
Cite this article as: Fehér, Á., Aradi, Sz., Bécsi, T. (2020) "Fast Prototype Framework for Deep Reinforcement Learning–based Trajectory Planner", Periodica
Polytechnica Transportation Engineering, 48(4), pp. 307–312. https://doi.org/10.3311/PPtr.15837

https://doi.org/10.3311/PPtr.15837
Creative Commons Attribution b |307

Periodica Polytechnica Transportation Engineering, 48(4), pp. 307–312, 2020

Fast Prototype Framework for Deep Reinforcement
Learning–based Trajectory Planner

Árpád Fehér1*, Szilárd Aradi1, Tamás Bécsi1

1 Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3., Hungary

* Corresponding author, e-mail: feher.arpad@mail.bme.hu

Received: 02 March 2020, Accepted: 11 March 2020, Published online: 29 June 2020

Abstract

Reinforcement Learning, as one of the main approaches of machine learning, has been gaining high popularity in recent years, which

also affects the vehicle industry and research focusing on automated driving. However, these techniques, due to their self-training

approach, have high computational resource requirements. Their development can be separated into training with simulation,

validation through vehicle dynamics software, and real-world tests. However, ensuring portability of the designed algorithms between

these levels is difficult. A case study is also given to provide better insight into the development process, in which an online trajectory

planner is trained and evaluated in both vehicle simulation and real-world environments.

Keywords

motion planning, reinforcement learning, testing, development framework

1 Introduction
Nowadays, machine learning based solutions gain high impor-
tance and are essential components of autonomous vehicle
functions. Vehicles with advanced driver assistance systems
are equipped with advanced sensor sets and communication
solutions to interact with the traffic and the infrastructure.
In the development of such solutions, complex simulation
environments, and their portability to real-world tests play
a more significant role than before (Tettamanti et al., 2018).
This potential is made machine learning one of the most
intense research fields both for the vehicle industry and
related academic institutions. Many research deals with sim-
plified simulation environments, which work great on a the-
oretical level. However, testing in a simulator with accurate
vehicle dynamics and sensor models or real-world condi-
tions raises new issues. This paper deals with a development
and test framework for automotive Machine Learning-based
solutions. The framework is presented through a reinforce-
ment learning use-case.

Reinforcement Learning (RL) is a powerful subarea of
machine learning, though it needs accurate and fast sim-
ulation environments. The effectiveness of the deep RL
methods, where the underlying agent uses neural networks
for action prediction, was first demonstrated in Atari and

board games (Mnih et al., 2013). After this breakthrough,
many other research fields tried to apply these techniques
from which autonomous driving has high importance.
Though, contrary to the original finite-state, finite-ac-
tion approach of the RL problems, most real-world vehi-
cle problems require continuous spaces. Mainly due to the
spread of efficient algorithms with continuous output (e.g.,
Lillicrap et al., 2015), the RL-based solutions in the field of
vehicle control are becoming more widespread. Multiple
tasks, like car-following (Zhu et al., 2018), lane-keeping
(Wolf et al., 2017) lane changing decisions (Hoel et al., 2018)
highway merging (Wang and Chan, 2017) or highway
maneuvering (Aradi et al., 2018; Nageshrao et al., 2019)
has been evaluated by using Reinforcement Learning tech-
niques for automated driving tasks. A concise survey on
the topic can be found in (Aradi, 2020).

To solve reinforcement learning problems, a learning
agent is placed in an environment where its job is to maxi-
mize the cumulative reward from its actions (at).

The training process consists of episodes, which gener-
ally consist of a series of steps. After each step, the agent
gets a reward (rt), and the environment returns a new state
(st), see Fig. 1.

https://doi.org/10.3311/PPtr.15837
https://doi.org/10.3311/PPtr.15837
mailto:feher.arpad%40mail.bme.hu?subject=

308|Fehér et al.
Period. Polytech. Transp. Eng., 48(4), pp. 307–312, 2020

In RL, the simulation environment plays a crucial role
in solving real-world control problems. The following
main requirements must be met:

• Fast runtime.
• Easy interface with the agent.
• It can be controlled step by step.
• Restartable processes.
• Parametrizable models and close to reality.

AI-based systems are popularly developed in Python,
despite its slow interpreter, which became a quasi-stan-
dard tool on this field. Many reinforcement learning agents
(e.g., Intel Nervana Coach), RL benchmark environments
(e.g., OpenAI Gym), and powerful tools (e.g., Tensorflow,
Caffe, Keras, PyTorch) are made for Python in recent years.

