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Abstract
The effect of particulate matter - as a component of an internal 
combustion engine's exhaust gas - on 8 different types of 
construction materials have been studied under laboratory 
conditions. Our aim was double. On the one hand it was to 
investigate the degree of discolouration, whether there is a 
difference between the 8 types of rock in the same exposure, 
after laboratory contamination. On the other hand to measure 
the mass effect of particulate on the rocks. For testing the 
adverse effects of diesel soot and particulate matter on stones 
a small scale laboratory exposure chamber was constructed 
and built in the exhaust system of the engine. A compression 
ignition engine was used to pollute directly the set of stones. 
Mass and colour measurement tests have been carried out 
on the stones before and after the exposure. The result is as 
expected small difference in the mass properties and a greater 
changes in terms of colour measurement.
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1 Introduction
Natural stones are frequently used outside and inside. One 

of the key problems of external use is the discoloration of 
building facades. The colour changes can be attributed to air 
pollution, in the form of deposition of pollutants which lead to 
blackening of building stone (Bonazza et al., 2005; Grossi and 
Brimblecombe, 2007; Urosevic et al., 2012). The blackening 
process clearly related to particulate matter (Amoroso and 
Fassina, 1983). The blackening and formation of soiling layer 
have been described for various stone types including marble 
(Moropoulou et al., 1998; Pozo-Antonio et al., 2017), limestone 
(Fobe et al., 1995; Maravelaki-Kalaitzaki and Biscontin, 1999; 
Amoroso and Fassina 1983), travertine (Török, 2008) and even 
on volcanic rocks (Germinario et al., 2017; Graue et al., 2013). 
The soiling is related to particle deposition and incorporation 
into the newly formed gypsum layers (Sabbioni, 1995). The 
colour change reflects air quality and thus millennium long 
changes can be also recorded (Brimblecombe and Grossi, 
2009). In the past decades vehicles were the main causes of 
urban stone decay, however air pollution can cause damage in 
stone structures located in rural settings (Török et al., 2011; 
Graue et al., 2013). The colour change and sulfation process 
can be modelled under laboratory conditions where carbonate 
samples are exposed to exhaust gas (particulates) and SOx 
(Rodriguez-Navarro and Sebastian, 1996). The changes can 
be recorded by testing newly formed mineral phases and also 
by measuring colour changes (Grossi and Brimblecombe 
2007). Spectroscopy can be used for studying these variations 
in colour of stones. It is also a useful tool to measure the 
differences by before-after tests and as well as the grade of 
weathering (Nagano and Nakashima, 1989).

Our basic aim was to investigate the aesthetic effect of air 
pollution derived from road vehicle's engine on stones widely used 
for construction and decoration. The main question is how this 
induced pollution contribute to accelerated weathering and how 
the exhaust gas related particulate matters influence the colour 
of stone slabs. Similar chamber test was applied to evaluate the 
role of particulate matter coming from vehicular sources on stone 
sulfation (Rodriguez-Navarro and Sebastian, 1996). This paper 
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focuses on colour change rather than on mineralogical alterations 
of stone slabs having different composition.

2 Materials and methods
2.1 Stones

The tests were carried out on 8 different stone types. These 
types of stones have been chosen because they are used widely 
and they have physical and chemical properties which are very 
different. These 8 types of natural stones are used in the largest 
quantity for constructions and decorations in Hungary (Török, 
2007; Siegesmund and Török, 2011). Except for Carrara 
marble from Italy and Mauthausen granite from Austria, the 
other 6 stone types were obtained from Hungarian quarries. All 
the specimens have cylindrical shapes with a diameter of 3 cm. 
The tested stone samples can be seen on Fig. 1.

The selected types of stones (and their places of origin) are 
as follows (from left to right on Fig. 1):

• rhyolite tuff (Sirok)
• porous limestone (Sóskút)
• andesite (Gyöngyös)
• granite (Mauthausen)
• marble (Carrara)
• sandstone (Romhány)
• travertine (Süttő)
• non-porous limestone (Tardos).

2.2 Pollution of stones
A block of 8 different stone types was placed in a chamber, 

which was built in the exhaust gas system of a compression 
ignition internal combustion engine, so the exhaust gas of the 
engine was led through the chamber. In this case the exhaust 
stream could contact directly to the surface of the material 
specimens. The location of the exposure chamber can be 
observed in the Fig. 2, and at the same time the chamber with 
the stones is shown in the Fig. 3.

A compression ignition engine was used to generate exhaust 
gas to pollute directly the stones. The most important data 
of the engine are listed in Table 1. This engine was running 
on conventional diesel, which was purchased from a petrol 
station in Budapest.

