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Abstract

The paper discusses the identification of the empirical white noise processes generated by deterministic numerical algorithms.

The introduced fuzzy-random complementary approach can identify the inner hidden correlational patterns of the empirical white 

noise process if the process has a real hidden structure of this kind. We have shown how the characteristics of auto-correlated white 

noise processes change as the order of autocorrelation increases. Although in this paper we rely on random number generators to 

get approximate white noise processes, in our upcoming research we are planning to turn the focus on physical white noise processes 

in order to validate our hypothesis.
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1 Introduction
1.1 White noise process concerning the subjective 
probabilistic approaches1

The mathematical concept of white noise is well known 
from the probability theory (Wikipedia, 2019a). The 
essence is that the sequence of probability (random) vari-
ables that make up the temporal process is independent of 
each other at any given time. This is usually ensured by 
Kolmogorov’s probability theory, where the probability 
calculus is based on the set theory (specifically the Sigma 
Algebras) (Kolmogorov, 1956). In alternative probabil-
ity theories, independence of random variables can also 
be defined by interpreting the probability density func-
tions of the two variables as the product of the probability 
density functions of the two variables. In this case, if we 
do not know them based on the value of zero of the cor-
relation coefficient, the correlation can be interpreted as a 
kind of (non-Kolmogorovian) independence.

1 An extended version of the lecture at the University of Debrecen at 
the Conference on Time-series and their Application, 2019.

As is well known, alternative subjective probability 
schools often criticized Kolmogorov’s theory because 
of the perceived compulsion of their sigma-based event 
systems (footnote on subjective probability). In addi-
tion to the different Bayesian approaches (Wikipedia, 
2019b) and the von Mises probability calculation method2 
(von Mises, 1964), we may note the ‘Treaties on Probability’ 
(Keynes, 1921) written by J. M. Keynes, whose spirit con-
tributed to the theory of “Expectations” of Keynes during 
the dynamic modeling of economic processes (thus exer-
cising decisive influence on the history of the 20th cen-
tury). John von Neumann’s and Oscar Morgenstern’s prob-
ability views on decision-making and game theory are to 
be included as well. 

2 However, von Mises concerns the random time series of a Gambling 
system by pure mathematical approach as later Kolmogorov, no tak-
ing into consideration the practical empirical view, when they intend 
to prove the “impossibility of Gambling systems”. Our approach, 
indirectly, intend to show a rather weak but existing possibility of a 
Gambling system.
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As for the white noise process in the case of 
Kolmogorov-based mathematical definition, the white 
noise process is a “blind”, memoryless series of the ran-
dom events lacking of correlation or “intelligence”, not 
to mention any order or pattern, having an unpredictable 
future and unrecognizable past, as a series of chaotic 
events par excellence3.

In our paper, on the other hand, we intend to present a 
maybe possible “intelligent model” of the white noise pro-
cesses primarily on the basis of the subjective approach 
of the “subjective probability”, suggested by W. Pauli in 
describing the worldview of quantum physics. Thus, sim-
ilarly to the subjective probabilistic approach, the unde-
tached observer is organically linked to the observed 
events, and cannot be separated from them, because both 
the measurement system and the measurement process-
ing model form a unit with the hypothetical patterns of 
the observed events. Before we go into this, it is worth 
mentioning this idea, presented by the famous Hungarian 
physicist Loránd Eötvös (Pauli, 1994) in his well-known 
lecture, preserved until today:

“Though the sight what nature provides (as Galiani 
tells) is just as if an infinite number of dice would make a 
pre-announced throw at any moment. I think, my Ladies 
and Gentlemen, the cubes of nature are leaded, and the 
greatest of magicians just smiles over our head! Dear con-
gregation! One hundred years have passed since Galiani’s 
apology4, a hundred years, that liberated mankind from 
the burdens of rough material work, let us draw by the 
rays of the sun and move fast with our distant brothers; 
and yet we are as stunned before Galiani’s cubes as once 
Holbach’s guests. One might call the lead by which the 
cube turns, coincidence, force or God, the inside of the 
cube remains a mystery to our minds.” (The Yearbooks of 
the Hungarian Academy of Sciences, 1877-1882).

