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Abstract

It is essential for a driver assistant system’s motion planning to take the vehicles moving in the surroundings into account. One of the 

most crucial driver intentions which should be predicted is lane changing. It has been investigated whether it is possible to reliably 

classify lane-changing maneuvers in a highway situation using learning algorithms such as Gaussian-classifier, SVM, and LSTM neural 

networks. Real vehicle trajectories are extracted from the NGSIM US-101 and I-80 datasets. The input for the classifiers is derived 

from the trajectory by selecting a subset of the features: lateral and longitudinal position coordinates, longitudinal acceleration, 

and velocity. In such an environment, the vehicle movement is limited, so it has been tested that how sufficient if only the mean and 

the variance of the derivative of lateral coordinate was taken as input for the classification had been tested. Different strategies for 

labeling the input sequences were tested.
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1 Introduction
According to the most widespread approach, the archi-
tecture of autonomous vehicles is described as a model 
of hierarchically based subsystems (Paden et al., 2016), 
where the system input is the desired destination from the 
perspective of the travel, which is aided by the environ-
ment sensing layer collecting information from sensors. 
The perception layer fuses the data provided by the sen-
sors, performs path detection, models static and dynamic 
objects, and classifies them in order to map the vehicle 
environment. The output is a geometric model of the 
path and a list of static and dynamic objects with trajec-
tory data. This, as well as the user-provided information, 
is received as input by the path planning layer, which is 
responsible for determining the traffic situation, behav-
ior planning, and short-term route planning. The output 
of this layer is the input to the motion control layer, which 
includes the logic that controls the feasibility of the given 
itinerary, designing the trajectory with various constraints 
and comfort considerations in mind. This layer instructs 
the actuators to execute the actual motion and then senses 
the vehicle's motion status. Behavior analysis and predic-
tion of other agents in the traffic situation is an essential 

part of behavior planning. For planning, it is essential to 
estimate as accurately as possible the trajectories of other 
vehicles and other road users. 

This article discusses lane change maneuver pre-
diction in a highway situation. It compares different 
machine learning techniques, such as the Gaussian clas-
sifier, Support Vector Classification (SVC), and Long- 
Short Term Memory (LSTM) recurrent neural network. 
To conduct this research, the vehicle trajectory data 
from the Next Generation Simulation (NGSIM) US-101 
(Colyar  and  Halkias, 2007) and I-80 Highway Database 
(Colyar and Halkias, 2006) were used.

The challenging task of behavioral prediction for 
autonomous driving attracts great attention. There is a 
wide variety of probabilistic approaches in the literature 
due to the intensive research that has taken place over the 
past decade. To list all the important milestones or higher 
results for the sake of completeness is not the objective of 
this paper, but to mention some inspirational article affect-
ing our work. In Dagli et al. (2002) a hierarchical dynamic 
Bayesian network has been utilized for predicting behav-
ioral patterns. Gaussian process regressions have been 
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also used for trajectory pattern classification and predic-
tion for autonomous driving (Trautman and Krause, 2010). 

Another approach is behavioral prediction apply-
ing Bayesian changepoint detection. This aims to ben-
efit the tracked historical data to infer the likelihood of 
their possible future actions (Galceran et al., 2017). In that 
work, a decision-making algorithm has been introduced 
to approximate Partially Observable Markov Decision 
Processes (POMDP) to evaluate the predicted outcomes 
of interactions between vehicles.

In (Wiest et al., 2012), a Gaussian mixture model for 
trajectory prediction is proposed. It can predict the vehi-
cle's trajectory several seconds in advance via learning the 
previously observed patterns to infer a joint probability 
distribution as a motion model. The future trajectory is 
predicted by calculating the probability for the motion, 
conditioned on the current observed trajectory. The nov-
elty is that the result is not only a prediction, but a distribu-
tion over the future trajectories and a specific scenario can 
be predicted by the evaluation of the statistical properties.

Kalman and particle filters also can be used to esti-
mate the motion of a car that is near the ego vehicle 
(Toro  et  al.,  2018). They proffer a method by which the 
state of maneuvering vehicle can be estimated with a good 
result, and the correct mode of operation from a previously 
defined set is chosen. 

A novel approach presents an LSTM model for 
motion prediction of surrounding vehicles on free-
ways, which is aware of all the surrounding vehicles 
(Rodrigues et al., 2016). This model's output is not a sin-
gle motion trajectory but a multi-modal distribution over 
future motion, just like in the previous article. 

The accuracy of the lane change maneuver prediction on 
the highway based on the trajectory of the past was exam-
ined. In the studied situation, the vehicles can travel in 
multiple parallel lanes on a straight section. Such a maneu-
ver is preceded by a decision, and the trajectory of the vehi-
cles traveling in the same and in the adjacent lane in front 
of and behind it plays a significant role. Accordingly, this 
information must be considered if the intention of chang-
ing lanes is needed. However, if not the intention but their 
occurrence in the short term is required to predict, the tra-
jectory data of a given vehicle may be sufficient.

