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Abstract

Reinforcement Learning, as one of the main approaches of machine learning, has been gaining high popularity in recent years, which 

also affects the vehicle industry and research focusing on automated driving. However, these techniques, due to their self-training 

approach, have high computational resource requirements. Their development can be separated into training with simulation, 

validation through vehicle dynamics software, and real-world tests. However, ensuring portability of the designed algorithms between 

these levels is difficult. A case study is also given to provide better insight into the development process, in which an online trajectory 

planner is trained and evaluated in both vehicle simulation and real-world environments.
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1 Introduction
Nowadays, machine learning based solutions gain high impor-
tance and are essential components of autonomous vehicle 
functions. Vehicles with advanced driver assistance systems 
are equipped with advanced sensor sets and communication 
solutions to interact with the traffic and the infrastructure. 
In the development of such solutions, complex simulation 
environments, and their portability to real-world tests play 
a more significant role than before (Tettamanti et al., 2018). 
This potential is made machine learning one of the most 
intense research fields both for the vehicle industry and 
related academic institutions. Many research deals with sim-
plified simulation environments, which work great on a the-
oretical level. However, testing in a simulator with accurate 
vehicle dynamics and sensor models or real-world condi-
tions raises new issues. This paper deals with a development 
and test framework for automotive Machine Learning-based 
solutions. The framework is presented through a reinforce-
ment learning use-case. 

Reinforcement Learning (RL) is a powerful subarea of 
machine learning, though it needs accurate and fast sim-
ulation environments. The effectiveness of the deep RL 
methods, where the underlying agent uses neural networks 
for action prediction, was first demonstrated in Atari and 

board games (Mnih et al., 2013). After this breakthrough, 
many other research fields tried to apply these techniques 
from which autonomous driving has high importance. 
Though, contrary to the original finite-state, finite-ac-
tion approach of the RL problems, most real-world vehi-
cle problems require continuous spaces. Mainly due to the 
spread of efficient algorithms with continuous output (e.g., 
Lillicrap et al., 2015), the RL-based solutions in the field of 
vehicle control are becoming more widespread. Multiple 
tasks, like car-following (Zhu et al., 2018), lane-keeping 
(Wolf et al., 2017) lane changing decisions (Hoel et al., 2018) 
highway merging (Wang and Chan, 2017) or highway 
maneuvering (Aradi et al., 2018; Nageshrao et al., 2019) 
has been evaluated by using Reinforcement Learning tech-
niques for automated driving tasks. A concise survey on 
the topic can be found in (Aradi, 2020).

To solve reinforcement learning problems, a learning 
agent is placed in an environment where its job is to maxi-
mize the cumulative reward from its actions (at). 

The training process consists of episodes, which gener-
ally consist of a series of steps. After each step, the agent 
gets a reward (rt), and the environment returns a new state 
(st), see Fig. 1.
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In RL, the simulation environment plays a crucial role 
in solving real-world control problems. The following 
main requirements must be met:

• Fast runtime.
• Easy interface with the agent.
• It can be controlled step by step.
• Restartable processes.
• Parametrizable models and close to reality.

AI-based systems are popularly developed in Python, 
despite its slow interpreter, which became a quasi-stan-
dard tool on this field. Many reinforcement learning agents 
(e.g., Intel Nervana Coach), RL benchmark environments 
(e.g., OpenAI Gym), and powerful tools (e.g., Tensorflow, 
Caffe, Keras, PyTorch) are made for Python in recent years. 

Also, many open-source automotive simulators support 
Python on different fields, like TORCS (Wymann et al., 2014) 
for racing, CARLA (Dosovitskiy et al., 2017) for urban 
environments, and SUMO (Krajzewicz et al., 2012) for 
microscopic simulations. However, the portability of the 
results to real-world scenarios is limited. 

 On the other hand, detailed commercial vehicle dynam-
ics simulation softwares do not support python develop-
ment (or direct interface), which raises new issues if we 
want to test the developed machine learning-based solu-
tions on an automotive industry-standard tool. This arti-
cle presents the development steps of a framework, where 
the integration of tools is outlined, from training, through 
simulation, and finally, real-world testing.

Section 2 presents the developed framework. Section 3 
describes the training and test environments of a case 
study in detail. In Section 4, the results are outlined. 
Finally, in Section 5, the summary of the experiments and 
the possible improvements are concluded. 

2 Development framework
The developed framework contributes to a fast proto-
type system for RL vehicle control problems. The frame-
work consists of three development steps, which are pre-
sented in Section 2. 

Reinforcement learning is a resource-intensive method. 
A learning process often reaches one million episodes at 
a complex problem. Many differential equations must be 
solved to apply a near-real vehicle model at each time step. 
To achieve the highest possible accuracy and to exclude 
the possibility of errors, it would be advisable to use a 
vehicle model of a standard vehicle simulation softwares, 
e.g. CarSim or CarMaker for this purpose. Besides sev-
eral technical problems, this would cause a delay because 
of the interface between the training environment and 
the software. Hence it is often advisable to use self-im-
plemented models for training. Such a set-up is shown 
in Fig. 2. An RL agent is placed in a self-implemented 
environment, which provides a relatively fast learning pro-
cess that allows the iterative development of RL. The use 
of classic control solutions can often be useful in an RL 
environment, which is responsible for control tasks out-
side RL control (eg.: lane-keeping, cruise control). 

