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Abstract

With the increasing environmental pollution in our urban communities along with the continuous exhaustion of oil assets, electric 

vehicles are ending up profoundly supported as means of transport. There is a proceeding with increment in the quantity of EVs 

being used, however their global expansion and acceptance by consumers is identified with the performance they can deliver. 

The most significant highlights here are observably the low energy density, with staggering expenses and short cycle life bringing 

about constrained mileage contrasted with conventional passenger vehicles. Ordinarily, in the technical specifications of electric cars, 

automakers give an operational combined range which isn't completely accurate and doesn’t differentiate and take into consideration 

several influencing factors (urban driving or inter city traffic, ambient temperature, utilization of auxiliary equipment …). For the 

owners it is imperative to know as accurate as possible the remaining range and influence of the auxiliaries on energy consumption 

and mileage. That information will guarantee a tranquil and pleasant journey regardless of the constrained range of electric vehicles.
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1 Introduction
The vehicle industry is at present at the focal point 
of a worldwide change, driven by four key patterns: 
Electrification, self-driving cars, car sharing and connected 
vehicles. While every one of these interconnected patterns 
is as of now obvious in day by day life, their full sending 
has not yet been ensured, nor has been the speed of take-up.

Electric mobility is getting significant attention in Europe 
and many other regions. Car manufacturers, consumers 
and grid operators show an increasing interest in the transi-
tion towards electric vehicles as renewable fuels seemingly 
can not solve the decarbonisation problem (Zöldy, 2009). 
Since electric vehicles produce extremely low emissions 
(both acoustical and particle outflows (Ivković et al., 2018) 
and since their top speed is constrained, they are perfect for 
use in urban regions with high environmental restrictions 
(Antonya et al., 2015). Therefore, the popularity and attrac-
tiveness of EV's is raised.

However, even technical framework conditions must 
be created to increase the acceptance of electric vehi-
cles. There are exceptional difficulties in infrastructure 

development and the inherent limitations of the energy 
storage advancements (Široký et al., 2017). In this set-
ting drivers of EV's are disrupted by the imprecise mile-
age prediction (Polak, 2018). The mentioned reasons cause 
a major disarray among clients and diminish the attrac-
tive quality. As fuel and/or electricity are one of the major 
running cost contributors (Gao et al., 2019) the prediction 
should be as precise as possible. In any case, figures state 
that the interest for electric mobility is increasing (Török 
et al., 2014). Thus, it is required to increase the accuracy of 
range prediction models to progress toward a better state 
of art and a more substantial market presence.

2 Literature review
The forecast of realizable EV mileage by and large relies 
upon three noteworthy classes of factors: 

• vehicle structure, 
• driver
• and environment condition.
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Research on this point appears that every one of these 
classes relies upon the variety of direct or indirect param-
eters (Bi et al., 2018; Mruzek et al., 2016). Some of the 
parameters that have a steady input (e.g., vehicle type, 
transmission type, number of seats, mass, weight) are sim-
ilar as in case of traditional internal combustion engine 
vehicles (Zöldy, 2019), other steady inputs (such as battery 
capacity, infrastructure, accessibility of charging stations, 
charging time, etc.) are similar to conventional ones but 
have a different dimension and different parameters are 
inconstant (battery SOC, battery health condition - SOH, 
driver conduct, traffic stream (Sentoff et al., 2015), EV 
dynamic execution, Battery Management System (BMS), 
interior temperature, exterior environment conditions, 
every one of them affect the EV's mileage (Fig. 1). 

In any case, most of the conducted researches are related 
to the linear approximation of the maximal achievable 
range by electric vehicle dependent on the approximation 
of real-time charge of the battery (Török and Zöldy, 2010).

