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Abstract

Bicycle is not only a sustainable mode of transport but also health benefits of bicycling due to increased physical activities are well 

cited. However, in urban agglomerations, on-road air pollution exposure to cyclists/pedestrians is a matter of concern which is 

understudied. This study proposes an approach to calculate the on-road air pollution exposure for drivers of different vehicles in 

an agent-based simulation framework. In the proposed approach, the breathing rate of different drivers, penetration rate, vehicle-

occupancy and background concentration are taken into consideration. The approach is applied to a real-world scenario of Patna, 

India where non-motorized modes are in abundance. A comparison of total inhaled mass per trip for drivers of different vehicles is 

made and it is found that cyclists are most exposed user group. An analysis for various background concentrations for different days 

of the year shows that the contribution of the background concentration has a major effect on the air pollution exposure level. The 

outcome is spatially analyzed to identify the locations of most affected user groups mapped to their home locations. Further, the 

on-road air pollution exposure of business-as-usual scenario is compared with a policy case and it is found that a dedicated bicycle 

track can increase the exposure per trip to cyclists by 40 %.
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1 Introduction
Air pollution in urban areas is caused by a variety of 
sources, e.g. industry, transport, residential, open-burn-
ing etc.  Several primary and secondary pollutants in the 
air are harmful to wildlife, vegetation and human health. 
People living in dense areas are most exposed to the bad 
air quality. Some of the negative effects of air pollution 
on human health are exacerbation of Asthma, impaired 
lung function, cardiovascular diseases etc. The economic 
losses due to such negative effects can sum up to signif-
icant share of country's gross domestic product (GDP) 
(Creutzig and He, 2009; van Essen et al., 2011). In urban 
agglomerations, travelers as well as people doing activi-
ties indoor are also exposed to bad air quality. In a trans-
port environment, the modeling of air pollution exposure 
would require integration of transport models, emission 
models as well as activity-based models. 

In this direction, Gulliver and Briggs (2005) inte-
grate a traffic model, an air pollution dispersion model, 

a background pollution model and an activity-based 
model to identify the air pollution exposure. Similarly, de 
Nazelle et al. (2009) also propose a simulation model to 
estimate the air-pollution exposure to pedestrian friendly 
designs. Zhang and Batterman (2013) assess health risks 
of traffic for on- and near-road persons using an empiri-
cal traffic speed-volume relationship. For an arterial, the 
authors find that on-road and near-road persons' health 
risk increase sharply with an increase in traffic. These 
studies mainly focus on showing the importance of the 
air pollution exposure and then emphasizing on the need 
to integrate an air pollution exposure model with a trans-
port model for real-world policies. These studies lack in a 
detailed traffic modeling with dynamic traffic character-
istics, emissions from congested traffic, impact on behav-
ioral aspects of the travelers etc. 

In the direction of integrating emissions with a trans-
port model, an emission modeling tool (EMT) is proposed 
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by Hülsmann et al. (2011) and further improved by 
Kickhöfer et al. (2013). The objective of the tool is to cal-
culate time-dependent, link and vehicle-specific exhaust 
emissions based on the static and dynamic vehicle charac-
teristics. In order to evaluate the latter, EMT is integrated 
with an activity-based transport simulation framework. 
In order to observe the reaction of travelers on inclusion 
of emissions costs in the choice model, an internalization 
approach is proposed by Kickhöfer and Nagel (2016). As 
expected, the choices made by the travelers are heavily 
influenced by the emission costs1. However, the exposure 
to exhaust emissions as well as the effect of background 
air pollution are not included. To overcome the former lim-
itation, Kickhöfer and Kern (2015) propose an approach 
to calculate air pollution exposure only to people doing 
activities in the near vicinity. Background air pollution 
concentrations as well as on-road air pollution exposure is 
completely ignored. These limitations are addressed in the 
present study. Adverse effects of the exposure to traffic-re-
lated exhaust emissions depend on several factors such 
as receptor-source distance, source height, vehicle-pen-
etration rate, exposed duration, breathing rate of the 
driver etc. The impact of negative effects of air pollution 
exposure is unevenly distributed among drivers; e.g. air 
pollution exposure is more important for pedestrians and 
cyclists than car drivers/passengers (Int Panis et al., 2010). 
Bigazzi and Figliozzi (2014) provide a detailed review of 
previous studies related to exposure of bicyclists to traf-
fic-related air pollution. Under high traffic conditions, 
pollutants like hydrocarbon, volatile organic compounds 
(VOCs) increases significantly near the road because 
these pollutants are dominated by motorized vehicles.2 