Also, many open-source automotive simulators support
Python on different fields, like TORCS (Wymann et al., 2014)
for racing, CARLA (Dosovitskiy et al., 2017) for urban
environments, and SUMO (Krajzewicz et al., 2012) for
microscopic simulations. However, the portability of the
results to real-world scenarios is limited.

 On the other hand, detailed commercial vehicle dynam-
ics simulation softwares do not support python develop-
ment (or direct interface), which raises new issues if we
want to test the developed machine learning-based solu-
tions on an automotive industry-standard tool. This arti-
cle presents the development steps of a framework, where
the integration of tools is outlined, from training, through
simulation, and finally, real-world testing.

Section 2 presents the developed framework. Section 3
describes the training and test environments of a case
study in detail. In Section 4, the results are outlined.
Finally, in Section 5, the summary of the experiments and
the possible improvements are concluded.

2 Development framework
The developed framework contributes to a fast proto-
type system for RL vehicle control problems. The frame-
work consists of three development steps, which are pre-
sented in Section 2.

Reinforcement learning is a resource-intensive method.
A learning process often reaches one million episodes at
a complex problem. Many differential equations must be
solved to apply a near-real vehicle model at each time step.
To achieve the highest possible accuracy and to exclude
the possibility of errors, it would be advisable to use a
vehicle model of a standard vehicle simulation softwares,
e.g. CarSim or CarMaker for this purpose. Besides sev-
eral technical problems, this would cause a delay because
of the interface between the training environment and
the software. Hence it is often advisable to use self-im-
plemented models for training. Such a set-up is shown
in Fig. 2. An RL agent is placed in a self-implemented
environment, which provides a relatively fast learning pro-
cess that allows the iterative development of RL. The use
of classic control solutions can often be useful in an RL
environment, which is responsible for control tasks out-
side RL control (eg.: lane-keeping, cruise control).

Vehicle dynamics simulation softwares are ideal for
developing classic control solutions. Among others, they
have a very precise, validated, and parameterizable vehi-
cle model. Since most of these softwares do not support
Python, it is challenging to use them to develop machine
learning solutions. However, interfacing with Python
can be solved, making it ideal for testing the learned RL
agent. By transferring classical control algorithms from
the training environment to simulation software, higher
quality requirements can be achieved due to the more effi-
cient development. The Python-based environment model
can be expanded with simulation software. Vector virtual
CAN network can be used effectively to communicate
between the Python and the simulation environment. The
simulation tests also show the accuracy of the self-devel-
oped vehicle model. Fig. 3 shows this test setup.

The simulation step facilitates real-world vehicle tests,
since one can replace the simulation by the real vehicle.
Classic control solutions can be run on target hardware
responsible for controlling the vehicle, and the RL algo-
rithm can run on a separate, enclosed system. The CAN
communication, already developed in the simulation,

Fig. 1 Reinforcement learning loop

Fig. 2 The reinforcement learning training environment

Fehér et al.
Period. Polytech. Transp. Eng., 48(4), pp. 307–312, 2020 |309

establishes a connection between the two devices. Real-
world testing can be performed with minimal additional
development. The real-world set-up is shown in Fig. 4.

3 A case study
The developed framework is presented through a trajec-
tory planner use case. An earlier version of this RL plan-
ner has already been published in (Fehér et al., 2019).
Beyond the fundamental problem, the innovations moti-
vated by the developed framework are presented.

3.1 The trajectory planning problem
The Python-based training environment consists of a feasible
trajectory generator module, a nonlinear planar single-track
vehicle model with a dynamic wheel model, longitudinal
and lateral low-level control, and a reward calculation algo-
rithm. It works as a one-step reinforcement learning envi-
ronment, which also includes a classic control loop.

The inputs of the trajectory planning task are the vehi-
cle state at the start and also the desired end state. Based
on this information, a Deep Deterministic Policy Gradient
(DDPG) agent determines the intermediate points of the
trajectory. The state vector is []x y vs s s sψ , where the
values are the lateral and longitudinal positions, the yaw,
and the speed of the vehicle, respectively. The starting
state is fixed to the vehicle position, as given in (Eq. (1)).
The final, desired state (Eq. (2), Eq. (3) and Eq. (4)) is
an evenly distributed random vector drawn from a set of
states that are a bit wider than the feasible targets (Eq. (5)).
Too many samples from unfeasible target end-states could
lengthen the learning process and hence need to be avoided,
though some are beneficial to learn the boundaries.

x y v rands s s s
T T

ψ[] = () 0 0 0 8 37. (1)

x
y

v

v
rand y y

rand

e

e

e

e

s

max max

maxψ ψ



















=
−()

+ ()

3

0 1 0 1 1

,

. , ..3ψ max

sv



















 (2)

y R R xmax min min e= − −2 2 (3)

ψ max e earctan y x= − ()2* / (4)

R vmin s= 0 1207 2 4736
.