High-reliability lane change maneuver prediction was 
achieved by combining Support Vector Machine (SVM) and 
Artificial Neural Network (ANN) methods (Dou et al., 2016). 
Our hypothesis was that the change in the lateral coordinate 
(lateral velocity) carries sufficient information to predict the 

occurrence of the lane change and that the mean and stan-
dard deviation of this time series is sufficient. The theoreti-
cal part provides a summary of the data set, data preparation, 
labeling strategies, and algorithms tested.

2 Theoretical part
In order to reach the goal that has been defined in the 
Section 1, different classifiers’ performances were exam-
ined. The details of the fitting and evaluation are unfolded 
in Sections 3 and 4.

One is the Gaussian Classifier, which suggests that the 
class likelihood functions are Gaussian distributed with 
unique mean vectors and covariance matrices. To fit this 
model to each class, one must estimate the mean, the cova-
riance, and the class priors. Thus, the posterior probabil-
ity of any input vector for a given class can be expressed. 
Assuming a common covariance matrix for each class, 
the discriminant function and the decision boundaries are 
linear, while in the case of different covariance matrices, 
they are quadratic. The Gaussian assumption makes the 
model very limited, however easy to train and interpret, 
thus helping to highlight the importance of labeling. 

The other is the Support Vector Classifier (SVC). 
This considers different suggestions for class likelihood 
functions. It strives for maximum marginal separation, 
so better generalization ability is expected. Polynomial, 
sigmoid, and RBF kernel functions were applied. There 
are two types for the regularization of SVC: the C SVC 
and the v SVC. C and v are regularisation parameters by 
which a penalty can be applied to the misclassifications. 
The  parameters’ range C∈ ∞[ )0,  while ν ∈( ]0 1,  is an 
upper bound on the ratio of training errors and a lower 
bound of the ratio of support vectors.

The last one is the Long-Short Term Memory (LSTM) 
recurrent neural network. This unit can deal with long time 
series without the occurrence of the so-called exploding 
and vanishing gradient problem. In this research, the model 
performances were compared with different input features.

2.1 The training dataset
The NGSIM US-101 (Colyar and Halkias, 2006) and I-80 
(Colyar and Halkias, 2007) datasets were used for train-
ing and evaluating the lane change classification problem. 
This trajectory data has precise location, velocity, and 
acceleration of each vehicle within a particular area every  
seconds. Furthermore, it provides relative positions to sur-
rounding vehicles and lane position in every frame. There 
are 11.8 million rows and 25 columns in this dataset. 
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Each row represents one vehicle in a specific frame with 
all the information. The columns in ascending order are 
the following:

•	 Vehicle identification number,
•	 frame identification number ascending by start time,
•	 total number of frames in which the vehicle appears,
•	 global time,
•	 lateral (x) and longitudinal (y) coordinate of vehicle’s 

front center to the left-most edge of the section in the 
direction of travel,

•	 global x, y coordinate, 
•	 ength and width of vehicle,
•	 vehicle type (1 - motorcycle, 2 - auto, 3 - truck),
•	 instantaneous velocity and acceleration,
•	 lane position.

Although the available data is rich, this research intends 
to find out if less data, small computation, and memory 
requirements could be used to classify a specified trajec-
tory part as a lane changing or keeping maneuver. 

An aerial photograph on Fig. 1 shows the US 101 study 
area from where the vehicle trajectory data were collected. 
A schematic picture describes the lanes and the on-ramp 
and the off-ramp locations.

2.2 Define the input for the classification
The input in the kth frame is constructed by 
T times delayed lateral coordinate vector 
x k T x k x k x k T, , ,...,( ) = ( ) −( ) −( ) 1 . The model based 
on the supposition that the maneuver can be determined 

purely by the ∆ ∆ ∆ ∆x k T x k x k x k T, , ,..., ,( ) = ( ) −( ) −( ) 1  
where ∆x k x k x k( ) = ( ) − −( )1  because only is the lane 
changing important, not the actual lane index itself. 
The smallest input space consists only of the average value 
and the standard deviation of ∆x k( ).  After the evaluation, 
it became clear that the performance of the Gaussian clas-
sifier or the SVM can be improved considerably by adding 
additional features to the input, such as the longitudinal 
velocity or acceleration. In the case of the neural network, 
the ∆x k( )  values with have been supplemented by the 
velocity v(k) and acceleration a(k) values, or the longitu-
dinal positions  as well. The input is  for this the Gaussian 
Classifier. Since the SVM algorithms are not scale-invari-
ant, it is recommended to standardize the input. In order to 
do this, the input was transformed to zero mean and unit 
standard deviation before fitting the SVM models.

