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Abstract

Nowadays the spatial econometrics is became widely used in transportation sciences. In order to know which method can be used 

or how they should be used, the review articles give answers. In this recent paper the goal is to collect all of the methods in one 

article which can be used in further researches. The improvement in this article is that beside the spatial econometric methods, other 

necessary techniques are also introduced. With this fact a whole analysis can be applied.

Keywords

spatial econometrics, transportation geography, transportation economics

1 Introduction
In the field of spatial sciences, it is a basic objective to han-
dle interdependences of input data, which may have dis-
advantageous effect on estimation reliability of classical 
regression models. In case of the above mentioned types 
of interdependencies related to the spatial characteristic 
of the basic dataset, spatial methods are proposed to be 
applied. Accordingly, the aim of the article to introduce a 
selection of these kinds of models, which are applicable to 
handle spatial related interdependencies.

The main aspect of the authors in selecting spatial meth-
ods to be introduced is their connection to transportation 
sciences (Levulytė et al., 2017). As it was mentioned above 
it is not a goal to give a full picture about the topic, but to 
give an insight of the applicability of the referred group of 
methods. In the first step the article (Ord, 1975) focuses on 
which introduced a newly developed spatial index for all of 
counties of Ireland related to road accessibility. In the arti-
cle a spatial model has been introduced where the dependent 
variable has been the percentage of gross agricultural output 
of each county consumed, while the independent variable 
has been being the index for road accessibility (Ord, 1975).

The paper (Sipos, 2017) has concluded local spatial 
tests can be applied to identify hot and cold points from a 
traffic safety point of view. Spatial autocorrelation related 

to Hungary's accident data has been proven between 2010-
2012 with global Moran-test (Sipos, 2017).

There are other well-structured and applicable review 
and summary articles in the international literature 
(Anselin, 2001; Getis, 1991; LeSage, 2008; Varga, 2002), 
however our main goal is to collect those methodological 
components which can be used in our further researches 
(Szabó et al., 2017).

2 Spatial Autocorrelation
The first demands for spatial econometrics based evalua-
tions are rooted to the underlying development of the demo-
graphic analysis of the 40's. Waldo Tobler assumed that 
according to his model, Ann Arbor's population in 1940 
depends form the city's population in 1930. Furthermore, 
Ann Arbor's population depends on the population of all 
the other settlements of the World in 1930. Accordingly, 
Tobler introduced his first law of geography: "Everything 
is related to everything else, but near things are more 
related than distant things." (Tobler 1970: p. 236).

The basic idea of spatial econometrics is very similar to 
the classic approach of econometrics, however in this case 
instead of time-lag, a space lag is used. So spatial econo-
metric model is desirable for use, if spatial autocorrelation 
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exists. In case of a classic econometric model there is a 
one-way temporal dependency between the measured 
units: the latter value of two neighboring units depends 
on the value of the earlier unit. In spatial sense the depen-
dency can be bilateral, so while a property of an investi-
gated unit depends on another unit, then the other unit's 
property depends also on the original measured unit.

According to another approach, in land use models, the 
type of the land depends on the time (t), and also on the 
properties of the neighborhoods (the model was built in 
a square lattice, so the place depends from i and j). If the 
type of the land only depends on the same property of the 
neighboring areas (according to the first law of geography), 
then that is a geographical model, where there is a possi-
bility to search for spatial autocorrelation (Tobler, 1979).

There are two types of the spatial autocorrelation: positive 
and negative. In case of positive autocorrelation similar ele-
ments make groups in space. In case of negative autocorrela-
tion, units' pattern is shaped like a chessboard. The causes 
of the positive autocorrelation are well-researched; however, 
the causes of negative autocorrelation are not detailed in the 
same deepness in the literature. The positive autocorrelation 
can have two main reasons (Varga, 2002):

1. Technical reason: in this case the autocorrelation is 
always based on the specification of the element iden-
tification. For example, it is likely to find autocorrela-
tion among political, economic or legal characteris-
tic of cities located in the same geographical area.

