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Abstract

Several studies have examined a wide range of accident risk factors affecting road safety. The purpose of this study is to examine 

the main traffic accident factors that affect the severity of road segments. The practical objective of the article is to assist specialists 

in identifying risk patterns both from a spatial and casualty point of view. To achieve the desired goals, accidents of a road network 

have been analyzed through three major steps; segmentation, black spot identification, and decision analysis. A new spatial clustering 

methodology has been used to divide accidents into smaller groups (or clusters) based on their spatial aggregations. The spatial 

characteristics are argued to be an important factor, in revealing the heterogeneity between accident data. Then, the empirical 

Bayesian has been applied to rank the resulted segments by severity level. During this step, the technique of decision rules has been 

applied to identify the main contributors to accidents in certain segments. The result shows that there is a significant relationship 

between the accident severity level and the traffic and geometrical characteristics (i.e. speed limits, average daily traffic, path shape) 

of road segments. The results also revealed that the closer the road to secure and non-hazardous road environmental conditions, the 

lower the risk level of the road segment.
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1 Introduction
Every year, traffic accidents cause large economic and 
social losses to countries, families, and individuals (Ghadi 
et al., 2018b). Road accident is an unpredicted event which 
can occur under any circumstances. In most cases, acci-
dents are influenced by human, traffic, and geometric fac-
tors of a given road segment. In other words, when certain 
circumstances present in a particular place and time, an 
accident could happen.

Several literature focused on developing or application 
of different black spot (BS) identification methods. Cheng 
and Washington (2005) defined the objective of BS identi-
fication is to "identify locations in a transportation system 
that have problems and their effects will be revealed by 
assessing their accident frequencies related to other simi-
lar locations". In more simplified words, accidents could be 
observed in both safe and unsafe sites, and the challenge 
is to avoid the false negative (sites not included in safety 
investigations while it is needed) and the false positive 
(site included in safety investigations while it isn't needed) 

in identifying the real hazardous spots. Elvik (2008) eval-
uated the applied BS methods in a number of European 
countries. He proved the weakness of most of the applied 
BS methods in these countries and recommended using 
the Empirical Bayesian (EB) method, as did by a num-
ber of researchers (Ghadi and Török, 2019b; Montella, 
2010; Qu and Meng, 2014). The EB is a state of the art 
BS method that benefits from both predicted and observed 
number of accidents.

The heterogeneity between accident data plays an 
important role in the analysis process. Typically, meth-
ods of data segmentation are used to reduce heterogene-
ity and reveal hidden relationships between accident data. 
Data segmentation is considered to be a good way to clas-
sify a large data set into smaller homogeneous groups in 
which similarities between objects of the same group are 
maximal. The result of the segmentation could vary sig-
nificantly depending on the applied method (Cafiso et al., 
2018). Methods of data segmentation should be fitted to the 
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characteristics of input variables. Most of the current stud-
ies focus only on the definition of factors related to accident 
circumstance attributes as input variables for the segmen-
tation process. Few studies focus on the spatial dependency 
factors. In both cases, a data mining framework has been 
applied as a tool to explore the required information.

Data Mining is a process for revealing hidden patterns 
from a large dataset. Its main goal is to collect useful infor-
mation from a heterogeneous data set after classifying it 
into homogeneous structures. Accordingly, data mining 
methods can be used to segment and investigate road acci-
dent data (Barai, 2003). Decision Tree (DT) is a popular 
supervised data mining technique to analyze and classify 
accident related factors. The reason why this technique is 
attractive is that it does not need any certain assumption or 
predefined hypothesis regarding the relationship between 
dependent and explanatory variables, which are needed in 
case of the traditional statistical methods. DT is based on 
Decision Rule (DR) to map the most important influenc-
ing factors related to the investigated process. Abellán et 
al. (2013) applied a methodology to define DR from more 
than one DTs to enable more effective interaction between 
accident attributes, focusing on accident severity as a label 
variable. Kashani et al. (2011) studied factors affecting the 
injury severity of drivers involved in traffic accidents in 
Iran using the classification DT.