. (5)

The feasible final state can be determined by an empir-
ical formula (Eq. (5)) as a rule of a thumb, which gives the
smallest arc radius that an average vehicle can take at fix
speed under normal conditions.

Based on the initial and the end state, the learning agent
needs to determine the lateral coordinates of two interme-
diate points on the trajectory, placed equally between the
initial and the endpoint along the longitudinal x coordinate.

A spline is fitted on the four holding points, taking
into account the initial and end gradients, which gives the
desired trajectory.

Compared to the previously cited paper, the speed during
a run is not fixed, but changes between 8 and 37 m/s from
episode to episode, hence the complexity of the RL task
increased with a new state variable.

A dynamic vehicle model validates the generated tra-
jectory. In order to provide an accurate prediction of
the vehicle's behavior at fair computational require-
ments, a nonlinear planar single track vehicle model
containing a dynamic wheel model as well is applied.
(Fehér et al., 2019). The model was originally imple-
mented in Python, but even with this time step, the run
time was infeasible, considering a large number of itera-
tions in the training process. Because of this, the vehicle
model, as well as the solver, was implemented in C, which
resulted in a tenfold increase in speed approximately.

To calculate the reward, the vehicle goes along the tra-
jectory using the internal lateral and longitudinal controls.
The cumulative sum of the slip, the angular, and distance
deviation requirements describe the quality features of the
performance of the agent. The episode reward consists of
three weighted components (Eq. (6)).

Fig. 3 Testing environment with external vehicle dynamics Fig. 4 Environment for real-world testing

310|Fehér et al.
Period. Polytech. Transp. Eng., 48(4), pp. 307–312, 2020

R s R d R a Repisode w slip w dist w angle= + + (6)

The environment defines ten checkpoints distributed on
the trajectory. The distance (Rdist) and angle (Rangle) rewards
were calculated at the checkpoints, and the slip reward (Rslip)
was calculated at all time steps, and (sw, dw, aw) are weight-
ing constants. In the earlier version, it was observed that
the trained agent had predicted asymmetric trajectories.
It received the same reward for a difficult arc calculated for
the last quarter of the course as for a course with evenly dis-
tributed difficulty. Therefore, the density of the checkpoint
distribution is higher towards the end of the track.

For longitudinal control tasks, a simple PID can adequately
handle the problem. The Stanley method (Thrun et al., 2006)
is used for lateral control.

3.2 Simulation environment
IPG CarMaker software was used to test the developed RL
solution. It is a versatile simulation software for performing
vehicle tests in an advanced virtual environment, contain-
ing an intelligent driver model, a detailed vehicle model,
and highly flexible models for roads and traffic. The soft-
ware provides C and Simulink interface to its internal mod-
els. This allows us to modify or replace those with self-de-
veloped control solutions. This feature of CarMaker has
been exploited to develop the presented framework.

A Simulink environment was used for the test of the
trajectory planner, but the RL environment model is not
completely replaced by CarMaker software. The Python
environment remains responsible for trajectory design in
collaboration with the trained agent to reduce the need for
development. Furthermore, it is up to CarMaker to run the
vehicle model and the longitudinal and lateral controls.
This setup has many benefits: a precise validated vehicle
model can be used, and classic control solutions can be
effectively run and further developed in a Simulink envi-
ronment. The Python environment transmits the inputs of
the lateral and longitudinal controls and receives the posi-
tion of the vehicle via Virtual CAN.

Simulink provided a chance to replace the poorly per-
forming lateral Stanley controller to Model Predictive
Control (MPC). The Lane Keeping Assist Simulink block
decreases the lateral deviation and relative yaw angle, cal-
culates optimal steering angle while providing constraints
using adaptive MPC. The prediction model, in this case, is
a dynamic single-track model.

The accurate 3D environmental model of the ZalaZone
automotive proving ground (see Fig. 5) (Szalay et al., 2019)
and used the IPG CarMaker model of it (BME Automated
Drive Lab, 2020) for testing purposes.

3.3 Vehicle side implementation
The simulation environment is designed so that the con-
trols used there can be ported to a real vehicle with slight
effort. Tests can be easily performed on the

ZalaZone with GPS localization. As Fig. 6 shows, Vehicle
control solutions are implemented by dSPACE Autobox
hardware, which can communicate with the Python envi-
ronment via its CAN interface. An in-vehicle IMU serves to
evaluate the performance of the trajectory planner.

