent text we use the abbreviation MST 
(short for the Minimum Spanning Tree) (Jackson and Read, 
2010). The sum of the weights of edges of MST is minimal.

For searching for the minimum spanning tree there are sev-
eral obviously known algorithms which search for the MST in 
different ways. For example The Kruskal’s algorithm, Prim’s 
algorithm or Borůvka’s algorithm are the generally known. 
In the article we use some principles of Prim’s algorithm for 
searching the MST (Kruskal, 2004). But this article presents a 
new procedure for searching for the MST, which is Weighted 
Adjacency Matrix.

Let  G = (V, E)  be a connected, finite and non-oriented 
graph with positively weighted edges, where V is a set of n 
vertices and E is the set of m edges. The set of vertices V we 
denote  V = {v1 , v2 , …, vn }  and the set of edges we denote E, 
where  eij  denotes the edge between vertices vi and vj , then it is 
eij = {vi , vj } ∈ E .  W (eij)  denotes the weight of the edge con-
necting vertices vi and vj , where  eij = {vi , vj } ∈ E .

The spanning tree of a connected graph G is a subgraph G´ 
which connects all vertices and which does not contain any 
cycles (Fredman and Willard, 1984). For this subgraph G´ it 
holds that  G´ = (V´, E´) , where  V´ = V  and  E´ ⊆ E . Note that 
the  E´  set contains  n – 1  edges (Chong et al., 2001). 

For subgraph G´ = (V´, E´) of the graph G we put 
w G w e

e E
´

´( ) = ( )∈∑ . Because of the spanning tree is a tree we 
denote it T.

The spanning tree  T1 = (V, E1 )  of the graph G we call the 
minimum spanning tree if for each spanning tree  T2 = (V, E2 )   
of the graph G it holds that  w (T1) ≤ w (T2).

The minimum spanning tree we denote  T = (V, E´) , where   
V´ = V  and  E´ is the set of n – 1 edges of the minimum spanning 
tree, and it applies that  E´ ⊆ E . In the subsequent text we use 
the abbreviation MST (short for the Minimum Spanning Tree). 

If we define the function w : E → R  (ie. evaluation of edges), 
then the minimum spanning tree is such a spanning tree for 
which it holds that the sum of the weights of edges of MST is 
minimal, i.e. w E w e

e E
´ � � � � �

´( ) = ( )∈∑  is minimal.
In the following capture there is displayed a new algorithm 

which uses some new elements for searching the MST and adopts 
them to one of the previously mentioned, to the Prim’s algorithm.

3 Weighted Adjacency Matrix
At first in the proposed algorithm we create a modified adja-

cency matrix, which we call “Weighted Adjacency Matrix”. 
This matrix is similar to the Adjacency Matrix where in 

positions of elements of the matrix are either 1 or 0 if there 
is an edge between vertices vi and vj or not. In this modified 
Weighted Adjacency Matrix the positive number wij on the 
position of the element vi and vj indicates the weight of the edge 
connecting vertices vi and vj,  if the edge between vertices vi and 
vj exists. A value of 0 indicates that there is no edge between 
vertices vi and vj (Goldberk, 1987).

Weighted Adjacency Matrix (Table 1) is thus a square matrix   
W = n × n , where n denotes the number of vertices and the value 
of the element at the position wij corresponds to the weight of 
the edge between vertices vi and vj .

w
w e e E

ij
ij ij= ( ) ∈






   if   

          otherwise0

Table 1 Weighted Adjacency Matrix

1 …  …  …  

1 0 … 1  … 1  … 1  

… … … … … …

 0 …  …  

… … … …

 0 …  

… …

 0

Weighted Adjacency Matrix is symmetric with respect to the 
main diagonal, the diagonal elements have a value of 0, the 
algorithm will only use the elements of the triangle above the 
main diagonal. The algorithm of searching for the MST works 
in the Weighted Adjacency Matrix and works with elements in 
the triangle above the main diagonal.

4 Algorithm procedure
Search through the elements of the matrix and find the one 

with the smallest positive value wij. Denote chosen matrix ele-
ment in bold and underlined, then mark the rows vi, vj and col-
umns vi , vj (Denote the columns and rows with arrows at the top 
of the table). If there is more than one element with the same 
smallest positive value, it is possible to choose arbitrary one of 
these. Then more than one MST exists.

Search again through the elements of the matrix and find 
another smallest positive element, search between elements 
in the marked rows and columns (Table 2). Chosen element 
denote in the matrix in bold and underlined. Let the new ele-
ment be wjk. According to the index position of the element 
mark the row vk  and column vk. Rows and columns marked in 
the previous steps remain marked.