Clustering analysis is a widely used unsupervised data 
mining technique used to classify a large dataset into 
homogeneous entities based on the input variables. Many 
researchers applied variably related to accidents causes, 
results and circumstances as inputs for the segmentation 
process (Abellán et al., 2013; De Oña et al., 2013). Kumar 
and Toshniwal (2015) applied K-mode clustering and the 
association rule of mining to study the most contributed fac-
tors associated with the accidents' occurrence. The result 
showed different trends in different clusters and helped 
identify hidden patterns of accidents. De Luca et al. (2012) 
used fifteen environmental characteristics associated with 
accidents as input variables to help classifying accidents 
into clusters using the C-means technique, from which the 
Empirical Bayesian model was constructed. It is important 
to mention here that, causes of accidents in the macro-anal-
ysis are not usually the main causes of occurrence, but 
factors that contribute to or surrounding by the accident 
- such as environmental, geometric or traffic conditions -. 
However, the classification of accidents based only on fac-
tors related to their causes, their results or the surrounding 
environmental conditions can have two major disadvantages. 

Firstly, applying only accident result (i.e. severity, number 
of injuries) as an input variable may be misleading since 
it can happen that two accidents have the same results, 
but totally different causes. Secondly, accidents in a clus-
ter generated in the above-mentioned methods - can share 
similar circumstances but significantly differ in their spatial 
distribution, as seen in some studies (Depaire et al., 2008), 
which can support neither the determination of risky road 
segments nor the definition of the required improvements.

Methods which explain accident occurrence rarely con-
sider a spatial dependency as an efficient factor for the clas-
sification process. Some researchers draw spatial or tem-
poral maps showing the difference in accidents densities 
for regions or cities (Bíl et al., 2013; Kumar and Toshniwal, 
2016b). These methods did not give any specific spatial loca-
tion for accidents but an overview of their distribution on the 
map at a city or district level. A number of traditional tech-
niques (i.e. kernel, spatial-autocorrelation) have been more 
specific in identifying hazardous areas for certain parts of 
a road, like junctions, curves, or specific road segments 
(Flahaut et al., 2003; Kumar and Toshniwal, 2016c). These 
methods are limited to detecting only accidents within haz-
ardous areas. On the other hand, Ghadi et al. (2018a) and 
De Luca et al. (2012) applied both the K-means clustering 
and the EB methods in order to divide accidents into spe-
cific road segments, depending on their spatial dependence, 
and finally identify the most hazardous segments. Although 
some of these methods are able to identify spatially-depen-
dent accident groups, usually they do not consider any other 
characteristics of an accident itself (i.e. accidents environ-
mental factors) in the analysis process.

Until now, the resources allocated to both spatial and 
environmental characteristics based road accident classi-
fication were reasonably limited. In light of the presented 
shortage, the main idea behind the study is to link the spa-
tial factor and other accident environmental attributes 
during the classification process of road accident data, 
which result can strongly assist specialists in identifying 
risk patterns on roads both spatially and causally.

2 Data description
The data of the Hungarian network have been analyzed 
in this study; the analysis has covered approximately 
1965 km long of Hungarian expressway. The investigated 
data describes the main traffic, road geometric and acci-
dent parameters from the year 2013 to 2015. Individual 
accident data includes information on severity level, type 
of accident (e.g. pedestrian accident, run-off-road, etc.), 
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time of occurrence (e.g. month, day, hour) weather condi-
tion (e.g. clear, foggy, rainy, snowy), visibility (e.g. daylight, 
restricted visibility, night with or without public light), 
and location of accident (e.g. x-y coordinates). Roadway 
data includes information on path shape (e.g. vertical and 
horizontal curvature), roadside hazard, median type, and 
pavement conditions. Traffic data includes information on 
the speed limit, AADT, and percent of trucks. The anal-
ysis focuses only on the road segments without intersec-
tions. During the investigated interval, 2155 fatal, serious 
and light injury accidents occurred on roadway segments.

3 Methodology
Traffic accidents usually occurred as a result of integrat-
ing human, traffic and road geometric factors (hereafter 
referred to accident environmental factors) in a particular 
road segment. The methodology followed, in this research, 
is divided into three main processes, as shown in Fig. 1. The 
first method has been used to segment a road network into 
homogeneous segments of accidents using a spatial cluster-
ing technique. The second part has been applied to rank and 
classify each segment by severity level using the EB method. 
The last part tries to identify the main contributors of acci-
dents for different segment severity level. More details and 
explanation of Fig. 1 are presented in Subsections 3.1-3.3.

