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Abstract 
For the safe operation of pumps, it is essential to examine the 
operation parameters. Operation deviating from the opera-
tional parameters defined by the manufacturers would damage 
the pumps. The majority of specialists who are experts at pump 
technology and fluid mechanics are familiar with cavitation 
and aware of its detrimental effects. Firstly, in my study I will 
briefly present the cavitation as a phenomenon taking place 
during operation and its counting method. Then I state the 
results of our measurements carried out during the operation 
of a pump built in a system type Nocchi CB8038T.  My goal 
is to call the attention to the proper way of the operation of 
centrifugal pumps, the cavitation generated during operation 
as a harmful phenomenon and its development examined in 
practice by us.
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1 Introduction
Operation not in conformity with the standards recom-

mended by the manufacturer can result in a decline in perfor-
mance or a failure of the pump. Cavitation is one of the phe-
nomena which causes pump failure and whose development I 
monitored in my practical tests. 

Before presenting my measurements, I find it important to 
give a short introduction to cavitation and the mathematical 
basis of its calculation to help a better understanding of the 
topic. I believe that publishing my experience contributes to the 
safe operation of pumps.

2 The description of the hydrostatic measuring 
system

The hydrostatic measuring system- Fig. 1- is suitable for 
research. The following features of hydraulic pumps can be 
measured, namely flow rate, pressure, speed and temperature. 
These parameters can be used to capture the characteristics that 
are used to evaluate the technical condition for operation. The 
pumps can be reassembled so that the system can be used to 
measure several types of pumps. I plan to incorporate a thermo-
couple element into the system, thus examining the phenome-
non of heat-induced cavitation.

Fig. 1 The hydrostatic measuring system (Author compilation)
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The Table 1 shows the Technical Specifications of Measuring 
Equipment.

Table 1 Technical Specifications of Measuring Equipment (Nocchi, 2010)

Technical Specifications

Pump type Nocchi CB8038T

Amount of Delivered Water Qmax=80 l/min

Delivery Height Hmax= 30 metre

Number of Impeller Vanes N= 2 pc

Electric Motor P=1.1 kW, 3x400 V AC

Speed of Electric Motor n=2800 rpm

Range Regulated by Frequency changer f=30-60 Hz

3 Phenomenon of cavitation
The available scientific literature provides several defini-

tions for cavitation. Cavitation takes place when the gas bub-
bles developed in the fluid suddenly collapse. This process 
takes place at those locations in the pump where the pressure 
is subjected to the vapour-pressure of the pumped medium. 
Vapour-pressure of a fluid is a kind of pressure at which the 
fluid starts boiling or vapourising. (Sebestyén et al., 1978). 

The cavitation is the partial evaporation of water in a flow 
system. A cavity filled with vapor is created when the static 
pressure in a flow locally drops to the vapor pressure of the 
liquid due to excess velocitie. Two-phase flow is created in a 
small domain of the flow field. (Gülich, 2008).

Intense shock waves, various sound effects (cracking, flap-
ping and sometimes howling sounds), changed fluid mechan-
ics characteristics, significant decline of performance and 
mechanical errors belong to the detrimental effects of cavi-
tation. Cavitation has a decisive effect on the pump’s ability 
to suck as well. During the operation of the pump, the fluid 
entering from the suction pipe to the impeller has the lowest 
pressure here. When cavitation occurs at this location, the flow 
pattern of rotating pump wheel changes along with the pump 
characteristic curves.In the initial phase well-detectable noises 
develop, then continuously stronger and stronger shockwaves 
and vibrations are forming in the fluid and the travelling sys-
tems (Brenne, 1995; Franc and Michel, 2005).

Since the fluid has a minimum pressure at the leading edge 
of the impeller from the direction of the suction pipe, this is the 
location where cavitation may occur the earliest. The decrease 
of suction depth, applying suction pipes with a narrow diame-
ter, resistance emerged in the suction pipe or an increase in the 
temperature of the fluid all contribute to the emergence of the 
phenomenon (Ganz, 2012).

Cavitation is divided into two classes: physical cavitation 
and mechanical cavitation.

Physical cavitation: a smaller type of cavitation occurs under 
normal operational conditions in holes or due to detachments 

caused by collision. Its effects can be tracked down by noise 
and smaller erosive dissolutions. The effects are undetectable 
in the pump characteristic curves and do not cause reduction in 
transfer or a decline in efficiency. 

Mechanical cavitation: causes "detachments" in the pump 
characteristic curves and the operation of the pump becomes 
chaotic (Józsa, 2013).

The mathematical basis of cavitation (Józsa, 2013).
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4 Measurement of cavitation
Fig. 2 shows the pipeline track of the measurement, which I 

selected in my examination.