4 Results
Evaluation of a trained system consisting many iterations,
is an inherent part of reinforcing learning development.
By drawing conclusions, the reward system is refined,
weights are re-parameterized, and environmental ele-
ments are fine-tuned for better results in each iteration.
The result of the presented research is an effective devel-
oper and test framework that has contributed to the devel-
opment of a trajectory planner. Figs. 7 and 8 show exam-
ples of the trajectory design development process using
this presented framework.

During the training, the evaluation phase runs and
computes the reward at the end of the trajectory. When
performing overtaking maneuvers, by the end of the tra-
jectory, the distance and angle error is increased, which
did not decrease the overall reward much, but greatly
influences the errors in the straight section after the tra-
jectory. CarMaker software provides the ability to place
virtual sensors on the vehicle, which is contributed to the
discovery of this issue. Fig. 7 shows the lateral accelera-
tion of the inertial sensor placed on the vehicle. The blue
line indicates the acceleration curve before the enhance-
ment. It can be seen large accelerations at the end of the
trajectory and after that on the straight line.

The red line shows the result of the training after modify-
ing the reward system. The absolute value of accelerations is
lower, and its distribution is more balanced. Fig. 8 shows the
planned trajectories (a blue line represents the original tra-
jectory and a red line shows the result after enhancement).
It seems that after the latter trajectory is much more sym-
metrical, which leads to better lateral accelerations.

Fig. 5 IPG CarMaker model of the ZalaZone test track

Fehér et al.
Period. Polytech. Transp. Eng., 48(4), pp. 307–312, 2020 |311

Fig. 6 Actual testing environment for test track evaluations

Fig. 7 Lateral accelerations before and after development

The test revealed that the performance of the Stanely
controller in the learning environment is poor in a more
detailed environment. CarMaker provides detailed steer-
ing mechanics and the actuator dynamics which is han-
dled by an MPC controller for better performance. The
simulation also showed that despite the same parameters,
the vehicle model used for training is different from an
industry-standard CarMaker model. Further improve-
ments are needed for more accurate operation.

5 Conclusion
Considering the requirements, it is worth to separate the
training phase and the validation of the results. In many
cases, the environmental model, with its own implementa-
tion, leads to the best solution in the training phase, which
is validated with an industry-standard simulator software
when evaluating the results.

Running in the simulator has shown that steering actu-
ator-dynamics cannot be ignored during controller design.

The advantage comes from the fact, that the developed
solution can be tested with high efficiency in an office
environment, giving a better chance of success proving
ground tests.

Acknowledgment
The research reported in this paper was supported by the
Higher Education Excellence Program in the frame of
Artificial Intelligence research area of Budapest University
of Technology and Economics (BME FIKP-MI/FM).

Fig. 8 Planned trajectories before and after development

References
Aradi, S. (2020) "Survey of Deep Reinforcement Learning for

Motion Planning of Autonomous Vehicles", e-Print archive,
arXiv:2001.11231, Ithaca, New York, NY, USA, Cornell
University, [online] Available at: http://arxiv.org/abs/2001.11231
[Accessed: 05 March 2020]

Aradi, S., Becsi, T., Gaspar, P. (2018) "Policy Gradient Based
Reinforcement Learning Approach for Autonomous Highway
Driving", In: 2018 IEEE Conference on Control Technology
and Applications (CCTA), Copenhagen, Denmark, pp. 670–675.
https://doi.org/10.1109/CCTA.2018.8511514

BME Automated Drive Lab (2020) "Models of the ZalaZONE automotive
proving ground in different file formats for simulation software",
[online] Available at: https://github.com/BMEAutomatedDrive/
ZalaZONE-automotive-proving-ground-vir tual-simulation-
models [Accessed: 07 March 2020]

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V. (2017)
"CARLA: An Open Urban Driving Simulator", In: Proceedings of
the 1st Annual Conference on Robot Learning, Cambridge, MA,
USA, pp. 1–17.