This step ensures the connection of the generated MST 
because the connecting edge has one of the indexes the same as 
the previous selected element, so this element connects to any 
of previously connected vertices.

(1)

RETRACTED



3The Use of Weighted Adjacency Matrix for Searching Optimal Transportation Routes 

Table 2 WAM 1

… … …

0 … … …

… 0 … … … … … …

0 … …

0 … …

… 0 … … …

0 …

… 0 …

0

Furthermore delete (ie. replace by the cross) all the elements 
in positions where newly marked row and column intersect 
with rows and columns previously marked. Here delete the ele-
ment wik . This step prevents creating cycles.

Search again through the elements of the matrix and find 
another smallest positive element, search between elements in 
the marked rows and columns. Chosen element denote in the 
matrix in bold and underlined (Table 3). Let the new element 
be w1i . According to the index position of the element mark 
the row v1 and column v1. Rows and columns marked in the 
previous steps remain marked. Furthermore delete all the ele-
ments in positions where newly marked row and column inter-
sect with rows and columns previously marked. Here delete the 
elements w1j and w1k (Table 4).

Suppose that our algorithm made k steps. 
• If  k = n – 1, algorithm stops, we have made all steps
• If  k < n – 1, we make (k + 1)-th step analogously

After we make the (n – 1)-th step in our Weighted Adjacency 
Matrix (n – 1) chosen elements are labeled (in bold and under-
lined), the other elements (which were not chosen) are replaced 
by a cross. At the same time all rows and columns in our matrix 
are labeled (Table 5). Elements denoted in the matrix in bold 
and underlined are values of weights of edges of the MST. 
Labeling the rows and columns of the selected element indi-
cates the vertices vi and vj that the edge on this position con-
nects. The sum of the values of all chosen elements gives the 
total weight of the MST.

5 Verification of the algorithm
1. Continuity of generated MST is guaranteed by the fact

that newly connected edge has one of the indices the 
same as the indices of previously selected elements (Kru-
skal, 2000). Therefore, it connects to one of the previ-
ously connected vertices.

Table 3 WAM 2

… … …

0 … … …

… 0 … … … … … …

0 … …

0 … …

… 0 … … …

0 …

… 0 …

0

Table 4 WAM 3

1
…

…

1 0
… … …

1

…
… … … … … …

0
… …

0
… …

… 0
… … …

0
…

… 0
…

0

Table 5 Final Matrix

1 … … …

1 0 … … …

… … … … … … …

0 … …

0 … …

… 0 … … …

0 …

… 0 …

0
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2. Avoiding the cycles is ensured by deleting all the ele-
ments in positions where newly marked row and col-
umn intersect with rows and columns previously marked 
(Cormen, et al., 2001).

3. The algorithm is a variant of the Prim´s algorithm, with 
the difference that in the first step we do not begin by 
selecting the arbitrary initial vertex, but in our Weighted 
Adjacency Matrix we begin by selecting the edge with 
the smallest weight. From the second step our algorithm 
works analogously as in the Prim´s algorithm (which has 
been proven, see (Harris et al., 2000)). This guarantees 
selection of the minimum spanning tree.

6 Demonstration of solved Example
Imagine the system of the sea transport routes. At first we 

transform the system of transport routes into the weighted 
graph (Fig. 1). There are 6 ports represented by 6 vertices of 
the graph v1, v2, …, v6, connections between the ports are repre-
sented by the edges in the graph and numbers belonging to the 
edges represent the costs of energy consumed to drive the boat 
between two ports. 

Fig. 1 Given Graph

Corresponding Weighted Adjacency Matrix is (Table 6):

Table 6 Given Matrix

1 2 3 4 5 6

1 0 6 2 5 0
1

0

2 0 5 0 7 0

3 0 9 0 3

4 0 7 8

5 0 4

6 0

7 Steps of algorithm
1. Search through the elements of the matrix and find the 

one with the smallest positive value w13 = 2. Denote cho-
sen matrix element in bold and underlined, then mark the 
rows v1, v3 and columns v1, v3 (Table 7).

Table 7 WAM 4

1 2 3 4 5 6

1 0 6 2 5 0 0

   0 5 0 7 0

3 0 9 0 3

4 0 7 8

5 0 4

6 0

             

2. Search again through the elements of the matrix and find 
another smallest positive element w36 = 3, search between 
elements in the marked rows and columns. Chosen ele-
ment denote in the matrix in bold and underlined. Ac-
cording to the index position of the element mark the 
row v6 and column v6 . Rows and columns marked in the 
previous steps remain marked (Table 8). Furthermore we 
delete (ie. replace by the cross) all the elements in posi-
tions where newly marked row and column intersect with 
rows and columns previously marked. Here we delete the 
element w16 .