Table 1 The most important parameters of the engine used for pollution

Engine manufacturer RÁBA

Engine type D10 UTSLL 190

Emission approval EURO II

Fuel diesel (MSZ EN 590)

Engine operating point 1300 rpm ; 50% load

The engine was operated for 10 hours (twice 5 hours) at 
one operating point. Operating parameters of the engine were 
controlled and the composition of the exhaust gas (gas phase 
components), smoke values and temperature of the exhaust 

Fig. 1 Stone types before exhaust gas pollution

Fig. 2 Exposure chamber Fig. 3 Tested stone specimens in the chamber
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gas were continuously measured during the test. The engine 
operating point was chosen due to the higher k value (Szabados 
and Bereczky, 2015; Szabados and Merétei, 2015; Ajtai et 
al., 2016).

The most important data of the engine operation can be read 
on the Table 2.

Table 2 Main exhaust parameters of the engine

Fuel consumption 3.91 g/s

Specific fuel consumption 225.55 g/kWh

Temperature of exhaust gas 330°C

Temperature in the chamber 260°C

Pressure in the chamber 1 – 2.5 Hgmm

Mass flow of exhaust gas 485 kg/h

The gas composition and the smoke values are listen in 
Table 3.

Table 3 Values of gas phase components and particulate relevant emission

CO CO2 THC NOx

[ppm] [%] [ppm] [ppm]

146.5 6.02 32.8 742.2

NO O2 FSN k

[ppm] [%] [mg/m3] [m-1]

620.5 12.84 9 0.086

2.3 Test methods of polluted stones
The first parameter which has been determined on the 

polluted stones is colorimetric value (Choudhury, 2014; Antal 
et al. 2017). These values were recorded with a Konica Minolta 
Spectrophotometer CM-2600d. The specifications of the 
spectrophotometer are the following:

• Wavelength range: 360 nm to 740 nm (pitch: 10 nm)
• Measurement area: ø 8mm
• Observer: 2
• Illuminant: D65.

Measurements regarding the mass of the stones before and 
after the pollution have been carried out with the help of the 
analytical balance (Kern AES Analytical Balance).

3 Results
After the pollution, it can be seen by a visual inspection that 

each type of rock is blackened (as shown by Fig. 4).
A soot/particulate layer was formed on the external surface 

of the stones.
The blackening would be the most strongly on the face of 

the stones which are directly in the direction of flow. But it 
can be observed a deposition on the rear ends of stones due to 
different flow phenomena, mixing in the chamber. In case of 
stones having greater pores the soot congested the pores which 
are associated with the surface while particulates deposited on 
the surface as for solid stone probes.

The CIE (Commission Internationale de l'Eclairage) 1931 
colour spaces are the first defined quantitative links between 
physical pure colours/wavelengths in the electromagnetic 
visible spectrum and physiological perceived colours in human 
colour vision. The chromaticity of a colour was then specified 
by the two derived parameters of x and y (Fig. 5) (Hunt and 
Pointer, 2011).

The CIELAB colour space is a colour-opponent space 
with dimension L* for lightness and a* and b* for the colour-
opponent dimensions (a: redness-greeness, b: yellowness-
blueness), based on nonlinearly compressed (CIE xyz colour 

Fig. 4 Tested stone specimens after the pollution
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Fig. 5 The CIE 1931 colour space chromaticity diagram and the changes in the xy chromaticity coordinates of each tested stones
(in coloured circles in the left side of the diagrams – chromacity before the test; in black circles in the right side of the diagrams – chromacity after the tets)

Fig. 6 The CIELAB colour space and the changes in the three (L*, a*, b*) coordinates of each tested stones
(upper dots – before exposure, lower dots – after exposure)
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space) coordinates (CIE document 15, 2004). The L*a*b* 
colour space describes all perceivable colours (Fig. 6).

After10 hours exposure the stone specimen's weight were 
reduced, particularly at the rhyolite tuff and andesite as shown 
by Fig. 7.

Fig. 7 Weight loss after 10 hours exposure

These weight loss may be related to high, ca. 250 °C 
temperature in the chamber and the differences of mineralogical 
composition (Török, 2003; Juhász and Kopecskó, 2013; Török 
and Török, 2015).

4 Conclusion
In order to investigate and determine under laboratory 

conditions the effect of ICE's exhaust gas on 8 different 
kinds of stones under laboratory conditions firstly a pollution 
process and after that a mass and colour measurements have 
been carried out. Our basic aim was to clarify and compare 
changes in the stones' colour.

The same trend was observed for all types of stone. Each 
coordinates are shifted in the direction of the yellowness, such as 
by Antal et al., 2017. Despite the short period of time of the test 
(10 hours) significant amount of particulate matter was deposited 
on stone specimens. A very high total colour difference value was 
recorded (Fig. 6). Our test has demonstrated colour changes, but 
this change may depend on the temperature, surface roughness 
and also on porosity, in addition to the amount of soot derived 
from the exhaust gas (Farkas et al., 2015; 2016)
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