In connection with the alternative probabilistic 
approaches to the probability approach of physics, we 
mention the probabilistic interpretations of Karl Popper 
(Popper, 1985) and Lajos Jánossy. On the basis of the prob-
ability version of Lajos Jánossy’s modern ether hypoth-
esis, in the case of modeling the single-photon interfer-
ometer measurements, he advances the concept of the 
intelligent white noise model involuntarily (Ádám et al., 
1955). Finally, we may also mention Bruno de Finetti’s 

3 See a cultural reflection of this “idea” in DeLillo (1985).
4 Nietzsche referred to him as “a most fastidious and refined intelli-
gence” (Nietzsche and Middleton, 1996).

subjective probability approach (De Finetti, 1974). In the 
21st century quantum extensions of de Finetti’s represen-
tation theorem have been found to be useful in quantum 
information, in topics like quantum key distribution and 
entanglement detection (Caves et al., 2002). 

From the point of view of quantum physics, Pauli inter-
prets the idea of the “undetached observer” as opposed 
to Einstein’s concept. He notes „Einstein so emphatically 
wishes to retain the ideal of the detached observer. To put 
it drastically the observer has according to this idea to 
disappear entirely in a discrete manner as hidden specta-
tor, never as actor, nature being left alone in a predeter-
mined course of events independent of the way in which 
the phenomena are observed. „Like the moon has a defi-
nite position.” (Pauli, 1954)

Pauli writes in contrast „the mathematical concept of 
probability arose from the Endeavour to render objec-
tive as far as possible the subjective expectation of a sin-
gle event. To do this the expectation must be replaced by 
the objective average frequency of an event when it is 
repeated under like conditions.” (Pauli, 1954)

Important is his conclusion that „in purely mathemat-
ical form Bernoulli’s theorem is thus not as yet suscepti-
ble to empirical test, or this purpose it is necessary some-
where or other to include a rule for the attitude in practice 
of the human observer or particular the scientist, which 
takes account of the subjective factor as well, namely that 
the realization, even a single occasion, of a very unlikely 
event is rewarded from a certain point on as impossible 
in practice. At this point one finally reaches the limits 
which are set in principle to the possibility of carrying out 
the original program of the rational objectivation of the 
unique subjective expectation.”

Pauli’s note on the observation “... observation thereby 
takes the character irrational, unique actuality with 
unpredictable outcome. Moreover, the impossibility of 
subdividing the experimental arrangement without essen-
tially altering the phenomenon, brings a new feature of 
wholeness into physical happenings. Contrasted with this 
irrational aspect of concrete phenomena which are deter-
mined in the actuality, there stands the rational aspect of 
an abstract ordering of the possibilities of statements by 
means of the mathematical concept of probability of the Ψ 
function.” (Pauli, 1954)

New Approach to Einstein: “The new theory on the con-
trary generalizes this classical ideals and postulates of the 
detached observer. Under the pressure of the physical facts 
summed up under the heading „finiteness of the quantum 
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of action”, this logical generalization has emerged into a 
higher synthesis as a finally satisfactory solution of ear-
lier contradictions. The mathematical inclusion, in quan-
tum mechanics, of the possibilities οf the natural event has 
turned out to be sufficiently whole framework to embrace 
the irrational actuality the singular event as well.” 

Finally, Pauli summarizes the spirit of the new approach 
in the following way. „The fact that the mathematical con-
cept of probability has also justified itself in this new sit-
uation the noted by the term „complementarity” seems to 
be highly significant. It appears that there corresponds to 
it, at a very deep level, a reality in nature; it has pro-
vided a solid logical basis for the type of the natural law 
which generalizes the classical and deterministic expla-
nation of the nature and provides the link between con-
tinuum (wave) and discontinuum (particle), and for which 
I have suggested the name „statistical correspondence” 
(Pauli, 1954).

Thus, the idea of complementarity appears in the 
objective and subjective probabilistic approach, and even 
more generally in the scientific knowledge. Albert Szent-
Györgyi writes about this: “... a discovery must be, by 
definition, at variance with existing knowledge”, divided 
scientists into two categories: the Apollonians and the 
Dionysians. He called scientific dissenters, who explored 
“the fringes of knowledge”, Dionysians. He wrote, “In 
science the Apollonian tends to develop established lines 
to perfection, while the Dionysian rather relies on intu-
ition and is more likely to open new, unexpected alleys 
for research...The future of mankind depends on the prog-
ress of science, and the progress of science depends on 
the support it can find. Support mostly takes the form of 
grants, and the present methods of distributing grants 
unduly favor the Apollonian”. (Szent-Györgyi, 1972)

It is interesting to note that Albert Szent-Györgyi fol-
lows Nietzsche’s idea of ‘Appollonian-Dionysian’ or cer-
tainly its Jungian reinterpretation, as the latter one was 
attempted to apply for the identification of the psychologi-
cal types by C. G. Jung (1976). 