The evaluation of practical status of the storage capac-
ity is performed primarily by examining two fundamen-
tal parameters: level of the battery charge (SOC) and the 
cells' health state (SOH). The first parameter is determined 
utilizing data on the voltage, current and temperature val-
ues, and the cells' health state is determined dependent on 
the electrochemical degradation process within the bat-
tery cells (which decreases the recharging limit and acces-
sible energy). Since discharging and charging the bat-
tery includes complex physical and chemical processes 
(Yuksel and Michalek, 2015), it's anything but a simple 
assignment to gauge the estimation of the SOH parameter 
precisely. The direct prediction of an EV mileage relies 
upon the precision of the SOC value. As this gives essen-
tial data about the measure of accessible energy to be uti-
lized by the EV's powertrain. In this way, the precision of 
prediction is a significant factor in picking and actualizing 
a SOC estimation strategy inside an EV's frameworks.

There are several approaches to demonstrate drivers 
conduct (Varga et al., 2019). Another methodology is to 
utilize a Data-Driven technique to demonstrate confident 
driver's conduct. Results show that customized path incli-
nations are derived straightforwardly from the observed 
drivers' driving styles, utilizing a reversed learning strat-
egy. Thus, the proposed model can foresee courses as 
indicated by driver inclinations. Unfortunately, it doesn't 
forecast the effect of heating, ventilation, and air condi-
tioning utilization by the driver. In any case, this meth-
odology presents a probabilistic guide for possible des-
tinations. It comprises two models: the artificial neural 
Network Model (NN) and the Multiple Linear Regression 
(MLR) model. The second approach is utilized to assess 
the energy consumption (given a few indicator factors), 
while the neural network forecasts the unknown indicator 
factors of the regression model. Regarding the acquired 
outcomes, the suggested model has a forecasting capabil-
ity on energy utilization with 12–14% of mean total error. 

Other techniques are utilized to demonstrate the 
impacts of the vehicle driver's conduct on effectiveness of 
electric vehicle utilization, considering about a little mea-
sure of test data (interestingly with the data-driven tech-
niques above). A way to deal with this could be based on 
the outcomes acquired identifying the impact of driver's 
conduct on decreasing fuel utilization for a vehicle with 
internal combustion engine, by creating and utilizing a 
control-based driving style model (Delling et al., 2015). 
A semi-learning technique was utilized to enhance the 
style of the human driver related factors, utilizing the sim-
plex technique. Three driving styles were proposed as the 
model's most important component: dynamic driving, nor-
mal driving and eco driving. 

Multiple influencing factors are combined in a stand-
alone model. One approach to deal with numerous ele-
ments simultaneously is to allocate them to a discrete road 
section (Javanmardi et al., 2017). Regularly, such a dis-
cretization procedure is utilized in online maps. Road net-
work representation could be a graph. Every road frag-
ment is characterized by explicit properties, and for the 
range expectation issue, the properties are the direct fac-
tors that impact an electric vehicle's range, for exam-
ple, density of the traffic, air conditions, geography, etc. 
A new method that aims to work with huge scale road net-
works was created to perform calculations productively 
(Baum et al., 2016). Supplementary, different research-
ers stretched out the algorithm to deal with negative 
cycle costs triggered by the recovery of energy, specific Fig. 1 Constant and variable factors influencing electric vehicles' range
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to electric vehicle usage conditions (Oliva et al., 2013). 
For the considered sections, the researchers character-
ized a cost capacity f (arc), which is equivalent to the mea-
sure of energy required to pass along the road segment 
arc. Summation of expenses along the way is equivalent 
to the aggregate measure of energy essential to reach the 
destination. Inappropriately, the used technique does not 
consider driver's conduct, which decreases its functional-
ity. Be that as it may, the graph portrayal is efficient and 
normally utilized to manage road-grid linked issues, for 
example, map generation and route definition.

A model-based methodology for driving distance esti-
mation was created by joining particle filter with Markov 
chains. Mileage prediction is described as a probabil-
ity distribution function, estimated by a set of weighted 
particles. The methodology incorporates explicit mod-
els of the energy storage, e-drive and vehicle dynamics 
only, and takes various inputs into consideration, such 
as inconstancy of the driving profile performed through 
simulation (Ziebart et al., 2008). Researchers express that 
the chosen methodology forecasts the electric vehicles' 
remaining mileage with moderate precision and calcula-
tion resource need.