3.1 Method of road segmentation
Accidents are usually represented as a geographical object 
(e.g. as points on a map) since their spatial location are 
quite well defined and the spatial aspects of accident 
analysis open new investigation orientations in the field 

of accident analysis. A variety of spatial techniques have 
been applied to help to understand the geographical differ-
ences of point (i.e. accident) patterns. Most of these tech-
niques, i.e. kernel, spatial autocorrelation, have concen-
trated on analyzing the accident’s situation, based on the 
spatial dependences, focusing on specific high-risk sites 
called "BS". Moreover, the approach of classifying all 
accidents in a specific road into segments based on their 
spatial distribution is not yet researched in a detailed form, 
although the deep investigation could open up many new 
directions in the field of accident and data analysis.

One of the main assumptions of this article is that acci-
dents occurred in a nearby area can be spatially depen-
dent, especially considering the increased accidents den-
sity in the area (Flahaut et al., 2003). This assumption 
has been extended to include the spatial locations of all 
accident groups. In other words, all accidents will be 
classified into spatial groups (into specific road segments 
with different lengths and different accident contents), 
based on their spatial distribution along roads. This task 
is accomplished by the application of K-mean clustering 
and linear referencing methods.

K-mean clustering is a useful tool to classify similar 
objects in groups based on the input variables. The dual 
representation of accidents geographical location has been 
solved by applying a linear referencing method. The lin-
ear referencing method refers to the accident location, 
along a one-dimensional roadway, using a single reference 
value measured from a Reference Point (RP), as shown in 
Fig.1 (b). For example, in Figs. 1 (a) and(b), the first acci-
dent (represented by a point calculated from left) is located 

Fig. 1 Proposed framework for the analysis. L is the segment length. N is the number of accident for any road segments RSG
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at a distance of 0.2 measured from the RP. This linear-
ized uni-variable model appears to be better suited to the 
K-means algorithm than the binary coordinate's variable 
model and allows avoiding accident classifications in the 
same group, which are closely observed but occurred 
in different ways. The segmentation of accidents into K 
SCLs is summarized as follows (see Figs. 1 (a)-(c)):

• Identifying accident distributions on map.
• Converting the geographically referred roadways 

into linearly referred one-dimensional lines.
• Locating accident objects along the line road, mea-

sured from the RP.
• Applying the measured distances (in the previous 

step) as one input to the clustering algorithm.
• Determine the optimal number of clusters.
• Applying the K-means to locate all accident clusters.

The application of K-mean clustering and linear refer-
encing can help in identifying the optimum length of the 
study segment based on the number and spatial distribu-
tion of its accidents. The longest distance between any two 
accidents on the linear road represents the length of the 
segment. In Figs. 1 (a)-(c), for instance, the spatial cluster 
SCL2 has a segment length equal to 0.6 ( i.e. L2 1 8 1 2= −. . ) 
and accidents number equal to 3 ( i.e. N 2 3= ). Therefore, 
at least two accidents are required to form a segment, 
according to this method. Accordingly, clusters of single 
accidents which are far enough from any neighbor acci-
dents spatially and temporally, or characterized by sig-
nificantly different types or causes, are considered to 
be randomly occurred noise, and should not be further 
investigated.

However, the proposed spatial clustering method has 
proved its effectiveness compared to other commonly 
used segmentation methods, according to Ghadi and 
Török (Ghadi and Török, 2019a; Ghadi et al., 2018a)

3.2 Ranking road segments by severity
To ranking road segments by severity level, the EB method 
has been applied. Empirical Bayesian (EB) method is used 
to estimate the expected average accident frequency (NE ) 
combining the benefit of both the observed and predicted 
number of accidents (NO and NP , respectively) in one sta-
tistical model (see Eq. (1)).