Table 8 WAM 5

1 2 3 4 5 6

1 0 6 2 5 0 x

2 0 5 0 7 0

3 0 9 0 3

4 0 7 8

5 0 4

6 0

3. Search again through the elements of the matrix and find 
another smallest positive element w56 = 4, search be-
tween elements in the marked rows and columns. Cho-
sen element denote in the matrix in bold and underlined. 

RETRACTED
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According to the index position of the element mark the 
row v5 and column v5. Rows and columns marked in the 
previous steps remain marked. Furthermore delete all the 
elements in positions where newly marked row and col-
umn intersect with rows and columns previously marked. 
Here delete the elements, w34 = x, w35 = x (Table 9).

Table 9 WAM 6

1 2 3 4 5 6

1 0 6 2 5 x x

2 0 5 0 7 0

3 0 9 x 3

4 0 7 8

5 0 4

6 0

4. Search again through the elements of the matrix and find 
another smallest positive element w14 = 5, search between 
elements in the marked rows and columns. Chosen ele-
ment denote in the matrix in bold and underlined. Accord-
ing to the index position of the element mark the row v4 
and column v4. Rows and columns marked in the previous 
steps remain marked. Furthermore delete all the elements 
in positions where newly marked row and column inter-
sect with rows and columns previously marked. Here de-
lete the elements w34 = x, w45 = x, w46 = x (Table 10).

Table 10 WAM 7

1 2 3 4 5 6

1 0 6 2 5 x x

2 0 5 0 7 0

3 0 x x 3

4 0 x x

5 0 4

6 0

5. Search again through the elements of the matrix and find 
another smallest positive element w23 = 5, search be-
tween elements in the marked rows and columns. Cho-
sen element denotes in the matrix in bold and underlined. 

According to the index position of the element mark the 
row v2 and column v2. Rows and columns marked in the 
previous steps remain marked. Furthermore delete all the 
elements in positions where newly marked row and col-
umn intersect with rows and columns previously marked. 
Here delete the elements w12 = x, w24 = x, w25 = x, w26 = x  
(Table 11).

Table 11 WAM 8

1 2 3 4 5 6

1 0 x 2 5 x x

2 0 5 x x x

3 0 x x 3

4 0 x x

5 0 4

6 0

8 Termination of the algorithm
When the graph G has n vertices then the MST has n – 1 

edges (Kleinberg and Tardos, 2006). At each step of the algo-
rithm we add to the gradually rising MST one edge, then 
algorithm makes n − 1 steps. In our example, the graph has 
6 vertices, then the MST has 5 edges. That is the reason why 
algorithm makes 5 steps.

After the final step, all the elements in the Weighted 
Adjacency Matrix went through processing, ie. the edges cho-
sen for the MST are denoted in the agreed way, i.e. here in bold 
and underlined, deleted edges are marked by symbol x.

At the same time, after the last step all the rows and columns 
of the matrix are marked with the arrows next to the rows and 
above columns.

9 Final graph of the MST is here 

Fig. 2 Final Graph of the MST

RETRACTED
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Value of the final MST is:

e E

w e
∈
∑ ( ) = + + + +( ) =

´

.2 3 4 5 5 19

10 Conclusion
This article describes the proposal of the algorithm for search-

ing for the minimum spanning tree. The proposed algorithm 
is similar to the Prim´s algorithm (Harris et al., 2000), which 
creates the minimum spanning tree as gradually growing set 
of edges of the MST. In this regard there is a compliance with 
Prim’s algorithm. The Prim’s algorithm starts with the arbitrary 
vertice. Here, however, the first element the algorithm starts with 
is the edge with the lowest weight (Jackson and Read, 2010).

The new tool here is the “Weighted Adjacency Matrix (abr. 
WAM)”. It follows the principle of adjacency matrix known 
known in the graph theory, but in the positions of matrix ele-
ments there are values of weights of edges connecting the ver-
tices. The vertices denote the rows and columns of the matrix.

The whole process of searching MST begins with choosing 
the smallest element of the matrix, representing the edge with 
the lowest weight. Gradually we add elements so that another 
new element has one index same as some of the elements that 
have been chosen in previous steps. This step guarantees the 
continuity of MST.