Bigazzi and Figliozzi (2013) consider on-road exposures 
in the marginal private and external costs. The authors 
show that depending on different exposure parameters, 
the cost of on-road exposure varies between 4 % to 38 %. 
In the similar direction, Bigazzi et al. (2015) investigate 
the effect of congestion on exposure intensity and expo-
sure duration of motorcyclists. 

1 These decisions also depend on the cost component of different neg-
ative externalities (e.g. emissions, congestion, noise etc.) and their cor-
relation. Agarwal and Kickhöfer (2018); Kaddoura et al. (2017) propose 
combined internalization approaches for these externalities and evaluate 
the driving forces behind the choices made by the travelers under iso-
lated and combined internalization. 
2 In presence of sunlight, oxides of nitrogen (NOx) and VOCs undergo 
complex reactions and produce ozone. High amount of ground-level 
Ozone is harmful to respiratory systems of people/animals and to crops.

This study proposes an approach to estimate time-de-
pendent, mode- and person specific on-road air pollution 
exposure for drivers and passengers in an agent-based 
simulation framework. Though, the approach includes 
the drivers of car, motorbike as well as bicycle riders, 
the main focus of the study is to highlight the user group 
which is at most risk in terms of air pollution exposure. 
From the authors best knowledge, this approach is not 
proposed before. The focus of the present study is lim-
ited to on-road air pollution exposure, therefore, near-
road air pollution exposure (Kickhöfer and Kern, 2015) is 
excluded from this study. 

2 Methodology
2.1 Travel Simulator
For all simulation experiments, an agent-based transport 
simulation framework, MATSim (Horni et al., 2016) is 
used. In general, an agent represents an individual traveler 
or group of individual travelers. Minimally, a digital net-
work to represent the physical reality of the roads, travel 
demand in terms of the daily plans of individual travelers 
and configuration parameters are required for the simula-
tion. Daily plan of an agent encodes information about the 
activities, legs between pairs of activities, departure time 
etc. At least one plan is assigned to each agent. 

MATSim controller is embedded into an iterative 
co-evolutionary algorithm (Balmer et al., 2009). As shown 
in Fig. 1, the iterative cycle of MATSim simulation frame-
work consists of three parts: mobility simulation (mobsim), 
scoring and re-planning. In the first step, daily plans of all 
agents are simultaneously executed on the network using a 
pre-defined mobility simulation. The default mobility simu-
lation is a queue model (Gawron, 1998; Cetin, 2005) which 
is suitable for mixed traffic conditions (Agarwal et al., 2015; 
2018; Agarwal and Lämmel, 2016) and to simulate the large-
scale urban agglomerations in reasonable computation time 
(Balmer et al., 2009). In the next step, all executed plans are 
evaluated using a configurable utility (or scoring) function 
(see Nagel et al., 2016, for details). The score of a plan is 
algebraic sum of utilities gained for performing activities 
and dis-utilities for traveling to the activity locations. The 
last step –re-planning– consists of plans' innovation and 
plans’ selection. In the former, an agent gets a new plan by 
modifying an existing plan according to predefined innova-
tive strategies (e.g. mode choice, route choice, time choices 
etc.). Usually, a combination of the strategies is used. Only 
a share of agents is allowed to react under plans’ innova-
tion. The rest of the agents select a plan from their choice 



Agarwal and Kaddoura
Period. Polytech. Transp. Eng., 48(2), pp. 117–125, 2020 |119

set according to a probability distribution which converges 
approximately to a multinomial logit (MNL) model (Nagel 
and Flötteröd, 2012). These steps are repeated for a fixed 
number of iterations i.e. over the iterations, agents learn, 
react and adapt to the system. 