Fig. 2 The pipeline track of the measurement
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Table 2 shows the flow rate and the elevation head of the 
Nocchi pump.

Table 2 The calculated data of Nocchi pump [Author compilation]

Motor Frequency [Hz] Flow rate [l/min] Elevation head [m]

50 Hz

0 37.41

10 36.09

20 34.76

30 33.13

40 30.89

50 28.75

60 26.30

70 23.14

80 20.59

90 17.64

100 13.66

100 10.25

100 8.30

100 6.30

Fig. 3 shows the flow rate and the elevation head of the 
Nocchi pump. At 100 l/min the elevation head of pump sharply 
goes down from 13.66m to 6.30m. 

Fig. 3 H-Q curve of Nocchi pump (Author compilation)

Table 3 shows the flow rate and the performance of the 
Nocchi pump.

Fig. 4 shows the flow rate and the performance of the Nocchi 
pump. At 100 l/min the performance of pump sharply goes 
down from 0.97kW to 0.65kW

Table 4 shows the flow rate and the efficiency of the Nocchi 
pump.

Fig. 5 shows the flow rate and the efficiency of the Nocchi 
pump. At 100 l/min the efficiency of pump sharply goes down 
from 20.55 % to 13.55%. 

Table 5 and Fig. 7 shows the elevation head and the NPSH 
of the Nocchi pump. 

Fig. 6 shows the elevation head and the NPSH of the Nocchi 
pump.

Table 3 The calculated data of Nocchi pump (Author compilation)

Motor Frequency [Hz] Flow rate [l/min] Performance [kW]

50 Hz

0 0.55

10 0.60

20 0.66

30 0.71

40 0.76

50 0.81

60 084

70 0.88

80 0.91

90 0.94

100 0.97

100 0.85

100 0.80

100 0.65

Fig. 4 P-Q curve of Nocchi pump (Author compilation)

Table 4 The calculated data of Nocchi pump (Author compilation)

Motor Frequency [Hz] Flow rate [l/min] Efficiency [%]

50 Hz

0 0.00

10 9.83

20 16.97

30 22.89

40 26.58

50 29.01

60 30.71

70 30.50

80 29.50

90 26.20

100 20.55

100 18.99

100 16.50

100 13.55
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Fig. 5 ƞ-Q curve of Nocchi pump (Author compilation)

Table 5 The calculated data of Nocchi pump [Author compilation]

Motor Frequency [Hz] Elevation head [m] NPSHpump [m]

50 Hz

5 0.005747

8 0.005747

10 0.005747

12.6 0.005747

13.5 0.006747

13.66 0.007747

13.66 0.008784

13.66 0.012498

13.66 0.016885

13.66 0.021958

13.66 0.027706

13.66 0.034124

Fig. 6 H-NPSHpump curve of Nocchi pump

5 Taking the S-C and S-R curve of the pump
The Reynolds number (Re)

Re v d
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Table 6 shows the Strouhal and Thoma’s cavitation number 
of the Nocchi pump.

Table 6 The calculated data of Pedrollo pump (Author compilation)

Motor Frequency [Hz] Strouhal number Cavitation number

50 Hz

0.000 0.000

31.105 0.854

15.552 0.427

10.368 0.285

7.776 0.214

6.221 0.171

5.184 0.142

4.44 0.122

3.888 0.107

3.456 0.095

3.10 0.085

3.779 0.085

3.779 0.085

3.779 0.085

Fig. 7 shows the Strouhal and Thoma’s cavitation number of 
the Nocchi pump

Fig. 7 S-C curve of Nocchi pump

Table 7 shows the Strouhal and Reynolds number of the 
Nocchi pump.

Fig. 8 shows the Strouhal and Reynolds number of the 
Nocchi pump.

5 Conclusion
Based on these results the next points can be stated as a 

conclusion:

(8)

(9)

(10)
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• At 100 l/min the performance of pump sharply goes 
down from 0.97kW to 0.65kW. Cavitation has a signif-
icant effect on performance. 

• Bubble cavitation by itself produced very broadband 
noise.

The goal of my research is to test different types of vortex 
pumps under laboratory conditions and to draw conclusions 
that may be appropriate for the development of a mathematical 
model (Kubota et al., 1992).

Table 7 The calculated data of Nocchi pump [Author compilation]

Motor Frequency [Hz] Strouhal number Reynolds number

50 Hz

0.000 0.000

31.105 414.829

15.552 829.659

10.368 1244.488

7.776 1659.317

6.221 2074.147

5.184 2488.976

4.444 2903.805

3.888 3318.635

3.456 3733.464

3.110 4148.293

3.779 3414.045

3.779 3414.045

3.779 3414.045

Fig. 8 S-R curve of Nocchi pump
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