Elements which in denoted rows and columns are not cho-
sen, must be removed because these edges would create cycles. 
The entire process takes place in WAM, the original graph is 
not needed. 

Benefits of the proposed algorithm is that the searching the 
MST by using WAM is efficient and fast. According to my knowl-
edge the searching for the MST by using WAM is a new tool and 
it can be assumed that the WAM could be used for solving other 
similar problems in the graphs, where weighted edges are given. 
Working of the algorithm is shown on solved example.

The proposed algorithm is suitable for optimizing the ship 
transport because the system of the ship traffic routes can be 
easibly transform into the Weighted Adjacency Matrix which is 
clear representation of the graph with weighted edges. Solving 
the problem of searching for the minimum spanning tree goes 
in this matrix quickly and is illustratively presented in the 
solved example.

References
Chazelle, B. (2000). A minimum spanning tree algorithm with inverseacker-

mann type complexity. Journal of the ACM. 47(6), pp. 1028-1047.
https://doi.org/10.1145/355541.355562

Chong, K. W., Han, Y., Lam, T. W. (2001). Concurrent threads and optimal 
parallel minimum spanning trees algorithm. Journal of the ACM. 48(2), 
pp. 297-323.
https://doi.org/10.1145/375827.375847

Cormen, T. H., Leiserson, C. E., Rivest, R. L, Stein, C. (2001). Introduc-
tion to Algorithms. 2nd Edition. MIT Press and McGraw-Hill, ISBN 
0262033844 9780262033848

Fredman, M. L., Willard, D. E. (1993). Surpassing the information theoret-
ic bound with fusion trees. Journal of Computer and System Sciences. 
47(3), pp. 424–436.
https://doi.org/10.1016/0022-0000(93)90040-4

Fredman, M. L., Willard, D. E. (1994). Trans-dichotomous algorithms for min-
imum spanning trees and shortest paths. Journal of Computer and Sys-
tem Sciences. 48(3), pp. 533–551.
https://doi.org/10.1016/S0022-0000(05)80064-9

Goldberg, A. W. (1987). Efficient Graph Algorithms for Sequential and Parallel 
Computers. PhD thesis, Department of Electrical Engineering and Com-
puter Science, MIT.

Harris, J. M., Hirst, J. L., Hossinghofer, M. J. (2000). Combinatorics and 
Graph Theory. Springer, New York.
https://doi.org/10.1007/978-1-4757-4803-1

Jackson, T. S., Read, N. (2010). Theory of minimum spanning trees. Physical 
Review E. 81, 021130
https://doi.org/10.1103/PhysRevE.81.021130

Kleinberg, J., Tardos, E. (2006). Algorithm Design. Pearson Education, Inc., 
New York.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the 
traveling salesman problem. Proceedings of the American Mathematical 
Society. 7, pp. 48–50.
https://doi.org/10.1090/S0002-9939-1956-0078686-7

Maren, M. (2008). Graph Algorithms (The Saga of Minimum Spanning Trees). 
PhD thesis, Charles University, Prague, Czech Republic. [Online]. Avail-
able from: http://mj.ucw.cz/papers/saga/ Accessed: 1st April 2017]

Matousek J., Nesetril, J. (2009). Kapitoly z diskrétní matematiky. (The Chap-
ters from discrete Mathematics.), 4th edition, Prague, Charles University 
in Prague. ISBN 978-80-246-1740-4 (in Czech).

Pettie, S., Ramachandran, V. (2002). An optimal minimum spanning tree algo-
rithm. Journal of the ACM. 49(1), pp. 16-34.
https://doi.org/10.1145/505241.505243

Prim, R. C. (1957). Shortest connection networks and some generalizations. 
The Bell System Technical Journal. 36(6), pp. 1389–1401.
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

(2)

RETRACTED

https://doi.org/10.1145/355541.355562
https://doi.org/10.1145/375827.375847
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/S0022-0000(05)80064-9
https://doi.org/10.1007/978-1-4757-4803-1
https://doi.org/10.1103/PhysRevE.81.021130
https://doi.org/10.1090/S0002-9939-1956-0078686-7
http://mj.ucw.cz/papers/saga/
https://doi.org/10.1145/505241.505243
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

	1 Introduction
	2 Description of the MST issues
	3 Weighted Adjacency Matrix
	4 Algorithm procedure
	5 Verification of the algorithm
	6 Demonstration of solved Example
	7 Steps of algorithm 
	8 Termination of the algorithm 
	9 Final graph of the MST is here 
	10 Conclusion
	References