2.2 Emission Modeling Tool
The time-dependent, vehicle and link-specific emissions 
are calculated using an Emission Modeling Tool (EMT). 
The EMT is proposed by Hülsmann et al. (2011) and fur-
ther improved by Kickhöfer et al. (2013). To calculate 
the emissions for variety of vehicles, the EMT is further 
extended by Agarwal et al. (2017a). The schematic of the 
emission modeling tool is shown in Fig. 1 and the approach 
is briefly explained next. 

A vehicle type is assigned to every vehicle which 
encodes static vehicular characteristics (e.g. engine type, 
cubic capacity, fuel type, age etc.). The dynamic vehicular 
attributes (e.g. vehicle speed, distance traveled, time since 
last engine off, etc.), traffic state (free flow, stop-&-go) 
are determined by the transport simulation framework 
(MATSim). The static and dynamic vehicular character-
istics, and road type are fed into HBEFA3 database which 
provides the cold and warm emissions (in [g]). The former 
is emitted during warm-up phase of the vehicle and there-
fore also known as cold-start emissions. The latter is emit-
ted during driving of the vehicle and therefore also called 
as warm-start emissions. Cold and warm emissions are 
summed up to obtain the total emissions. 

2.3 On-road air pollution exposure
On-road air pollution exposure due to the emissions 
(e, in g/m) is estimated using Eqs. (1) to (3). where e is 

3 In this study, HBEFA (Handbook Emission Factors for Road Transport) 
version 3.2 is used. See www.hbefa.net.

emissions in g/m on each a link emitted by a vehicle, Σe  
is the total emissions by all vehicles during the travel time 
t of an agent. Dispersion of pollution perpendicular to the 
roadway as area per unit time is given by dispersion rate 
(d, m2/s). In Eqs. (1) to (3), I is the inhaled mass (in g), b is 
the background concentration (in g/m3), rm is the respira-
tion rate (in m3/s) of the driver (driving vehicle type m), pm 
is the penetration rate of vehicle type m, Om is the occu-
pancy of vehicle type m. 

The travel time is explicitly included in Eq. (2) i.e. 
exposure increases with travel time irrespective of the 
fact that agent is traveling under stop-and-go traffic state 
or under free-flow traffic state. On the other hand, Eq. (3) 
incorporates travel time implicitly i.e. longer travel time 
due to congestion would increase total emissions (e) 
whereas longer travel times due to detours in areas with 
low background pollutants would not increase on-road air 
pollution exposure. 

In this study, the following assumptions are made for 
the parameters in Eqs. (2) and (3). 

• The occupancy rate is 1.2 for car (Bigazzi and 
Figliozzi, 2013) and 1.0 for bicycle and motorcycle. 

• Though, different respiration rates are reported 
for male, female. This study does not differenti-
ate agents based on their gender. Therefore, res-
piration rate is assumed as 0.66 m3/h for motorcy-
clists (Bigazzi et al., 2015), 0.66 m3/h for cars and 
3.06 m3/h for cyclists (Int Panis et al., 2010).

• The penetration rate is assumed as 1.0 for bicy-
cle and motorcycle, and 0.8 for car (Bigazzi and 
Figliozzi, 2013). Same penetration rate is assumed 
for all pollutants. 

• Though, the dispersion rate depends on the source 
height, receptor height, wind speed, wind angle, 
width of link etc., a mean value of 9 m2/s is taken 
for the present study (Bigazzi and Figliozzi, 2013; 
Bigazzi et al., 2015). 