Interestingly, the intelligent white noise model itself 
has the above-mentioned approach to complementar-
ity, perhaps first in the history of thinking in the con-
cept of Plato’s Soul of World (Πνευμα Κοσμου). The 
idea of the same and different, indivisible and divisible 
of this Platonic Complementarity can be perceived in the 
Apollonian and Dionysian idea of the mythology or its 
version of the Delphi religion. Obviously, this idea reflects 
on the revitalization of Nitzsche’s experiment.

The harmony and simplicity of the whole picture of the 
intelligent concept of white noise suggests in a comple-
mentary way the eternal Apollonian spirit, while the real-
ization of the process, leading to the components or the 
bands (measured data series) suits the Dionysian “half” 
(concerning the approach) of complementarity in an alle-
goric or symbolic form.

The subjective probability approach can also be com-
pared to the theory of fuzzy sets and their membership 
functions, which can be interpreted in a complementary 
way, since the membership function showing the possi-
bility distribution normally provides a probability density 
function not necessarily in a Kolmogorov sense. In this 
way, it gives the possibility to the interpretation of a sort 
of probability feature of the concept of the intersection of 
central importance in the fuzzy logic theory.

However, Kolmogorov’s random and Zadeh’s fuzzy (or 
fuzzy-random) concept of independence is clearly distin-
guished. In this case, if the combined probability density 
functions are derived from the multiplication of the density 
function of the two variables, the correlation coefficients 
interpreted on the intersections already show a value differ-
ent from zero in the case where the variance load or prob-
ability density functions are not the same. Thus, the com-
plete independence in the sense of Kolmogorov is only valid 
if the inclusion or probability density functions of the two 
possibilistic or probabilistic variables are identical for the 
not zero Alpha-cuts of the original membership function.

It could mean a (new) complementary representation the-
ory for the uncertainty approach which can be simultane-
ously treated as possibilistic as probabilistic one (Baranyi 
and Várlaki, 2015; Bhargava (2013). Consequently, the char-
acteristic membership function can be concerned accord-
ing to this complementary principle both probabilistic and 
possibilistic distributions. Namely, if a possibilistic distri-
bution (function) is represented by a fuzzy membership 
function, then its normalized version can represent a prob-
ability distribution (density function) in a traditional sense 
of the concept. Therefore, the possibilistic and probabilis-
tic approaches (similarly to the wave particle complemen-
tary principle) are jointly valid representation of a general 
uncertainty which are undivided, inseparable of each other. 
This could mean a complementary uncertainty representa-
tive theory, where the uncertainty representative function 
is both complementary-like possibilistic as well as proba-
bilistic distribution. If the possibilistic distribution is rep-
resented by a fuzzy membership function then at the same 
time its normalized version represents a probability density 
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function, as well in a traditional way (Fullér et al., 2011; 
2012). Thus, the possibilistic and probabilistic approaches 
(similarly to the wave-particle complementarity approach) 
show up simultaneously, jointly and inseparably from each 
other (Papp et al., 1998). This could represent the basis of a 
new joint probabilistic-possibilistic theory.

2 The correlation analysis in case of empirical white 
noise processes
The above discussed approach can be applied for the defi-
nition or the interpretation of complementary fuzzy-ran-
dom (or possibilistic-probabilistic) processes, as well. In 
Figs. 1, 2 it can be seen, that besides arbitrary generation 
(division or partition) the system of the band intervals can 
be generated by the concept of the alpha-cut (of a suit-
able fuzzy membership function) induced intervals. In 
this case the white noise process realization can be char-
acterized (represented) naturally complementarily by both 
possibilistic (fuzzy) and probabilistic (random) processes. 
Consequently, the principle of the above complementarity 
is unconditionally necessary for the realistic modeling of 
the data for the experimental white noise processes. Now 
let us concern the new white noise “idea” in the case of the 
concept of independence with the above discussed “insep-
arable valid” complementary fuzzy-random approach. 
This concept of independence is the basis of the new type 
of deconstructive modeling of the empirical white noise 
processes which were treated as traditional random phe-
nomena. Following this approach we can define and inter-
pret new kinds of fuzzy-random processes for the represen-
tations of a relative wide class of stochastic processes in the 
traditional sense of the word. In this case the stochastic pro-
cesses can be generated alternatively from so called source 
white noise processes as we can see this kind of representa-
tion in the description of the ARMA processes.  
In the practice the entire image of the empirical 
autocorrelation function has been considered in the 
calculations of the autocorrelation. Let u t( )  be the 
realization of the empirical white noise process (observed 
series of numbers) (Michaletzky et al., 1998).