N w N w NE P O= × + − ×( )1  (1)

Where: w is the weight factor represented the reliabil-
ity level in predicting accident frequency. However, NP 

appears to be the most influential factor, to some extent, in 
Eq. (1). Safety Performance Function (SPF) is usually used 
to measure NP. The SPF applies a regression equation to 
estimates the average accident frequency for a given site. 
The following equation (Eq. (2)) represents the general 
form of the SPF (Cafiso et al., 2013).
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The statistical goodness-of-fit has been used to exam-
ine the validity of the SPF using two methods: the Akaike 
Information Criterion (AIC) (Flahaut et al., 2003) and the 
Pearson Correlation Coefficient (PCC). AIC is a method 
that provides a mean for model selection. It is accounts 
for the possibility of over-fitting the data by trading-off 
between the simplicity and the goodness-of-fit of the 
model. AIC aims for selecting the model that is best fit the 
data with the least complexity. The best model is the one 
with the least AIC value. The PCC works as a complemen-
tary test to examine the data fitting. The PCC measures 
the linear correlation between the predicted and observed 
accidents using a value between +1 and −1. As the absolute 
value of the PCC increases, the correlation between the 
expected data and the observed data increases.

The explanatory variables of the SPF were selected using 
the stepwise methodology by testing the effect and signif-
icance of inserting or removing the various SPF variables. 
Possible explanatory variables are described as follows:

• Average Annual Daily Traffic (AADT): AADT is 
one important factor in predicting accident frequen-
cies (Hiselius, 2004).

• Speed limit: It is also an important factor in accident 
risk (Ghadi and Török, 2017).

• Percent of trucks and small vehicles.
• Horizontal deflection angle: It measures the rate 

of curvature change from a straight line to stay on 
course. For any single SCL based segment (n) the road 
is divided into M smaller sections (m1, m2, … M) and 
the summation deflection curves (ADF) is measured 
with the help of the ArcGIS software and Eq. (3).

ADF
DF

SLn
mm

M

n

= =∑ 1
 

(3)

Where: DF is the deflection angle measured for horizon-
tal curves, for each m section, SL is the total length for 
segment n.
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3.3 Decision analysis
Decision Rule (DR) is a well-known data mining method 
used in supervised learning. DR helps in recognizing use-
ful information and relationships between different attri-
butes in a large dataset. Safety engineers usually apply DR 
to discover behaviors of road accident datasets (De Oña 
et al., 2013). An especially useful DR tool is the Decision 
Tree (DT) method. DR and DT have been widely used to 
analyze road accident data (Abellán et al., 2013; Chang and 
Chen, 2005; Kumar and Toshniwal, 2016a). DT includes a 
set of useful methods which are applicable to uncertain 
decision processes. DT can be used in the field of data 
classification and regression without any requirement 
to specify parameters or previous relationships between 
dependent and independent variables. These character-
istics make it a useful tool for classifying accident data 
based on the most influential factors.

The process of extracting DR's from DT is constrained 
by the structure of the tree. Classification And Regression 
Tree (CART) and C4.5 methods are usually used to con-
struct the DT (Aljofey and Alwagih, 2018; Kashani et 
al., 2011). The main differences between the two meth-
ods are originated from the structure of the tree and the 
splitting criteria. CART method applies the Gini index to 
measure the dispersion among the variables, and it results 
in a binary tree, while the C4.5 method applies the Gain 
ratio (Quinlan, 1993). In this paper, the CART-based DT 
method is used to define DR's from road accident data. 

To better understand the difference in severity, the road 
segments are divided into four groups of equal size but 
different severity level. Each group took a particular code; 
B1, B2, B3 and B4, and severity level ranked from higher 
risk (B1) to lower risk (B4) in ascending order. DT is then 
applied to derive the DR from the resulted groups.

DT is a technique used to predict the class label. The 
four road segments groups (B1, B2, B3, and B4) are clas-
sified into the target field of the class label. To verify the 
quality of the classification process, the data is divided into 
two groups: a training group and a test group. Two-thirds 
of the cases has been taken by the training group, while the 
test group took the rest of the cases. Because accident data 
was collected sequentially in time, the R software pack-
age was used to shuffle the data to ensure random selection 
of training and testing groups. The training group is used 
to create the DT model while the test group to ensure the 
accuracy of the model. The CART DT was formed by some 
important variables related to individual accident attri-
butes. DR's were derived from the constructed CART tree.