I I I= +
1 2

     (1)

I b t r p Om m m1 = ⋅ ⋅ ⋅ ⋅�     (2)

I e d r p Om m m2 = ⋅ ⋅ ⋅Σ    (3)

2.4 Integration of the model
A schematic for the integration of the on-road air pollution 
exposure model with a transport simulation framework 
and emission modeling tool is shown in Fig. 1. Whenever, 
an agent leaves a link, emissions (e.g. NO2, PM2.5 etc.) are 

Fig. 1 Integration of on-road air pollution exposure with MATSim 
controller and emission modeling tool.
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computed using the emission modeling tool. The emis-
sions (e) are calculated for free flow and stop-&-go traffic 
states. However, for simplification, total value is averaged 
over the link for exposure calculation. 

Similar to other vehicle attributes, the mode specific 
information (e.g. occupancy, breathing rate of the driver, 
penetration rate etc.) are stored with the vehicle type. 
Further, whenever, an agent enters a link, it is registered 
as a receptor. Emissions from all leaving vehicles on the 
entered link are collected until the receptor leaves the link. 
The travel time of the receptor on the link is observed from 
the transport model. Thus, dynamic, agent- and link-spe-
cific on-road air pollution exposure is computed. 

3 Application to the real-world case study
For this study, a real-world case study of Patna, India is 
chosen. Patna is the second largest city in eastern India 
and situated along the river 'Ganga' and spread from 
east to west. Fig. 2 shows three major arterials running 
in east-west direction; they are namely: 'Ashok Rajpath', 
'Old bypass' and 'New bypass'. Transport, industry, resi-
dential, dust, open-burning, brick kiln etc. are major con-
tributors for air pollution in Patna. Number of premature 
deaths related to exposure of PM pollutants in 2012 are 
estimated to about 2600 (Guttikunda and Jawahar, 2014). 
Except the rainy season (Jul-Aug), concentrations of 
PM2.5, PM10 and other pollutants are very high. The sit-
uation is likely to become severe in the business-as-usual 
scenario (Guttikunda and Jawahar, 2014).

The Patna scenario is imputed using the data from 
Patna Comprehensive mobility plan (TRIPP et al., 2009). 
The study area of Patna includes 72 zones ('ward') of Patna 
Municipal corporation. The initial calibrated scenario is 
taken from Agarwal et al. (2017b); Agarwal (2017) and 
briefly presented next.

The travel demand of Patna is categorized in two cate-
gories i.e. urban and external. The synthetic population for 

urban travel demand is generated using a household trip 
diary survey (TRIPP et al., 2009) which is a part of the 
comprehensive mobility plan (CMP). A 10 % sample of the 
whole population is used for the simulation which contains 
132,780 agents. The urban travelers use bicycle, car, motor-
bike, public transport (PT) or walk modes. The share of 
these modes is 33 %, 2 %, 14 %, 22 % and 29 % respec-
tively. The external travel demand is further classified in 
commuters and through traffic. The former commutes 
from Patna to nearby areas or vice versa whereas the latter 
is the traffic passing through Patna. The external demand is 
generated from mid-block traffic counts at various cordon 
stations and origin-destination survey. For this, a Bayesian 
framework-based calibration technique (Flötteröd et 
al., 2011; Flötteröd, 2009) is used which implicitly models 
location-choice (see Agarwal et al., 2017b, for details about 
the calibration procedure). The calibrated scenario is fur-
ther used for a "Business-As-Usual" (BAU) scenario and a 
policy scenario (Agarwal et al., 2017a). 

The background concentrations of the concerned pol-
lutants for Patna are given in Table 1. These values are 
observed at “IGSC Planetarium Complex, Patna - BSPCB” 
monitoring station. In absence of other values, the same 
values are assumed for different parts of Patna. As shown 
in Table 1, background concentrations are considered for 
four different days at an interval of two months, i.e. cover-
ing from winter to summer seasons.