2. The substantive reason: in this case the spatial auto-
correlation is based on some kind of social interac-
tion. The main reason of it is mostly the first law of 
the geography.

3 Econometric Usage of Spatial Autocorrelation
As it was mentioned before the spatial autocorrelation's 
best analysis is based on the econometric models. Because 
of the existence of two-way dependency, weight matrices 
are proposed to be used. There are three possible ways of it. 
The first is the binary neighborhood matrix, the second is 
the inverse distance matrix, while the third is the mixture of 
the first two, the Getis matrix. The weight matrix is signed 
by W, while wij denotes its elements, which represents the 
relationship between elements i and j (Varga, 2002).

3.1 Binary Neighborhood Matrix
The precondition of setting up a binary neighborhood 
matrix is the definition of the degree of neighborhood. 
Two points of interest which have a common border are 
called direct (first order) neighbors. For example, in case 

of a 3 × 3 square lattice there are three types of neighbor-
hood, as it is shown in Fig. 1.

The first type is called rook, the second is called bishop 
while the third is called queen type of association based upon 
the rules of chess. Fig. 1 shows the neighboring elements 
(with yellow) from the chosen point (with red) in each case.

Based on the previously shown definition, if one ele-
ment is given, the direct neighbor of a direct neighbor 
(which is not the investigated fields), is its second degree 
neighbor, and so on. Based on this fact, the binary neigh-
borhood matrix could only be referred only to one neigh-
bor degree (which can be referred first degree neighbors, 
second degree neighbors, or else, but only one of them). 
In this case 1ijw =  only if the neighbor degree between 
i and j are fitted to the actual order what the matrix rep-
resents (in case of a first degree binary neighborhood 
matrix, W, if 1ijw =  then there is a first degree neighbor-
ing relationship between i and j) (Varga, 2002).

3.2 Inverse Distance Matrix
In case of inverse distance matrix three different matrices 
can be set up. The first one is the classic distance matrix 
where the actual elements show the distance of the two 
investigated points. The distances between the points are 
based on the spherical cosine rules, because in case of geo-
graphical locations, especially in case of long distances the 
classical Pythagorean theorem is not applicable. The for-
mula of the spherical cosine rule is Eq. (1)

cos cos cos sin sin cosc a b a b= + γ  (1)

where:
a , b , c  the three sides of the spherical triangle
γ  the angle opposite of the investigated side ( c ).

The first step of the distance calculation is to find a 
spherical triangle of which two points are the investigated 
locations, and the third is the North Pole. The points are 
defined by their coordinates, however the south latitude, 
and the west longitude coordinates will be negative num-
bers. In this case the elements of the Eq. (1) is given below, 
if ( )1 2;A A A  and ( )1 2;B B B  Eqs. (2)-(4)

Fig. 1 The neighbor patterns (rook, bishop and queen) 
(Source: authors)



Szabó and Török
Period. Polytech. Transp. Eng., 48(2), pp. 143–149, 2020 |145

a B= °−90
1  (2)

b A= °−90
1
 (3)

γ = −A B
2 2

.  (4)

In this case the distance between the two actual 
points will be ( ),d i j cR= , where R  is the radius of the 
Earth (6380 km).

The next matrix is the weight matrix; elements of which 
can be calculated with Eq. (5)

w
d i jij a=
( )
1

,

.  (5)

In this case a is a parameter chosen arbitrary. The value 
of a is usually 2, but the previously carried out researches 
demonstrated that its value should be chosen between 0.4 
and 3.3 w ith a median of 1.94 (Haggett, 2001). The other 
assumption is, that in case of i j=  the 0ijw =  will be true.

As it will be shown in the next part of the article, some-
times it is proper to use row-standardized matrices. In this 
case, all of the elements of the matrix must be divided by 
the sum of the actual row. Because of this step, the sum of 
the rows will be equal to 1, and w Nij

i j,
∑ = , where N  is  

the number of the investigated points.