Vehicle dynamics simulation softwares are ideal for 
developing classic control solutions. Among others, they 
have a very precise, validated, and parameterizable vehi-
cle model. Since most of these softwares do not support 
Python, it is challenging to use them to develop machine 
learning solutions. However, interfacing with Python 
can be solved, making it ideal for testing the learned RL 
agent. By transferring classical control algorithms from 
the training environment to simulation software, higher 
quality requirements can be achieved due to the more effi-
cient development. The Python-based environment model 
can be expanded with simulation software. Vector virtual 
CAN network can be used effectively to communicate 
between the Python and the simulation environment. The 
simulation tests also show the accuracy of the self-devel-
oped vehicle model. Fig. 3 shows this test setup.

The simulation step facilitates real-world vehicle tests, 
since one can replace the simulation by the real vehicle. 
Classic control solutions can be run on target hardware 
responsible for controlling the vehicle, and the RL algo-
rithm can run on a separate, enclosed system. The CAN 
communication, already developed in the simulation, 

Fig. 1 Reinforcement learning loop

Fig. 2 The reinforcement learning training environment
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establishes a connection between the two devices. Real-
world testing can be performed with minimal additional 
development. The real-world set-up is shown in Fig. 4.

3 A case study 
The developed framework is presented through a trajec-
tory planner use case. An earlier version of this RL plan-
ner has already been published in (Fehér et al., 2019). 
Beyond the fundamental problem, the innovations moti-
vated by the developed framework are presented.

3.1 The trajectory planning problem
The Python-based training environment consists of a feasible 
trajectory generator module, a nonlinear planar single-track 
vehicle model with a dynamic wheel model, longitudinal 
and lateral low-level control, and a reward calculation algo-
rithm. It works as a one-step reinforcement learning envi-
ronment, which also includes a classic control loop.

The inputs of the trajectory planning task are the vehi-
cle state at the start and also the desired end state. Based 
on this information, a Deep Deterministic Policy Gradient 
(DDPG) agent determines the intermediate points of the 
trajectory. The state vector is [ ]x y vs s s sψ , where the 
values are the lateral and longitudinal positions, the yaw, 
and the speed of the vehicle, respectively. The starting 
state is fixed to the vehicle position, as given in (Eq. (1)). 
The final, desired state (Eq. (2), Eq. (3) and Eq. (4)) is 
an evenly distributed random vector drawn from a set of 
states that are a bit wider than the feasible targets (Eq. (5)). 
Too many samples from unfeasible target end-states could 
lengthen the learning process and hence need to be avoided, 
though some are beneficial to learn the boundaries.
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The feasible final state can be determined by an empir-
ical formula (Eq. (5)) as a rule of a thumb, which gives the 
smallest arc radius that an average vehicle can take at fix 
speed under normal conditions.

Based on the initial and the end state, the learning agent 
needs to determine the lateral coordinates of two interme-
diate points on the trajectory, placed equally between the 
initial and the endpoint along the longitudinal x coordinate.

A spline is fitted on the four holding points, taking 
into account the initial and end gradients, which gives the 
desired trajectory. 

Compared to the previously cited paper, the speed during 
a run is not fixed, but changes between 8 and 37 m/s from 
episode to episode, hence the complexity of the RL task 
increased with a new state variable.

A dynamic vehicle model validates the generated tra-
jectory. In order to provide an accurate prediction of 
the vehicle's behavior at fair computational require-
ments, a nonlinear planar single track vehicle model 
containing a dynamic wheel model as well is applied. 
(Fehér et al., 2019). The model was originally imple-
mented in Python, but even with this time step, the run 
time was infeasible, considering a large number of itera-
tions in the training process. Because of this, the vehicle 
model, as well as the solver, was implemented in C, which 
resulted in a tenfold increase in speed approximately.

To calculate the reward, the vehicle goes along the tra-
jectory using the internal lateral and longitudinal controls. 
The cumulative sum of the slip, the angular, and distance 
deviation requirements describe the quality features of the 
performance of the agent. The episode reward consists of 
three weighted components (Eq. (6)).

Fig. 3 Testing environment with external vehicle dynamics Fig. 4 Environment for real-world testing
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R s R d R a Repisode w slip w dist w angle= + +  (6)

The environment defines ten checkpoints distributed on 
the trajectory. The distance (Rdist) and angle (Rangle) rewards 
were calculated at the checkpoints, and the slip reward (Rslip) 
was calculated at all time steps, and (sw, dw, aw) are weight-
ing constants. In the earlier version, it was observed that 
the trained agent had predicted asymmetric trajectories. 
It received the same reward for a difficult arc calculated for 
the last quarter of the course as for a course with evenly dis-
tributed difficulty. Therefore, the density of the checkpoint 
distribution is higher towards the end of the track.