4 Results
4.1 Importance of background concentration
Table 2 shows a comparison of inhaled mass (dose) per 
trip by drivers of different vehicle types for three different 
days and inhaled mass per trip if existing pollutant lev-
els are not considered (i.e. only traffic-related air pollution 
exposure is considered). In the latter, the inhaled mass per 
trip is very low (see Table 2) while comparing to the val-
ues in literature (O’Donoghue et al., 2007; Chaney et al., 
2017). For instance, the estimated inhaled dose of PM2.5 for 
a cyclist is about 2.78 µg only for a trip of about 2.7 km in 
Salt Lake City, Utah (USA) (Chaney et al., 2017). Including 
background air quality in the estimation of exposure, the 

Fig. 2 Patna network, major arterials and bicycle superhighway

Table 1 Background concentration (in µg) in Patna. (CPCB, n.d.) 

Pollutant: 22-11-2017 22-01-2018 22-03-2018 22-05-2018

PM2.5 217.36 201.16 174.79 86.54

NO2 116.79 44.79 24.48 7.65

CO 1410.0 3470.0 2140.0 1120.0

SO2 21.44 49.82 52.57 43.58
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inhaled mass per trip increases significantly. This empha-
sizes the importance of including background pollutant 
levels in the model as well as in the decision-making pro-
cess of individual travelers.

Further, the inhaled masses for 22 May 2018 are signifi-
cantly lower than inhaled masses on typical winter days 
(Nov.-Jan.). However, these values are still higher than in 
the case when only traffic-related air pollution exposure 
is considered. This indicates that if background pollut-
ants are significantly higher than national standards set 
by various authorities (e.g. CPCB, 2009), lowering traffic 
on the roads using short-term policy measures (e.g. odd-
even scheme, car-pooling) is unlikely to reduce the over-
all air pollution levels. However, some positive effects 
can be observed. For instance, (i) as a consequence of 

lesser traffic, the travel times will decrease which will 
reduce the exposed duration (see Eq. (2)) as well as reduce 
the emissions from the vehicles (See Eq. (3)) (ii) staying 
home will reduce the number of exposed persons directly.

Table 2 also compares the inhaled masses for drivers 
of different modes. The inhaled dose per trip for cyclists 
is about 2 times higher than inhaled dose per trip for car 
drivers/passengers and about 4 times higher than motor-
bike riders. Higher inhaled dose for cyclists is also found 
in previous studies (Chaney et al., 2017; O'Donoghue 
et al., 2007). Even though the average trip times of cyclists 
and motorbike drivers are in similar range (14.7 min and 
17.4 min for cyclists and motorbike drivers respectively), 
the exposure per trip for cyclists is higher because of 
higher breathing rate of cyclists. Interestingly, the expo-
sure of car drivers is higher than motorbike riders due to 
their longer travel distances and travel times and almost 
similar penetration rates (see assumptions in Section 2.3).

4.2 Spatial Analysis
Fig. 3 shows a comparison of mean PM2.5 per km for 
22 Nov. 2017 and 22 May 2018 i.e. worst and best back-
ground concentration from Table 1. The PM2.5 per km is 
averaged over all trips by mapping the trips to the travel-
ers' home zones. It is assumed that 22 Nov. 2017 is a rep-
resentative day for winter season and 22 May 2018 is a 
representative day for summers. From this, it is clear that 
for every zone, averaged inhaled mass of PM2.5 per km 
in winter is significantly higher than in summer season 
which is also found in literature. Clearly, this is a conse-
quence of higher background concentration. Interestingly, 
Fig. 3a exhibits that central zones of Patna municipal 
corporation are most affected (red zones). These zones 
include the central business district, railway station, edu-
cational institutions etc. Thus, in addition to on road air 
pollution exposure, it is more likely that people living in 
these zones are also significantly affected by the road-
side air pollution exposure.