3.3 Getis Matrix
The weight matrix founded by Getis is a fusion of the neigh-
borhood and distance matrices. The values of the matrix ele-
ments can be 0 or 1 similarly to the neighborhood matrices, 
but an element of the matrix can only be 1 if the distance 
between the two investigated points is below a predefined 
distance (Getis, 1991; Getis and Ord, 1992).

4 Spatial Statistics
In spatial econometrics it is important to find out whether 
there is spatial autocorrelation in our data or not. To evalu-
ate this, it is proper to use cross-product statistics. The gen-
eral form of this statistic is given as Eq. (6) (Getis, 1991)

Γ =∑W Yij ij
i j,

 (6)

where:
ijW : elements of the weight matrix between i  and j

ijY : measure of association between i  and j .

The statistic test of the autocorrelation has two differ-
ent types: the global and the local statistics. In case of the 
global evaluation the overall dataset is taken into consid-
eration during the analysis. In case of the local investiga-
tion the statistic is calculated for only one geographical 
location (Varga, 2002).

4.1 Moran I-test
The most widely used form of the cross-product statistics for 
autocorrelation is the Moran's I-test (Moran, 1948). The sta-
tistic has a global form and a local form too. In this case the 
cross-product is given as Eq. (7) (Getis, 1991)

Y x x x xij i j= −( ) −( ) .  (7)

The formula of the global Moran statistics is defined 
by Eq. (8) (Anselin, 2001)

I N
S

w x x

x
i j ij i j

i i

=
− −( )
−

( )( )
( )

∑
∑0

2

,
µ µ

µ
 (8)

where:
N : number of the investigated points

ix , jx : the observed value of two points of interest
µ : the expected value of x

ijw : the elements of the spatial weight matrix

0S : normaliser – S w
i j

ij0
=∑

,

.

Because of the previously mentioned considerations, 
in case of a row-standardized weight matrix 0S N= , it is 
possible to use *I  instead of I . Its formula is given as 
Eq. (9) (Varga, 2002)

I
w x x

x
i j ij i j

i i

* ,
.=

− −( )
−

( )( )
( )

∑
∑

µ µ

µ 2

 (9)

Based upon *I  it is possible to decide whether there is 
a positive or a negative autocorrelation between the data. 
It is enough to analyze its relation with its expected value. 
If I E I* *> ( ) , then there is a positive autocorrelation in 
our data, if it is not true then negative autocorrelation can 
be defined. The expected value of *I  can be expressed 
by Eq. (10) (Varga, 2002)

E I
N

*
.( ) = −

−
1

1
 (10)

There are two possible ways to define the significance 
of the result of the Moran test. The methods analyze the 
given dispersion to random dispersions, and if the actual 
dispersion seems to be extreme compared to the random 
ones, then the spatial autocorrelation's presence is signif-
icant (Varga, 2002).

In case of the first method the null hypothesis is that 
the values tend to normal distribution. Then, for I  value 
a u-statistics can be calculated. However, in most of the 
cases this statistic tends to be too strict, so it is advised to 
test the results with other methods as well (Varga, 2002).

A possibly applicable other way to test the results of the 
Moran test is to apply permutation method. In this case the 
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null hypothesis assumes that the probability of any permu-
tation of the data (the observed values) has the same result. 
To carry out the analyses, the first step is to order a random 
permutation of the values to the points; then the alternate 
Moran-I statistic is need to be calculated. These alternate I  
values are need to be compared to the original one. Finally, 
the pseudo significance value can be calculated based on 
Eq. (11) (Bajmócy and Szakálné Kanó, 2009; Varga, 2002).
T
M
+
+
1
1

 (11)

where:
T : number of the cases, where the alternate I  value is 
higher than the original one
M : number of the permutations.

The low pseudo significance value indicates that the 
null hypothesis can be rejected, which signs the presence 
of the spatial autocorrelation (Varga, 2002).

Among the local statistics Anselin's local Moran statis-
tic is the most widely used. In this case, the used formula 
is Eq. (12) (Varga, 2002).

