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Abstract

Runways as the most critical parts in the aviation infrastructure have a great impact on the whole aviation effectiveness. Our present 

research has attempted to provide a better understanding of the nature of the sequence between the runway movements. For that 

traffic data of a typical medium-capacity airport was analyzed.
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1 Introduction
Runways, as the most critical parts in the aviation net-
work, are faced with increasing capacity demand. In addi-
tion, the new airspace users, the drones, are the most 
threatening to aircraft approaching or taking off from the 
airports. The sequence of the airport movements such as 
the take-off and landing provides a good indication of the 
runway load (Kling et al., 2017; Madácsi, 2015).

The distribution of the slot time issued to the aircraft 
movements is inefficient, entail unnecessary restrictions 
and uneven traffic density. In our view, one of the reasons 
for this is the lack of knowledge of the temporal distri-
bution of operations. Namely, with the knowledge of dis-
tributions, the allocation of slots would be more efficient. 
In addition, knowing the real sequence of the departures 
and arrivals can also serve as a basis for the risk assess-
ment of airports for the increasing unmanned aircraft traf-
fic (Serhan et al., 2018).

2 Methodology
An analysis was carried out on the traffic data of a randomly 
selected summer schedule day at Budapest Liszt Ferenc 
International Airport. Fig. 1 illustrates the location of the 
airport's runways and their movement directions. The run-
ways make possible 8 different movement directions.

The assessed elementary event was the time sequence 
between the arriving and departing movements per run-
way directions which can be considered a discrete variable.

2.1 Boxplot analysis
Boxplots are a standardized way of displaying the distri-
bution of data based on a five number summary, which are:

• minimum,
• first quartile ( Q1 ),
• median,
• third quartile ( Q3 ) and
• maximum.

The boxplot (Fig. 2) displays the full range of variation 
(from min to max), the likely range of variation interquar-
tile range (IQR) which is the range of the variation from 
the Q1 to the Q3 . The median represents a typical value of 
the distribution. Boxplot also visualizes the surprisingly 

Fig. 1 Directions of landing and take-off at Budapest Liszt Ferenc 
International Airport
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high or surprisingly low values called outliers. Two types 
of outliers can be distinguished:

• Suspected outliers that are either 1.5 × IQR or more 
above the Q3 or 1.5 × IQR or more below the Q1 :

x Qi < −
1
1 5. IQR  

x Qi > +
3
1 5. IQR.  

• Outliers are either 3 × IQR or more above the Q3 or 
3 × IQR or more below the Q1 :

x Qi < −
1
3IQR  

x Qi > +
3
3IQR.  

The outliers could be values that are associ-
ated with abnormal, one-time events or special cases. 
These could have a great, unwanted influence on the final 
results of the analysis. Therefore, it was important not 
to take them into consideration and therefore the outliers 
were removed from the sample (Čavka et al., 2016).

2.2 Poisson distribution
In our study, we investigate whether the frequency of the 
measured time sequences could have been modelled with 
Poisson distribution the lambda (λ) parameter of which is 
the mean value of the time sequence.

The function of the Poisson distribution is:
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where
• P is the probability of an aircraft departure or arrival 

(k = 0, 1, 2, …) within a short t time,
• λ parameter is estimated with the mean value of the 

sample.

2.3 Chi-square goodness of fit test
For the justification of our hypothesis Chi-square good-
ness of fit test was conducted. Chi-Square goodness of fit 
test is a non-parametric test that is used to find out whether 
the distribution of the observed value could be fitted with 
the expected Poisson distribution the λ parameter of which 
is the mean of the observed sample. For the calculation of 
the value of Chi-Square goodness of fit test the following 
Pearson's formula was used:
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where:
• χcalc

2  = Calculated Chi-Square goodness of fit test,
• O = observed value 
• E = expected value.

The null hypothesis ( H0 ) assumes that there is no sig-
nificant difference between the observed and the expected 
value, while, the alternative hypothesis ( H1 ) assumes that 
there is a significant difference between the observed and 
the expected value:

• χ χcalc krit
2 2< : H0 is accepted,

• χ χcalc krit
2 2> : H1 is accepted.

The prerequisite of this test is that for each class the 
value of the expected frequency should be at least 5. If this 
is not the case, the value of the degree of freedom must be 
reduced by the number of the merged classes. The degree 
of freedom is:

df k p= − −1  (3)

where:
• k: the number of classes with at least 5 frequencies, 
• p: the number of the estimated parameters.