Table 2 Inhaled dose (in µg per trip)

CO NO2 PM2.5 SO2

traffic related air pollution exposure only

bicycle 23.21 0.071 0.0208 0.0016

car 15.11 0.146 0.0482 0.0023

motorbike 14.82 0.034 0.0093 0.0009

22 Nov. 2017

bicycle 1024.93 83.04 154.44 15.23

car 528.57 42.67 79.20 7.81

motorbike 267.66 20.98 38.98 3.84

22 Jan. 2018

bicycle 2488.43 31.83 142.93 35.39

car 1278.74 16.42 73.30 18.14

motorbike 637.04 8.05 36.08 8.93

22 Mar. 2018

bicycle 1543.55 17.46 124.20 37.35

car 794.41 9.06 63.70 19.15

motorbike 398.55 4.42 31.35 9.43

22 May 2018

bicycle 818.90 5.50 61.50 30.96

car 422.97 2.93 31.56 15.87

motorbike 215.65 1.40 15.53 7.82

Fig. 3 Mean PM2.5 (µg/km) per trip mapped to home zones at different days (a) 22 Nov. 2017 (b) 22 May 2018
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In order to show the exposure for drivers of different 
modes, a comparison of the inhaled mass of PM2.5 for dif-
ferent modes on 22 Nov. 2017 is shown in Fig. 4. Similar to 
Fig. 3, PM2.5 per km (in µg/km) is averaged over all trips by 
mapping the trips of the travelers' home zones. As discussed 
and pointed in Section 4.1, the cyclists in all zones are most 
affected and car drivers are least affected by on road air pol-
lution exposure. Comparing with aggregated over all zones 
(see Fig. 3a), overall spatial pattern is completely different 
i.e. instead of central zones, eastern zones of Patna are most 
exposed. This happens because cyclists make most trips and 
are concentrated in eastern part of Patna.

4.3 Impact on bicycle relevant policies
A bicycle superhighway is proposed along the existing 
railway line to handle the high bicycle share in Patna 
(Agarwal et al., 2017a). Hereon, this policy is referred as 
'BSH-b'. Further, the authors demonstrate that in the BSH-b 
policy scenario, the overall exhaust emission decreases. 
However, the effect of on-road air pollution exposure in 
the decision-making process of travelers is excluded. As 
shown in Sections 4.1 and 4.2, cyclists are most affected 
user-group by on-road air pollution exposure. Though, the 
inclusion of on-road air pollution exposure in the choice 
model is beyond the scope of the present study, a few pol-
icy relevant implications are discussed here.

Table 3 shows the changes in total inhaled mass (in μg 
per trip) for BSH-b with respect to the business-as-usual 
scenario (see Sections 4.1 and 4.2). The introduction of a 
fast bicycle superhighway makes the bicycle mode more 
attractive. Agents with short distance car/motorbike/other 
trips switch to the bicycle mode and increase the bicycle 
share from 32 % to 48 %. A significantly higher number of 
bicycle trips increases congestion on the bicycle superhigh-
way (see Fig. 5) and results in higher travel time i.e. the aver-
age trip times for cyclists increase from 14.1 min per trip to 
20.8 min per trip (due to lower efforts and higher comfort 
on bicycle superhighway). Thus, more cyclists and longer 
travel times directly affect the on-road air pollution expo-
sure i.e. the inhaled mass per trip in BSH-b policy scenario 

is ≈40 % higher than in the business-as-usual scenario cor-
responding to background concentrations on 22 Nov. 2017. 
Fig. 5 shows the change in bicycle traffic on various links 
with respect to the BSH-b policy scenario. The bicycle 
traffic on major arterials decreases and increases signifi-
cantly on bicycle superhighway which passes through cen-
tral-business-district area. The central- business district 
has higher traffic-related air pollution exposure i.e. rerout-
ing agents to bicycle superhighway is likely to increase 
their exposure from traffic related air pollution exposure. 
Since, short distance trips from car, motorbike switches to 
bicycle mode, the average inhaled mass per trip for drivers 
of motorized traffic (e.g. car, motorbike) increases margin-
ally due to remaining longer trips.