I z w z z xi i
j

ij j i i= = −∑ , where µ  (12)

where:

ix , jx : the observed value of two points of interest
µ : the expected value of x

ijw : the elements of the spatial weight matrix.

To calculate the significance level, the previously shown 
methods are appropriate.

4.2 Geary c-test
The Geary c-test is another test to evaluate the presence 
of spatial autocorrelation. The c  contiguity ratio is a gen-
eralization of von Neumann's ratio (von Neumann, 1941) 
for time-series. The benefit of the given parameter is that 
it results normally distributed dataset for a low amount of 
points. Considering the above mentioned advantageous 
characteristics of c  contiguity ratio, to test the significance 
of the results a u-test is adequate (Geary, 1954). This is 
another type of cross-product statistics, so in this case for-
mula can be defined as Eq. (13) (Getis, 1991)

Y x xij i j= −( )2 .  (13)

The formula of the contiguity ratio is defined as Eq. (14) 
(Geary, 1954)

c N
K

x x

x x

i j
j

n

i

n

i
i

n=
−

−( )

−( )
==

=

∑∑

∑
1

1

2

11

1

 (14)

where K kii

n
1 1
=

=∑  where ik  stands for the number of the
connexions (Geary, 1954).

If Geary's c  value is equal to 1, then there is no auto-
correlation between the data (Getis, 1991).

4.3 Getis-Ord G-test
The G-test is slightly newer than the other test, because it 
was introduced in 1991. The main idea of the test, that this 
statistic makes a connection between the spatial interaction 
and spatial autocorrelation models (Getis, 1991). This is also 
a cross-product type statistic, as it can be seen in Eq. (15):

Y x xij i j= .  (15)

The Getis-Ord G-test has also local and global form. 
The local form has also two types differentiated by the 
existence of i j=  relationship. The formula of the two sta-
tistics are given as Eqs. (16) and (17) (Getis and Ord, 1992)

G
w x

x
j ii

ij j
j

n

j

n

j

= ∀ ≠=

=

∑

∑
1

1

 (16)

G
w x

x
i

ij j
j

n

j
j

n
*

.= =

=

∑

∑
1

1

 (17)

The difference between the two formula is the restric-
tion j i≠ . Because there are only small differences 
between the two tests, hence the significance test will 
only be present for the first one (the other one is similar).  
For the significance test a simple u-test can be used 
(Getis and Ord, 1992).

As it was mentioned before there is a global form of 
the G-test. It is quite similar to the local form, hence only 
its formula is presented at Eq. (18) (Getis and Ord, 1992)

G
w x x

x x
j i

ij i j
j

n

i

n

i j
j

n

i

n= ∀ ≠==

==

∑∑

∑∑
11

11

.
 (18)

5 Estimation
In spatial econometric models it can be necessary to define 
the effects of the independent variables. To do this, other 
kind of models – differing significantly from the above men-
tioned methods – are need to be introduced. The basis of 
these models is the classic linear regression model. Because 
it is usually estimated by the ordinary least squares (OLS) 
model hence they are usually called OLS models. The esti-
mation formula is given as Eq. (19) (Elhorst, 2010)
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y x= + +α β ε .  (19)
All of the introduced spatial models are based on the 

previously presented formula, however these formulas 
contain different spatial parameters (Elhorst, 2010).

5.1 Spatial Lag Model
The essence of the spatial lag model can be concluded as 
follows: the time lag used in the classic econometrics is 
used combined with the weight matrix. The formula of the 
model is the Eq. (20) (Varga, 2002)

y W y XN N N N N K K N×( ) ×( ) ×( ) ×( ) ×( ) ×( )= + +1 1 1 1ρ ββ εε  (20)

where:
y : vector of the dependent variables
ρ : autoregressive parameter
W : weight matrix
β: the coefficient vector
X : the matrix of the independent variables
ε: vector of errors ( E iε( ) = 0 , V iε σ( ) = 2 )
N : number of points of interest
K : number of independent variables.