R
T

u t u u t uu
t

T

τ τ( ) = ( ) −( ) −( ) −( )
=
∑1

1

		
(1)

where u
T

u t
t

T

= ( )
=
∑1

1
.

The autocorrelation function of the “fragmented” real-
ization u tn ( )  considered for time period T is as follows:

R
T

u t u u t un n n n n n
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T

,
τ τ( ) = ( ) −( ) −( ) −( )
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1
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T
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1

.

The fragmented u tn ( )  process might be given in the 
following form, as well:

u t u t I u tn n( ) = ( ) ( )∈( )∆ 				   (3)

where the indicator function

I u t
u t

n
n( )∈( ) = ( )∈

∆
∆1

0 otherwise
.

Fig. 1 An important aspect of the probabilistic approach is that in case 
of fuzzy random white noise processes (considering given, concrete 
realizations) the distributions and their density functions - interpreted 

in a fuzzy-random way – may change or might be different.

Fig. 2 The illustration of the above idea for a specific realization.
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Here ∆n{ }  denotes the arbitrarily clustered system of bands.
Under the cross-correlation function of two arbitrary 

bands the following relation is meant: 
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Here the normalized auto- and cross-correlation functions
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In the followings, let us consider the normalized auto- 
and cross-correlation functions only when dealing with 
calculations or providing illustrations. Since the auto-
correlation and cross-correlation functions of empiri-
cal white noise process realizations form stationary ran-
dom series, the autocorrelation functions derived through 
automorphic-like transformations (autocorrelation opera-
tors) might be considered to be stationary random series, 
as well (for a reduced time period).

In this case let 
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In this case the normalized first order automorphic 
autocorrelation function is as follows:
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In this case the second order automorphic autocorrela-
tion function might be expressed as:
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Since such obtained cross-correlation functions show 
stationary or nearly stationary realizations (without con-
sidering the central point), thus even for these derived 
realizations the autocorrelation functions might be calcu-
lated, as well.

z Rn m n m, ,
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In this case the first order automorphic autocorrelation 
function of the cross-correlation function of two bands is 
the following:
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In this case the first order automorphic autocorrelation 
function of the cross-correlation function might be writ-
ten as:
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By continuing the automorphic mapping process, the 
second order autocorrelation function might be considered 
as cross-correlation function if

w Rn m n m, ,′( ) = ′( )τ τ

then Rwnm nm,
′( )τ  and for the normalized case rwn m, ′( )τ  

where R stands for the autocorrelation operator considered 
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for appropriate processes. Let us finally consider the ran-
domly derived cross-correlation function of two cross-cor-
relation functions:

′ ′( ) = = ( ) −( ) − ′( ) −( )
=

w R
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w t w w t wz z z z z z z z
t
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In this case we may take the generative like autocorrelation 
function of the above nearly stationary realization:
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Let us denote the generative autocorrelation functions 
obtained by second order automorphic mapping as Rz znm kj

 
and in normalized case as rz znm kj

.
As we can see from the following results the introduced 

automorphic auto-correlational maps (where the autocor-
relation operator

R E z E z u E uzu t tτ τ( ) = − ( )( ) − ( )( ) − ,

where E stands for the symbol to get the expected value) 
are suitable for the modeling of the hidden generative pro-
cesses controlling the periodical realization of the empir-
ical white noise process. This hypothetical observation 
is very similar to the Pauli’s idea of automorphism in the 
case of the quantum physical descriptions. 