A comparison between mean PM2.5 per trip mapped to 
the travelers’ home zones is shown in Fig. 6. Clearly, due 
to increase in the number of cyclists for BSH-b scenario, 
average PM2.5 per trip increases for other zones. Since, 
the new cyclists are not captive to the bicycle mode, 

Fig. 4 A comparison of inhaled PM2.5 (µg/km) per trip mapped to home zones for different modes on 22 Nov. 2017 (a) bicycle (b) car (c) motorbike

Fig. 5 Change in bicycle count for business-as-usual scenario with 
respect to BSH-b policy scenario (green and red colors represent a 
decrease and increase in bicycle traffic respectively). Thicker lines 

represent higher capacities of links (e.g. arterials).

Table 3 Changes in inhaled dose (in µg per trip) for BSH-b policy 
scenario with respect to business-as-usual scenario (22 Nov. 2017).

CO NO2 PM2.5 SO2

bicycle 390.49 33.34 62.11 6.13

car 2.58 0.40 0.75 0.07

motorbike 9.12 0.89 1.65 0.16
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considering air pollution exposure, travelers can opt not 
to cycle i.e. the gain in the share of bicycle by Agarwal et 
al. (2017a) is overestimated.

Agarwal et al. (2017a) propose the bicycle superhighway 
on ground parallel to the railway track and major arterials, 
however, it is likely that in another real-world scenario, a 
bicycle superhighway is over head. In the latter case, the 
cyclists are not directly or to a lesser extent affected by 
the exhaust emissions but still exposed to the background 
air pollution. With the foregoing discussion, it is clear that 
on-road air pollution exposure should be considered in the 
design and evaluation of transport policies.

5 Conclusions
This study provides an approach to estimate the time-de-
pendent, person- and mode-specific on-road air pollution 
exposure. The approach considers the impact of back-
ground air pollution concentrations, the vehicle penetra-
tion rate, mode-specific breathing rates of drivers, the 
vehicle occupancy etc. The travel time is explicitly con-
sidered with background concentration whereas implicitly 
considered with the vehicular exhaust emissions, i.e. lon-
ger travel time due to detours in areas with a low back-
ground pollutant concentration and free-flow state would 
not increase the on-road air pollution exposure.

A case study of Patna, India is presented and on-road 
exposures to drivers of car, motorbike and bicycle are com-
puted. Even though, the travel times for bicycle and motor-
bike trips differ marginally, the total inhaled dose per trip is 
highest for bicycle trips, mainly due to the higher respira-
tion rate. With a comparison of air pollution exposure with 
and without background concentration on different days of 

the year, it is shown that the contribution of the background 
concentration has a major effect on the total mass inhaled. 
Further, with the help of spatial analyses, zones in which 
most residents are affected, are identified. Finally, the out-
come is compared with a policy measure in which a bicycle 
superhighway is proposed for Patna. It is found that, a bicy-
cle superhighway is likely to increase the on-road air pol-
lution exposure per trip to cyclists by 40 % which is likely 
to reduce the gain in bicycle share. This emphasize that in 
future, air pollution exposures should be incorporated in the 
decision-making process of travelers and in the design of the 
facilities. In addition to this, the decision of cycling would 
also depend if health benefits from cycling can compensate 
the damages to the health due to air pollution exposure.

In the present study, the background air quality is very 
poor which results in very high importance during esti-
mation of inhaled dose per trip. However, the background 
pollutants may not be equally important in the developed 
world where air pollution levels are below threshold lev-
els. In such cases, the traffic-related air pollution expo-
sure can become significant. Policies in which facilities 
for non-motorized modes of transport are designed needs 
consideration of background as well as traffic-related air 
pollution exposure. Inclusion of near-road air pollution 
exposure to the persons performing activities (e.g. home, 
work, education, leisure, etc.) remains a future task.
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