In spatial econometrics, during the estimation pro-
cess, the classic least square method cannot be used, so 
other methods are need to be applied, (e.g. maximum 
likelihood approach).

Thanks to the properties of the likelihood estimation, it 
is enough to find the maximum of the concentrated like-
lihood function. For the spatial lag model's concentrated 
likelihood function, the only unknown variable is the ρ, 
so it can be found after the maximization. If the ρ  is cal-
culated, then the β and the 2σ  are also can be calculated. 
The formula of the spatial lag model's concentrated likeli-
hood function is given as Eq. (21) (Varga, 2002)

L N
Nc

i
i

L
T

L= −( ) − −( ) −( )







∑ ln ln1

2

0 0ρω
ρ ρe e e e  (21)

where:

cL : the value of the concentrated likelihood function

iω : the eigen values of the W  row standardized weight 
matrix

0e : the residual vector of the estimation, where the 
y  is the vector of the dependent variables, while  
X  is the matrix of the independent variables

Le : the residual vector of the estimation, where the Wy  
is the vector of the dependent variables, while X  is the 
matrix of the independent variables.

As it was mentioned before after finding the maximum 
of the likelihood function, the β and the 2σ  can be calcu-
lated from the ρ  value Eqs. (22)-(23) (Anselin, 1988)
ββ = −b b0 ρ L  (22)

σ
ρ ρ

2 0 0=
−( ) −( )e e e eL

T
L

N
.  (23)

5.2 Spatial Error Model
The other model is the spatial error model, where the spa-
tial effects are taken into consideration as an error. So in 
this case the final model is exempt from the spatial autocor-
relation. In this case the model's mathematical representa-
tion is Eqs. (24) and (25) (Varga, 2002)

y XN N K K N×( ) ×( ) ×( ) ×( )= +1 1 1ββ εε  (24)

εε εε ζζN N N N N×( ) ×( ) ×( ) ×( )= +1 1 1λW  (25)

where:
ζ: vector of spatial dependent errors
λ : autoregressive error parameter.

As it was mentioned before in spatial econometrics 
the classic ordinary least squares method cannot be used. 
So the maximum likelihood estimation is ought to be used. 
As it was mentioned above it is enough to use the concen-
trated likelihood function for the maximization, and after 
finding the maximum value the β and the 2σ  parameters 
can be calculated from λ . The formula of the likelihood 
function in this case is Eq. (26)

L N
Nc

i
i

T T

= −( ) − − −









( ) ( )
∑ ln ln1

2
λω

λ λe I W I W e

 
(26)

where e  is the residual vector of the general least 
square model.

5.3 Other Spatial Models
There is a main disadvantage of the previously shown 
methods as there is only one spatial parameter in the 
models. After 2007 several methods were introduced 
with more than one spatial parameters (Elhorst, 2010). 
However, in this paper, these methods are not the subject 
of the investigation.

5.4 Choosing the proper model
In order to choose the proper model, Lagrange-Multiplier 
(LM) tests are ought to be used. There are tests for the 
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presence of spatial error and spatial lag too. The first test 
is for the spatial error Eq. (27) (Varga, 2002)

LM ERR s
T

T

− =









e We
2

2

 (27)

where Eqs. (28) and (29):

s
N

T

=
e e

 (28)

T tr T= +( )W W W 2
.  (29)

In this case the tr  stands for the trace of a matrix.
As it was mentioned before there are tests for spatial lag 

too. The most frequently used is the Eq. (30) (Varga, 2002)

LM LAG s
RJ

T

− =









−

e Wy
2

2

ρ β

 (30)

where Eqs. (31) and (32):

RJ T
s

T

ρ β− =
+ ( ) ( )WX M WXββ ββ

2
 (31)

M I X X X X= − ( )−T T1

.  (32)

All of the statistics are 2χ  statistics with 1df = . If the 
test seems to be significant then the given method cannot 
be used (Varga, 2002).