„It is the automorphism for the ascribing to others one’s 
own characteristics, an isomorphism of an algebraic sys-
tem with itself, in other words for a process in which the 
inner symmetry, the wealth of (hidden) relations of a sys-
tem reveals itself.” (Meier, 2002)

Between the obtained generative processes of first and 
second order we can calculate cross-correlation func-
tions again in form of stationary random data processes. 
These processes or autocorrelation phenomena can be 
considered as complex double cross-correlation genera-
tive processes. Concerning the bands we can create huge 
amount of generative processes, which in case of a hypo-
thetic continuous concept, naturally, mean infinitely 
many generative processes. Then the question rises, until 
when can generative processes be created. On the basis 
of our experiments using the stationarity hypothesis of 
generative processes the measure of stationarity is slowly 
vanishing.

The measure of stationarity might be measured by the 
ratio of the area falling below the boundary curve of the 
signal (considered for a finite time interval) and the rect-
angular area enclosing the fully stationary, normalized 
realizations in the same time interval.

3 Simulation experiments
3.1 The applied numerical approaches
The calculation of the autocorrelation and cross-correlation 
can be performed in the time domain or in the frequency 
domain. In the latter case we rely on the convolution 
theorem when calculating the convolution of random 
processes. The spectrum of the realization was determined 
by Fast Fourier Transformation (FFT). The overlap between 
signals as well as their lengths were also taken into account 
during calculations. We have obtained identical numerical 
data both in frequency and time domain.

3.2 Results and their interpretation
Among the white noise processes obtained by random 
number generators let us first consider the one generated 
by the “randn” function in Matlab available to generate 
normally distributed random numbers. (It’s important 
to realize that “random” numbers in MATLAB are not 
unpredictable at all, but are generated by a determinis-
tic algorithm. The algorithm is designed to be sufficiently 
complicated so that its output appears to be an indepen-
dent random sequence to someone who does not know the 
algorithm, and can pass various statistical tests of random-
ness (Mathworks, 2019). By our approach the determinis-
tic properties of random processes generated by determin-
istic algorithms might be identified (Savage, 1954).

In Fig. 3 the mirrored bands can be followed falling 
inside the amplitude range of the signal, where the white 
noise ‘sub-processes’ composed from so called “broken” 

Fig. 3 The original white noise process
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samples inside these bands are investigated. In Fig. 4 the 
autocorrelation function of the original white noise is illus-
trated. Although the autocorrelation function shows a white 
noise like realization, it can be considered as a good approx-
imation (due to the small fluctuations, small standard devi-
ation) of the Dirac delta function as the normalized auto-
correlation function of the continuous white noise process.

By forming the autocorrelation function of such a real-
ization a new generative like autocorrelation function is 
yielded with a transformed time-shift.

As we can expect of the centre it may be considered as 
a new realization of a „background generative” station-
ary process in a reduced time domain. The autocorrelation 
function of this new realization can be calculated again. 

Let us consider the cross-correlation function of the first 
order generative process illustrated in Fig. 5, 6 with the 
realization of the first order generative process observable 
in the mirrored bands (see Figs. 7-9). Such kind of obtained 
cross-correlation function may also be considered as a 
realization of a stationary (derived white noise) process in 
the already transformed time domain interval. The same 

transformational autocorrelation mappings (realizations) 
can be observed in case of time series falling inside the 
outer mirrored (relatively narrow) bands (see Figs. 10-16). 
The two outer mirrored autocorrelation functions (as sta-
tionary realizations) reflect new (second and third order) 
generative processes (with new autocorrelation mappings). 

It can be seen that the second order autocorrelation func-
tion of the inner outer cross-correlations (double cross-cor-
relations) does not yield the image of a stationary reali-
zation anymore, but a real function-like autocorrelation 
function (reflecting the periodicity of the generation rule).

Let us consider now the fuzzy measure of stationarity. 
Our definition is as follows: The fuzzy measure of sta-
tionarity is the ratio (for a finite time value) of the area 
determined by the minimal boundary curve and the min-
imal bounding rectangle. This definition is based on the 
hypothetical constant value of the mean and variance of 
the white noise realization for the mentioned finite Time 
value. See the illustration in Fig. 17 and 18. Thus, to all 
generative autocorrelation functions one may assign a 
fuzzy measure of stationarity falling between 0 and 1. 