Fehér, Á., Aradi, S., Hegedűs, F., Bécsi, T., Gáspár, P. (2019) "Hybrid
DDPG Approach for Vehicle Motion Planning", In: Proceedings
of the 16th International Conference on Informatics in Control,
Automation and Robotics, Prague, Czech Republic, pp. 422–429.
https://doi.org/10.5220/0007955504220429

Hoel, C. J., Wolff, K., Laine, L. (2018) "Automated Speed and Lane
Change Decision Making using Deep Reinforcement Learning", In:
2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, pp. 2148–2155.

 https://doi.org/10.1109/ITSC.2018.8569568
Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker-Walz, L. (2012)

"Recent Development and Applications of SUMO - Simulation of
Urban MObility", International Journal On Advances in Systems
and Measurements, 5(3), pp. 128–138.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wiersta, D. (2015) "Continuous control with deep rein-
forcement learning", e-Print archive, arXiv:1509.02971, Ithaca,
New York, NY, USA, Cornell University, [online] Available at:
http://arxiv.org/abs/1509.02971 [Accessed: 05 March 2020]

http://arxiv.org/abs/2001.11231
https://doi.org/10.1109/CCTA.2018.8511514
https://github.com/BMEAutomatedDrive/ZalaZONE-automotive-proving-ground-virtual-simulation-models
https://github.com/BMEAutomatedDrive/ZalaZONE-automotive-proving-ground-virtual-simulation-models
https://github.com/BMEAutomatedDrive/ZalaZONE-automotive-proving-ground-virtual-simulation-models
https://doi.org/10.5220/0007955504220429
https://doi.org/10.1109/ITSC.2018.8569568
http://arxiv.org/abs/1509.02971

312|Fehér et al.
Period. Polytech. Transp. Eng., 48(4), pp. 307–312, 2020

Mnih, V. Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M. (2013) "Playing Atari with Deep
Reinforcement Learning", e-Print archive, arXiv:1312.5602,
Ithaca, New York, NY, USA, Cornell University, [online] Available
at: http://arxiv.org/abs/1312.5602 [Accessed:05 March 2020]

Nageshrao, S., Tseng, H. E., Filev, D. (2019) "Autonomous Highway
Driving using Deep Reinforcement Learning", In: 2019 IEEE
International Conference on Systems, Man and Cybernetics
(SMC), Bari, Italy, pp. 2326–2331.

 https://doi.org/10.1109/SMC.2019.8914621
Szalay, Z., Hamar, Z., Nyerges, Á. (2019) "Novel design concept for an

automotive proving ground supporting multilevel CAV develop-
ment", International Journal of Vehicle Design, 80(1), pp. 1–22.
https://doi.org/10.1504/IJVD.2019.105061

Tettamanti, T., Szalai, M., Vass, S., Tihanyi, V. (2018) "Vehicle-In-the-
Loop Test Environment for Autonomous Driving with Microscopic
Traffic Simulation", In: 2018 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), Madrid, Spain, pp. 1–6.

 https://doi.org/10.1109/ICVES.2018.8519486
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel,

J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley,
C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont,
C., Jendrossek, L. E., Koelen, C., Markey, C., Rummel, C., van
Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B.,
Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P. (2006) "Stanley:
The robot that won the DARPA Grand Challenge", Journal of Field
Robotics, 23(9), pp. 661–692.

 https://doi.org/10.1002/rob.20147

Wang, P., Chan, C. Y. (2017) "Formulation of deep reinforcement learn-
ing architecture toward autonomous driving for on-ramp merge",
In: 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, Japan, pp. 1–6.
https://doi.org/10.1109/ITSC.2017.8317735

Wolf, P., Hubschneider, C., Weber, M., Bauer, A., Härtl, J., Dürr, F.,
Zöllner, J. M. (2017) "Learning how to drive in a real world simu-
lation with deep Q-Networks", In: 2017 IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, CA, USA, pp. 244–250.

 https://doi.org/10.1109/IVS.2017.7995727
Wymann, B., Christos, D., Andrew, S., Eric, E., Christophe, G. (2014)

"TORCS: The Open Racing Car Simulator", [online] Available at:
http://www.torcs.org [Accessed: 05 March 2020]

Zhu, M., Wang, X., Wang, Y. (2018) "Human-like autonomous car-fol-
lowing model with deep reinforcement learning", Transportation
Research Part C: Emerging Technologies, 97, pp. 348–368.

 https://doi.org/10.1016/j.trc.2018.10.024

http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/SMC.2019.8914621
https://doi.org/10.1504/IJVD.2019.105061
https://doi.org/10.1109/ICVES.2018.8519486
https://doi.org/10.1002/rob.20147
https://doi.org/10.1109/ITSC.2017.8317735
https://doi.org/10.1109/IVS.2017.7995727
http://www.torcs.org
https://doi.org/10.1016/j.trc.2018.10.024

	1 Introduction
	2 Development framework
	3 A case study
	3.1 The trajectory planning problem
	3.2 Simulation environment
	3.3 Vehicle side implementation

	4 Results
	5 Conclusion
	Acknowledgment
	References