WLTP limitations are only discussed from the legis-
lative and economical perspective (Zöldy, 2018), noth-
ing was addressed from technical side, so far, it's still in 
a demo phase and provides overall better and more accu-
rate results than the NEDC. Our research work's main aim 
is to model and simulate the WLTC test cycle and to extend 
it with real world vehicle data for an electric vehicle.

3 Materials and methods
An electric vehicle model has been created in IPG 
CarMaker software. The constructed model is based on 
the existing Mercedes-Benz Class B 250e. The model has 
been simulated with various properties for batteries, elec-
tric motors, transmission, aerodynamics of the vehicle, and 
driver properties to acquire data regarding vehicle perfor-
mance, energy consumption and range on the new WLTC 
test cycle and compare it to the previous NEDC Cycle.

3.1 IPG CarMaker simulation
IPG CarMaker is a simulation software used to create 
and simulate an actual vehicle. The vehicle is created 
using a mathematical model that contains all the physi-
cal parameters of the car and its properties, the 3D envi-
ronment, maneuver instructions, driving presets and style. 

More than 30 simulations have been performed in differ-
ent scenarios, taking into consideration different battery 
SOC, driver behavior, load and auxiliaries. Data was col-
lected and analyzed in IPG control, the simulation was 
monitored using IPG Movies and IPG Instrument.

In order to simulate the range of our MB250e, the ini-
tial case begins with a fully charged battery, so SOC is 
100% in the first case, then it was set to 60% and 30% 
respectively (Table 1). After every simulation, results were 
recorded, battery, current and energy consumption were 
monitored via IPGControl (Fig. 2).

The simulation ends, the vehicle stops, the state of 
charge is then changed, and new results are analyzed. 
We shift between a normal driver behavior to an energy 
efficient approach and compare the results (Fig. 3), then 
we take into consideration auxiliaries' consumption in 
the HV Battery. We estimated this consumption at 1 kW 
(Conservative Selection).

After a couple of simulations, we launched the driver 
adaption, where the driver goes through the road to learn, 
adapt and improve the overall performance. Then we 
repeated the simulations for optimized results (Driver 
was set to Normal). Results of the simulations are pre-
sented in Table 2.

Table 1 Simulation cases

Cases Battery Power 
(kWh)

Battery SOC 
(%)

Vehicle Mass at 
70 kg

Case 1 28 kWh 100% 1849.87 kg

Case 2 28 kWh 60% 1849.87 kg

Case 3 28 kWh 30% 1849.87 kg

Cases Battery Power 
(kWh)

Battery SOC
(%)

Vehicle Mass at 
140 kg

Case 4 28 kWh 100% 1919.87 kg

Case 5 28 kWh 60% 1919.87 kg

Case 6 28 kWh 30% 1919.87 kg

Fig. 2 Battery current and energy monitored in IPGControl
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3.2 Vehicle test drive
At the Automotive Technologies Department, of the 
Vehicle Engineering Faculty of Budapest University of 
Technology and Economics, we have a Mercedes-Benz 
Class B 250e. We previously created a model in IPG 
CarMaker, simulated the vehicle under the WLTP test 
cycle, and we got the consumption figures and the esti-
mated range. We decided to test the vehicle in real driving 
circumstances, a mixture of highway, city driving, traffic 
jams, and then compared the results with the simulation 
figures (Fig. 4).

• Prior to the test, the vehicle was fully charged.
• A diagnosis was performed to check any faults in the 

vehicle's different ECUs and systems. 
• The driving part of the test was conducted at an 

ambient temperature of 6–8 °C.

• The test was conducted with a driver and front 
passenger.

• The climate control was set to auto and headlights 
were switched on at first stage, then the A/C was 
turned off.

• The normal driving mode was selected (efficiency 
mode "98 kW").

• The regenerative braking was set to D (moderate 
recuperation).

• The driving was performed in a mixture of city driv-
ing with different traffic situations (this simulates 
Stop & Start situations), on a country road then on 
a motorway. 

• The range extender was not used (28 kWh battery 
only). Test drive results are presented in Table 3.