6 Goodness of the models
To determine the goodness of the actual model, there are 
two possibilities. Firstly, the square of the Pearson like 
correlation parameter can be used, while the other possi-
bility is to apply the likelihood based information criteria.

In case of Pearson like correlation parameters, when the 
model is spatially lagged then the well-known formula can 
be used Eq. (33) (Anselin, 1988; Bolla and Krámli, 2005)

R NY
NY

Y
Y

Yn

2
2

2

1

2=
−
−

=























y y
y y

y
T

T , where
�

ˆ ˆ  
(33)

where Y  is the mean of the elements of y  (Bolla and 
Krámli, 2005).

However, if there is a spatial autoregressive error term 
( λ ) in the model, then the previous formula cannot be 
used. In this case a pseudo 2R  value should be calculated, 
its formulas are given by Eqs. (34) and (35) (Anselin, 1988)

R
y yw w

2
1= −

− −

−( ) − − −

( ) ( )
( ) ( )( )

e I W I W e
y I W I W y

T T

T T

λ λ

λ λιι ιι
 (34)

yw
T T

T T=
− −

− −

( ) ( )
( ) ( )

ιι
ιι ιι
I W I W y
I W I W

λ λ
λ λ

 (35)

where: ı is an N  by 1 vector of ones.
In case of the likelihood based values, four types of 

statistics can be applied. These are the cL  value of the 
concentrated likelihood function and the AIC , BIC  and 
CAIC  statistics. The cL  value can be calculated based 
upon Eqs. (21) and (26), and in general, if the value is 
lower, the model seems to be better. However, the value of 
the cL  depends from the number of the independent vari-
ables, and the sample size, so an index of goodness should 
be applied. These are the information criteria (Cameron 
and Trivedi, 2005).

The first information criterion is the AIC (Akaike 
Information Criterion), the simplest among all. In case of 
using this criterion the sample size is not taken into con-
sideration, only the number of the independent variables. 
Its formula is the Eq. (36) (Cameron and Trivedi, 2005)

AIC L q= − +2 2ln  (36)

where:
L : value of the likelihood function
q : number of the independent variables.

Because the cL  is the value of the logarithmic likeli-
hood function, in case of the information criteria the log-
arithmic transformation needs not be used. While the cL  
value is a negative number of which minimum value is 
–N , where N  is the sample size, the information crite-
rion will be a positive number. According to the AIC , the 
model will be better if the value is lower. Because the sam-
ple size is not taken into consideration and the q  value's 
weight is not proven to be so emphatic, so that it is not used 
frequently (Cameron and Trivedi, 2005).

In order to improve the AIC  index KLIC (Kullback–
Liebler Information Criterion) should be used. The basis 
of this criteria is that the second part of the formula should 
be replaced by a formula where the N  and q  values are 
taken into consideration, and they are more than 2q .  
In this paper two of them will be introduced, the BIC 
(Bayesian Information Criterion), and the CAIC (consis-
tent AIC) ones. Their formulas are the Eqs. (37) and (38) 
(Cameron and Trivedi, 2005)

BIC L N q= − + ( )2ln ln  (37)

CAIC L N q= − + +( )2 1ln ln  (38)

where:
L : value of the likelihood function
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q : number of the independent variables
N : number of the elements in the sample.

7 Conclusion
This article has summed up the used methods in the topic 
of spatial econometrics. There are numerous articles about 
this field, but the aim of our article was to introduce a new 
view point in the overview of the topic. The goal has been 
to identify those methods which can be used in our fur-
ther research (Szabó et al., 2017). For other researchers, 

these tools could be really useful, when territorial units 
are compared to each other, for example in case of road 
safety like (Török, 2017) or (Pauer, 2017).

The article mentioned all steps of a spatial economet-
ric analysis and examples for the applicable methods have 
also been presented. In the first step a weight matrix is 
needed to be found which was introduced in Section 3. 
The second step is to find out the presence of spatial auto-
correlation (Section 4), and finally a proper model is need 
to be set up (Sections 5 and 6).
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