4 Results and discussions
4.1 Road segmentation results
The linear reference technique has been used to locate all 
accident along the different roadways. The reference loca-
tions have been considered as a single-input variable in 
the K-means algorithm to divide accidents into clusters 
according to their spatial aggregations. Applying the pro-
posed segmentation method for the given case study has 
resulted in 181 segments regarding the analyzed period 
(2013-2015). The description of the resulted segments is 
summarized in Table 1.

As mentioned in Subsection 3.1, the K-means cluster-
ing has an advantage of relating the identified road seg-
ment length to the cluster length. Therefore, empty road 
segments between the resulted clusters with no accident 
history are excluded from any further analysis. And, this 
explains why lower total segments length (1224 km) is 
involved in the clustering analysis (see Table 1) than the 
total road length (1965 km). It can also be noted from 
Table 1 that at least two accidents are required to form 
a cluster. Since it is assumed that a cluster of a single 
accident that is far enough from any neighboring acci-
dent, spatially and temporally, is more likely to occur ran-
domly. This explains why lower total accident frequency 
(1926) included in the analysis (see Table 2) than the real 
total number (2155).

Table 1 Description statistics of the spatial segmentation outcome

Parameter Total Min. Max Mean Standard 
deviation

Segment 
length (km) 1225 0.23 12.32 6.76 4.57

Accident 
frequency 1926 2* 13* 4* 2.54

*The values are averaged per the three study years (2013-2015)

Table 2 Parameters values and goodness-of-fit of the developed SPF

α (Intercept) -3.577

[p-value] [0.070]

β1 (AADT) 0.674

[p-value] [>0.001]

β2 (Speed) -0.465

[p-value] [0.041]

β3 (HDA) 1.059

[p-value] [>0.001]

Over-dispersion (k) 1.179

Goodness of fit
AIC 634

PCC 0.768
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4.2 Black spots identification results
After segmenting the road accident data spatially using 
the clustering method, the EB method has been applied to 
identify and rank BS segments. Because the EB method 
combines both observable and predicted accident fre-
quencies, the predicted values have been estimated using 
the SPF. Accident data of the year 2013 has been used 
to develop the SPF for the case study dataset. Applying 
the stepwise forward approach has finally resulted in the 
selected three explanatory variables: AADT, speed, and 
degree of the horizontal curve as an input for the SPF.

The dataset of the dependent variable (accident fre-
quency) and independent variables (AADT, speed, and 
horizontal curve) have been identified for each road seg-
ment. When a segment has not included a constant AADT, 
traffic, or speed values the length is used to estimate their 
average values (as a linear length-weight). The SPF has 
been developed using the data of the 181 road segment. 
The model calibration results are presented in Table 2.

Most of the resulted parameters (i.e. α, β1, β2 and β3), 
presented in Table 2, are statistically significant to 95 % 
confidence level. The intercept (α) is statistically signifi-
cant to a 90 % confidence level. This might be explained 
due to applying a relatively small sample size in devel-
oping the model. However, α is not much concern, for a 
small deficiency, because it just acts as a calibration for 
the model.

The Akaike Information Criterion (AIC) and the Parson 
Correlation Coefficient (PCC) have been used to evaluate 
the goodness-of-fit of the model. The road accident data-
set almost fitted with the model with a low acceptable 
error as presented in the AIC value (676). Moreover, the 
study of the relationship between the observed and pre-
dicted accident data for the year 2015 gives a good correla-
tion presented with the higher positive PCC value (0.768) 
approaching one, as shown in Table 2.

However, the goodness of fit result could also approve 
the efficiency of the applied segmentation method. Details 
of comparing the applied spatial segmentation method 
with the other well-known methods are presented in Ghadi 
and Török (2019a) work.

The developed SPF has been used in the EB method to 
rank the 181 road segments based on accident severity. To 
describe the severity differences, the set of road segments 
are divided equally into four groups. Groups are code 
as B1, B2, B3, and B4. Segments are classified into the 
groups based on their severity levels ranked from higher 
risk (B1) to lower risk (B4) in ascending order.