For longitudinal control tasks, a simple PID can adequately 
handle the problem. The Stanley method (Thrun et al., 2006) 
is used for lateral control.

3.2 Simulation environment
IPG CarMaker software was used to test the developed RL 
solution. It is a versatile simulation software for performing 
vehicle tests in an advanced virtual environment, contain-
ing an intelligent driver model, a detailed vehicle model, 
and highly flexible models for roads and traffic. The soft-
ware provides C and Simulink interface to its internal mod-
els. This allows us to modify or replace those with self-de-
veloped control solutions. This feature of CarMaker has 
been exploited to develop the presented framework.

A Simulink environment was used for the test of the 
trajectory planner, but the RL environment model is not 
completely replaced by CarMaker software. The Python 
environment remains responsible for trajectory design in 
collaboration with the trained agent to reduce the need for 
development. Furthermore, it is up to CarMaker to run the 
vehicle model and the longitudinal and lateral controls. 
This setup has many benefits: a precise validated vehicle 
model can be used, and classic control solutions can be 
effectively run and further developed in a Simulink envi-
ronment. The Python environment transmits the inputs of 
the lateral and longitudinal controls and receives the posi-
tion of the vehicle via Virtual CAN.

Simulink provided a chance to replace the poorly per-
forming lateral Stanley controller to Model Predictive 
Control (MPC). The Lane Keeping Assist Simulink block 
decreases the lateral deviation and relative yaw angle, cal-
culates optimal steering angle while providing constraints 
using adaptive MPC. The prediction model, in this case, is 
a dynamic single-track model.

The accurate 3D environmental model of the ZalaZone 
automotive proving ground (see Fig. 5) (Szalay et al., 2019) 
and used the IPG CarMaker model of it (BME Automated 
Drive Lab, 2020) for testing purposes. 

3.3 Vehicle side implementation
The simulation environment is designed so that the con-
trols used there can be ported to a real vehicle with slight 
effort. Tests can be easily performed on the 

ZalaZone with GPS localization. As Fig. 6 shows, Vehicle 
control solutions are implemented by dSPACE Autobox 
hardware, which can communicate with the Python envi-
ronment via its CAN interface. An in-vehicle IMU serves to 
evaluate the performance of the trajectory planner. 

4 Results
Evaluation of a trained system consisting many iterations, 
is an inherent part of reinforcing learning development. 
By drawing conclusions, the reward system is refined, 
weights are re-parameterized, and environmental ele-
ments are fine-tuned for better results in each iteration. 
The result of the presented research is an effective devel-
oper and test framework that has contributed to the devel-
opment of a trajectory planner. Figs. 7 and 8 show exam-
ples of the trajectory design development process using 
this presented framework.

During the training, the evaluation phase runs and 
computes the reward at the end of the trajectory. When 
performing overtaking maneuvers, by the end of the tra-
jectory, the distance and angle error is increased, which 
did not decrease the overall reward much, but greatly 
influences the errors in the straight section after the tra-
jectory. CarMaker software provides the ability to place 
virtual sensors on the vehicle, which is contributed to the 
discovery of this issue. Fig. 7 shows the lateral accelera-
tion of the inertial sensor placed on the vehicle. The blue 
line indicates the acceleration curve before the enhance-
ment. It can be seen large accelerations at the end of the 
trajectory and after that on the straight line.

The red line shows the result of the training after modify-
ing the reward system. The absolute value of accelerations is 
lower, and its distribution is more balanced. Fig. 8 shows the 
planned trajectories (a blue line represents the original tra-
jectory and a red line shows the result after enhancement). 
It seems that after the latter trajectory is much more sym-
metrical, which leads to better lateral accelerations.

Fig. 5 IPG CarMaker model of the ZalaZone test track
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Fig. 6 Actual testing environment for test track evaluations

Fig. 7 Lateral accelerations before and after development

The test revealed that the performance of the Stanely 
controller in the learning environment is poor in a more 
detailed environment. CarMaker provides detailed steer-
ing mechanics and the actuator dynamics which is han-
dled by an MPC controller for better performance. The 
simulation also showed that despite the same parameters, 
the vehicle model used for training is different from an 
industry-standard CarMaker model. Further improve-
ments are needed for more accurate operation.

5 Conclusion
Considering the requirements, it is worth to separate the 
training phase and the validation of the results. In many 
cases, the environmental model, with its own implementa-
tion, leads to the best solution in the training phase, which 
is validated with an industry-standard simulator software 
when evaluating the results.

Running in the simulator has shown that steering actu-
ator-dynamics cannot be ignored during controller design.

The advantage comes from the fact, that the developed 
solution can be tested with high efficiency in an office 
environment, giving a better chance of success proving 
ground tests.
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Fig. 8 Planned trajectories before and after development
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