Fig. 4 The autocorrelation function of the original white noise process

Fig. 5 The autocorrelation function of the band m1

Fig. 6 The autocorrelation function of the band m2

Fig. 7 The cross-correlation of bands m1 and m2
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Fig. 8 First order autocorrelation function of cross-correlation of bands 
m1 and m2

Fig. 9 Second order autocorrelation function of cross-correlation of 
bands m1 and m2

Fig. 10 The autocorrelation function of the band n1

Fig. 11 The autocorrelation function of the band n2

3.3 MWC1 random number generator
The same can be seen in Figs. 19-27 in case of another 
type of random number generator, the so called Multiply-
With-Carry generator (MWC) which was proposed by 
George Marsaglia in 1994 and analyzed by Couture and 

L’Ecuyer in 1997. MWC was proposed as a modification 
of the Add-With-Carry (AWC) generator (CREłU, 2012). 

In addition to calculating the cross-correlation of 
autocorrelation functions as realizations (obtained from 
narrow band realizations) we can also perform new 

Fig. 13 First order autocorrelation function of cross-correlation of 
bands n1 and n

Fig. 12 The cross-correlation of bands n1 and n



Várlaki et al.
Period. Polytech. Transp. Eng., 48(1), pp. 19–30, 2020 |27

Fig. 14 Second order autocorrelation function of cross-correlation of 
bands n1 and n2

Fig. 15 The cross-correlation of second order autocorrelation of inner 
and outer bands

Fig. 16 First order autocorrelation of function illustrated in Fig. 15. Fig. 19 The autocorrelation function of the band m1

Fig. 18 Illustration of the first order autocorrelation of the 2nd inner 
mirror band with the indicated enclosing regions (bounding rectangle 
and the region defined by the approximated boundary curve) used for 

stationarity metric estimation

Fig. 17 Illustration of the first order autocorrelation of the 1st inner 
mirror band with the indicated enclosing regions (bounding rectangle 
and the region defined by the approximated boundary curve) used for 

stationarity metric estimation 



28|Várlaki et al.
Period. Polytech. Transp. Eng., 48(1), pp. 19–30, 2020

autocorrelation mappings as unique automorphism on 
them until the stationarity characteristic holds with a 
good approximation. The original white noise process is 
not visualized here, since compared to previous examples 
the differences cannot be clearly recognized.

From the above experimental results and their illustra-
tions we can conclude hypothetically that the homogenous 

“informationlessness” of the theoretical (pure) white 
noise process represented by the autocorrelation func-
tion as well how can we arrive to a periodicity of a hypo-
thetical generative system. Similarly from the increasing 
characteristic and more individual shapes of the auto-
correlation function-realizations with the auto-correla-
tional patterns (mirroring an “intelligent behavior”) with 

Fig. 20 The autocorrelation function of the band m2

Fig. 21 The cross-correlation of bands m1 and m2

Fig. 22 First order autocorrelation function of cross-correlation of 
bands m1 and m2

Fig. 23 Second order autocorrelation function of cross-correlation of 
bands m1 and m2

Fig. 24 The autocorrelation function of the band n1

Fig. 25 The autocorrelation function of the band n2
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vanishing stationarity and harmonic periodical-like func-
tions. These observations are deepening the assumption 
that the undetached observer and the observer’s data of 
the empirical white noise processes consists of a uni-
fied system where (as Pauli discussed) a hidden genera-
tive controlling behavior with a systole-diastole comple-
mentarity (using Goethe’s interpretation of Nature and 
Psyche). It is shown by the phenomena that to begin from 
the generative process’s emanation, diastole series can 
arrive to an almost perfect “informationless” white noise 
process. From an inverted point of view the above perfect 
white noise process can change to a strongly harmonic 
and regular autocorrelation pattern. Finally, behind this 
we can live with the hypotheses assuming another “exis-
tence” containing number theoretical algorithms. We 

have performed additional experiments with further three 
type of random number generators.

4 Conclusion
We may conclude that the introduced fuzzy-random 
complementary approach can identify the inner hidden 
correlational pattern of the empirical white noise process 
if the process has a real hidden structure of this kind. It 
was shown that these hypothetical hidden correlational 
patterns inside the process are identifiable in the 
case of empirical white noise processes generated by 
deterministic numerical algorithms. We hope that this 
method can also be applied for real physical empirical 
white noise processes.

Fig. 26 The cross-correlation of bands n1 and n2

Fig. 27 Second order autocorrelation function of the cross-correlation 
of bands n1 and n2
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