4 Results 
The Mercedes-Benz B 250e was simulated with IPG 
CarMaker and tested under the WLTP test procedure. 
To bring the vehicle's range into real world challenge it 
was driven in a mixture of roads and traffic conditions 

Table 2 Simulation results

scenarios Driver – 
normal

Driver – 
efficient

Driver + 
Passenger 
– normal

Driver + 
Passenger 
– efficient

Battery  
28 kWh  
77% No Aux

145 km 163 km 140 km 158 km

Battery  
28 kWh 
77% With Aux

130 km 143 km 127 km 140 km

Battery RE  
33.5 kWh  
93% No Aux

173 km 194 km 169 km 189 km

Battery RE  
33.5 kWh 
93% With Aux

156 km 172 km 152 km 168 km

Fig. 4 Driving test cycle

Table 3 Test drive results

Consumption Regeneration

A/C ON 22.76 kWh/100 km 17.86%

A/C OFF 21.30 kWh/100 km 33.66%

City Driving 18.26 kWh/100 km 18%

A/C takes usually 1.5–2 kWh
Average Consumption: 20.78 kWh/100 km ~ 134 km range.

Fig. 3 Driver settings
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and we checked whether we could really reach the dis-
tance promoted by the manufacturer and what the per-
centage difference between the previous NEDC test and 
the new WLTP was. 

These were the main questions we tried to answer in 
this paper. The main results are compared in Table 4.

The 140 km threshold could only be reached following 
our simulation in the case of an energy efficient driver or 
with A/C Off and minimum auxiliaries usage.

From Simulation Results:
• In the case of two passengers weighing over 140 kg 

in average, and a normal driver we got 140 km 
(127 km with Aux) with a 28 kWh battery, with 
Range Extended to 33.5 kWh battery around 169 km 
(152 km with Aux).

• In the case of two passengers weighing over 140 kg 
in average, and an energy efficient driver we got 
158 km (140 km with Aux) with a 28 kWh battery, 
with Range Extended to 33.5 kWh battery around 
189 km (168 km with Aux).

WLTP test is very close to EPA (US) rating for the 
MB 250e. On the other hand, NEDC gives the MB250e 
200 km, but overall the performances are good in this 
vehicle category. In general, NEDC range decreases by 
around 20–25% when testing according to WLTP.

The range you get in an EV depends on several param-
eters, mainly, the battery capacity, weight and load, auxil-
iaries, driving style and environment.

5 Discussion and conclusion
Lot of ongoing parallel researches are conducted to under-
stand and to be able to predict the mileage of electric vehi-
cles. Most of the researches are focusing on a single fac-
tor that influences the energy consumption. Charge level 

of battery estimation (SOC) gives a special importance to 
mileage estimation, and up to now only a limited num-
ber of papers have been presented with the aim to merge 
all influencing factors on electric vehicle fuel consump-
tion and range prediction. Handling different aspects as 
driver behavior or environmental effects jointly within a 
single model should be the main focus of future studies. 
Furthermore, rising awareness among drivers or potential 
customers on how their vehicles behave, how their per-
sonal consumption or auxiliaries usage control the range 
they can reach is crucial to improve the EV's adoption rate 
and minimize range anxiety:

• It was always obvious that the OEM communicated 
values are conservative and could only be achieved 
with a highly efficient driving style as well as energy 
consumption awareness.

• Electric vehicle owners must be conscious of envi-
ronmental conditions and be ready to reduce mileage 
during high or low temperature periods. 

• Utilization of heating, ventilation, and air condition-
ing should be limited to minimize their effect on 
driving distance and equivalent energy economy. 

• Heating, ventilation, and air conditioning and auxil-
iaries excessive usage can lead to 30% of range lose. 
18–22 km were lost in our simulation.

• An aggressive driving style can result in around 20% 
of range lose. In our simulation 15–20 km were lost 
in normal driving vs efficient driving mode, for a 
more aggressive behavior more mileage can be lost.

Table 4 Test results comparison

NEDC Rating WLTP Rating 
(Simulation)

Test Drive 
Range EPA Rating

200 km 127 km 134 km 140 km
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