4.3 Extracting decision rule from decision tree
Twelve predictor variables have been used with the four 
qualitative target variables (i.e. BS1, BS2, BS3, and BS4 
from highest to lowest severity in ascending order) to 
identify important accident patterns along the road. The 
predictors include environmental characteristics (e.g. 
AADT, trucks percent, speed limit, path shape, vertical 
alignments, road surface conditions), temporal character-
istics (e.g. time, weekday, month), and accident variables 
(e.g. severity, visibility, weather condition). A descriptive 
statistics of accidents' predicted variables are presented in 
Table 3 differentiating the data according to BS severity 
levels (BS1, BS2, BS3, and BS4).

To define the adequate decision rules, CART deci-
sion tree and the Gini splitting criterion have been used. 
Fig. 2 shows the produced classification tree. The tree has 
five terminal nodes with five DR's. It can be easily dis-
tinguished that AADT, path shape, and the speed limit 
are the primary selected splitter attributes for the given 
phenomenon described by the tree. The splitter AADT 
appeared in the top of the tree as the most influential vari-
able in identifying BS accidents by their spatial locations. 
This indicates that these variables are the most critical in 
classifying clusters of BS accidents by severity.

All of the selected variables are related to environmen-
tal factors and all accidents within a certain cluster can 
take the same value of these environmental attributes. 
In other words, the accident density of certain segments 
and the associated environmental characteristics, have the 
main role in classifying BS segments by severity level.

This is rational since most of the well-known BS identi-
fication methods use these environmental factors to iden-
tify BS sites. For instance, the EB method relies mainly on 
the AADT to predict future changes in accident frequency 
(Elvik, 2008; Ghadi et al., 2018a). Similarly, the accident 
ratio method identifies BS segments based on the value 
of accidents per segment length or accidents per AADT 
(Borsos et al., 2016).

The interpretation of the results is straightforward. 
Segments of BS1 are ranked to be the riskiest BS sites, 
according to the applied EB method. These segments 
include about one-third of the total sample of accidents 
and have the highest accidents density per unit length (2.98 
accidents per km). It has to emphasize that about 40 % of 
BS1 accidents occurred under high traffic volume condi-
tions (AADT >10000). This type of accidents constitutes 
26 % of total accidents included in the training CART tree, 
as shown in the terminal node 1 (from the left) of Fig. 2. 
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Table 3 Description of accident attributes