The value of k is decreased by the number of classes 
with less than 5 frequencies since these classes were 
merged together. In this particular case, the value of 
p = 1, while only the lambda was estimated with the 

Fig. 2 Interpretation of boxplot diagram
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average of the sample (Čokorilo et al., 2013; Madácsi, 2015; 
Moretti et al., 2018; Sipos, 2017).

3 Results
On the chosen day, 354 aircraft movements (take-off and 
landing altogether) were recorded in total. To analyze the 
statistical population, these movements were separated by 
runway directions and by the type of movements. In theory, 
the 4 runway direction and 2 movement types (departing and 
arriving) would result in 8 different research opportunities:

• Arriving 13R,
• Arriving 13L,
• Arriving 31R,
• Arriving 31L,
• Departing 13R,

• Departing 13L,
• Departing 31R,
• Departing 31L.

However, the arrival to the runway 13L was prohibited 
at the airport on the day examined, so there was no data 
available about that case. With regard to 13R, only one 
arrival took place meaning that the time sequence was not 
interpretable. Thus, we conducted the investigation on a 
total of six measured data sets.

Based on the sample sizes (Table 1), it can be concluded 
that the wind supported the use of direction (31), since 31R 
was used for arrival and 31L for departure (Table 2).

The boxplot diagrams in Fig. 3, in all but one case, 
revealed a number of suspected outliers. Out of these, 

Table 1 Sample sizes of runways

Arriving 13R Arriving 31L Arriving 31R Departing 13L Departing 31R Departing 31L

Sample size 4 16 156 16 27 128

Table 2 Poisson tests results

Arriving 13R Arriving 31L Arriving 31R Departing 13L Departing 31R Departing 31L

Pk (t) 0.123 0.762 0.079 0.762 0.9273113 0.1340077

df - 1 9 1 1 7

χcalc
2  - 9.5979 2.343826 9.597569 65.68005 1.022583

χkrit
2  - 3.8419 16.91898 3.841459 3.841459 14.06714

Accepted hypothesis - H1 H0 H1 H1 H0

Fig. 3 Boxplot diagrams
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for the departing 31L and the arriving 31R the number 
of outliers and suspected outliers are outstandingly high. 
The left side asymmetry is further evidenced by the box-
plot charts, as none of them exhibits any low outliers.

The extreme values found by the boxplots were fil-
tered out from the dataset (Table 3). The results of the 
Chi-square goodness of fit test of the Poisson function are 
presented in Table 4.

4 Conclusion
The analyses showed that the traffic in the direction of 
31 was 81 % of the total traffic of the airport. This 81 % 
was divided between the departing 31R and arriving 31L. 

The Chi-square goodness of fit test supported our hypoth-
esis that these follow Poisson distribution (Table 4).

The other runway operations did not show Poisson dis-
tribution. Our investigation revealed the reason for that 
which is the small size of the samples.

It can be stated, the larger the sample size, the closer 
the time sequence of the arrival and departure to Poisson 
distribution. Our hypothesis is correct since Poisson dis-
tribution was found to the larger sample sizes datasets. 
Our assessment method can serve as an appropriate basis 
for conducting further air traffic distribution analysis.
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Table 3 The descriptive statistics of the filtered data

Arriving 13R Arriving 31L Arriving 31R Departing 13L Departing 31R Departing 31L

Expected value 0:10:30 0:52:00 0:05:33 0:02:44 0:04:05 0:04:38

Median 0:07:00 0:47:00 0:04:00 0:02:00 0:03:00 0:03:00

Mode N/A 0:03:00 0:02:00 0:03:00 0:02:00

Std Dev 0:10:23 0:40:54 0:03:36 0:01:37 0:02:29 0:03:32

Kurtosis 1.030931 −0.0819197 1.0443446 0.5653814 3.6889793 3.9869908

Skewness 1.31581682 0.8669360 1.2998358 1.30470731 1.7059694 1.8941196

Range 0:22:00 2:13:00 0:16:00 0:05:00 0:11:00 0:17:00

Minimum 0:03:00 0:04:00 0:01:00 0:01:00 0:01:00 0:01:00

Maximum 0:25:00 2:17:00 0:17:00 0:06:00 0:12:00 0:18:00

Count 4 15 145 15 22 114

Table 4 Chi square tests results

Arriving 13R Arriving 31L Arriving 31R Departing 13L Departing 31R Departing 31L

Distribution N/A not Poisson Poisson not Poisson not Poisson Poisson
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