Attribute Description Accident 
frequency

% of accidents per BS severity level

BS1 BS2 BS3 BS4

Accident Severity

Fata 143 0.29 0.33 0.21 0.17

Sever 622 0.32 0.30 0.20 0.18

Slight 1161 0.32 0.29 0.22 0.16

AADT

<3000              (AADT1) 140 0.32 0.11 0.16 0.40

3000-10000     (AADT2) 1296 0.26 0.29 0.24 0.20

>10000            (AADT3) 490 0.47 0.37 0.15 0.02

Speed Limit
<=60 758 0.31 0.31 0.24 0.15

>60 1168 0.33 0.30 0.20 0.18

The path shape

Straight 1237 0.27 0.31 0.24 0.18

Curve 416 0.42 0.28 0.15 0.16

Multi-curve 40 0.35 0.15 0.30 0.20

Others 233 0.38 0.30 0.19 0.13

Type of accident

Face to face 306 0.33 0.32 0.20 0.15

Vehicles in the same direction 353 0.35 0.29 0.20 0.16

Standing vehicle, solid object collision 451 0.28 0.28 0.23 0.20

Slipping, overturning 52 0.21 0.37 0.21 0.21

Run Off the Road 200 0.28 0.29 0.25 0.18

Hitting a pedestrian 149 0.30 0.34 0.21 0.16

Others 415 0.36 0.29 0.20 0.14

Weather conditions

Clear 1167 0.31 0.30 0.21 0.18

Cloudy 459 0.31 0.32 0.22 0.16

Foggy 65 0.22 0.14 0.35 0.29

Rainy 184 0.40 0.32 0.20 0.09

Snow 51 0.43 0.22 0.22 0.14

Visibility

Daylight, natural light 1396 0.32 0.30 0.21 0.17

Night, with active lighting 470 0.31 0.30 0.24 0.15

Night without public lighting 59 0.32 0.29 0.19 0.20

Ground cover

Flawless 1252 0.33 0.29 0.21 0.16

Fractured, uneven, wavy 518 0.33 0.30 0.19 0.17

pits 156 0.17 0.34 0.28 0.22

Vertical alignments

Flat 1741 0.31 0.30 0.22 0.17

Slope 109 0.38 0.31 0.14 0.17

Ascending 76 0.45 0.28 0.13 0.14

Time of day

Mid-night (0-6) 180 0.34 0.27 0.24 0.15

Morning (6-12) 599 0.31 0.28 0.23 0.17

Afternoon (12-18) 770 0.32 0.32 0.18 0.18

Night (18-0) 376 0.32 0.29 0.23 0.15

Day of week
Work day 1337 0.32 0.29 0.21 0.17

Weekend 589 0.31 0.31 0.21 0.16

Month

Winter (12-2) 382 0.33 0.28 0.24 0.15

Spring (3-5) 392 0.28 0.31 0.23 0.18

Summer (6-8) 633 0.33 0.31 0.20 0.16

Autumn (9-11) 519 0.33 0.29 0.20 0.18
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This can be explained due to the strong correlation 
between the AADT and accident frequency. Benedek et al. 
(2016) proved that AADT is the most influential variable 
in accident prediction models, and accident frequency is 
directly proportional to the AADT and the intensity of the 
linear dependency between the two variables (accidents 
and traffic) is strong.

At lower traffic volume (AADT < 10000) the CART 
tree is branched again but in this case by the horizontal 
path shape. At the first branch, accidents follow a curved 
path shape (horizontal curve) rule ended up by terminal 
node 2, which is also dominated by accidents of BS1 seg-
ments. Generally, accidents occurred on curved segments 
constitute about 24 % of all accidents, of the case study, 
and included 20 % of fatal accidents. This is supported by 
previous studies which have shown that the rate of acci-
dents on horizontal curves is higher than 1.5 to 4 times 
than on straight roadways (Polus, 1982).

At the second tree branch of the horizontal path shape 
joint point, road segments become straighter and less dan-
gerous from a horizontal curve point of view. In this case, 
high-speed limits (speed≥60 km/hour) are the distinguish-
ing factor in the rule of the terminal node 3 (i.e. rule 3). 
This is not surprising as driver speed and speed limits 
have been recognized as one of the main contributing fac-
tors of road accidents. Speed limits can affect accident 
likelihood, severity, and density per road segment (Ghadi 
and Török, 2017). This rule is almost dominated by acci-
dents of the second hazardous road segments (i.e. BS2). 

However, a good per cents of BS2 accidents follow the 
same BS1 rules (rule 1 and rule 2, as described in Fig. 2).

The last less hazardous terminal nodes; node 4 and 
node 5, are almost dominated by accidents of BS3 and 
BS4 respectively. The typical properties of these nodes 
can be characterized by average environmental factors 
that follow their rules. For instance, accidents of node 
4 mainly occurred in case of lower speed limits (<60 km/
hour), moderate traffic volume (10000<AADT<3000), and 
straight road section. While accidents of node 5 mostly 
occurred under low traffic volume conditions (AADT 
<3000) and a straight road section. This can be explained 
by bad weather conditions that accompanied most BS3 
and BS4 accidents (see Table 3).

It can be also concluded from the tree that as the rules of 
the nodes are more dominated by lower severity segments 
(BS1, BS2, BS3, and BS4 respectively), accidents contrib-
uting factors (AADT, speed, horizontal path shape) fit bet-
ter to the safe and non-hazardous road scheme conditions. 
This is logical since accidents within the low severity BS 
segments are more likely to be caused by human errors or 
special events rather than specific environmental factors 
like in the case of BS1 and BS2 segments.

5 Conclusion
Classification of road accident data still remains an import-
ant road safety issue. This paper has presented a new meth-
odology for examining the main contributing variables on 
accident risk severity of road segments. The idea behind 

 

Fig. 2 The output of CART tree
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