2.3 Gaussian classification
Let us describe the posterior probability for a given in-

put x, which corresponds to classes 1 = lane keep,  and 

2
= lane change.  It can be written as1:
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and σ a( )  is the logistic sigmoid function. For the case of 
K = 3  classes 

1
= lane keep  while 

2
= lane change left  

and 3 = lane change right,  one gets:
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which is known as the softmax function and 

a p x pk k k= ( )ln ( | ) .  	 (4)

One can live on the assumption, that likelihood densi-
ties for classes k  are Gaussian with mean µk and common 
covariance matrix ∑, that is p x xk k( | ) ; , ,C N= ( )µ Σ  then 
considering two classes and using Eq. (2), one has:

p x w x wT
( | ) ,
1 0

= +( )σ 	 (5)

1 Notation: t(k)represents the correspondence of x(k) input vector to 
one of the classes   1 2, ,..., .K  In the case of K = 2,  the two classes 
are lane keep and lane change, while in the case of K = 3,  the three 
classes are lane keeping, lane change left, and lane change right.

Fig. 1 Top view of the freeway from which the data was extracted.
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The quadratic term in x is cancelled due to common 
covariance matrix.

For the general case, using Eq. (4), one has:

a x w x wk k
T

k( ) = +
0,
, 	 (7)

where:

w

w p

k k

k k
T

k k

=

= − + ( )

−

−

Σ

Σ

1

0

11

2

µ

µ µ

,

ln .
,


	 (8)

Without the assumption of a common covariance 
matrix, it will no longer be linear but quadratic.

2.4 Support vector classification
The concept of SVM is to maximize the smallest distance 
between the decision boundary and the closest samples 
(maximum margin). The data set is x k k K( )∈ ∈ = [ ]X I, , ,1  
where N is the number of data, the corresponding labels are 
t(k). This is equivalent to solve:

argminw bb
w1
2

2
, 	 (9)

subject to the condition:

t k w x k b kT( ) ( )( ) +( ) ≥ ∀ ∈φ 1, . 	 (10)

This optimization can be used for multiclass problems 
either with one-vs-one or one-vs-rest shape as long as the 
dataset is linearly separable in the feature space φ ( ).  
The class distributions overlap. The modification to this 
approach is that data points are allowed to be misclassi-
fied, that is, to be on the wrong side of the margin bound-
ary with a penalty ξn  decreasing with the distance from 
that boundary. Therefore, the minimization problem is:

argmin w C Cw b
n
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subject to the condition:

t k w x k b kT
k( ) ( )( ) +( ) ≥ − ∀ ∈φ ξ1 , . 	 (12)

An alternative formulation of C-SVC, known as the 
v-SVC has the parameter v. Which replace C, can be inter-
preted as an upper bound on the fraction of points which 
lie on the wrong side of the margin, and also as a lower 
bound on the fraction of support vectors.

The SVC formalism:

argminw b
n
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	 (14)

2.5 LSTM recurrent neural network
LSTM recurrent neural networks were trained with mul-
tiple input single output model to predict the lane chang-
ing maneuver. The input is a window-sized sequence of 
frames. In a current timestep, the input dimension is N = 1, 
2, or 3. The output is 3 dimensional. A single layer LSTM 
was used with an N-dimensional input size, 7-dimensional 
hidden state size, and the output was reduced by a linear 
layer from 7 to 3. Finally, softmax nonlinearity was used 
to generate the output. Increasing complexity, such as 
increasing the number of layers, or neurons, slows down 
the training and does not produce better results.

2.6 Labelling approaches
Several approaches have been used to label time series. 
From the dataset, the moment is exactly known when the 
lane index change occurred. This is used to decide when 
to consider the movement of a vehicle in a given window 
to be changing or keeping the lane.

In the first approach, all time windows are assumed to be 
lane keeping in which the lane index does not change, and all 
that shifts are assumed to be a lane changing. This method 
is insensitive to the occurrence within the time window. If 
the lane change is at the border of the time window, then 
two very similar time windows will be labeled in different 
classes, leading to a high degree of overlap between them.

In the second approach, the following non-overlap-
ping time window is used to label the given time window. 
Based on this, the time window is considered to be a lane 
keeper if there is no lane index change in that and the next 
one. A lane-changer is considered to have a lane change 
in one of the time windows. This reduced overlap but did 
not yield better results.

t k w x k b

t k w x k b k
k

T

k
T

( )− − = ( )( )+
( )+ − = ( )( )+ ∀ ∈

ε

ε

ξ φ

ξ φ I
.ˆ



Rákos et al.
Period. Polytech. Transp. Eng., 48(4), pp. 327–333, 2020 |331

The basic idea of the third approach is to leave the 
ambiguous time windows out of the labeling; that is, one 
should refuse to label the transitional windows. At the 
beginning and at the end of the time window, a range cor-
responding to a given ratio is left, in which if the lane 
change occurs, the time window is not labeled, and there 
will be no part of either the training data nor the test data. 
It is considered to be a keeper if lane change in the entire 
time window does not occur.

In the fourth approach, the lane-keeping samples are 
prepared by sampling vehicles that have no lane change at 
all in the data set. From the data of lane changing vehicles, 
samples of right and left shifting trajectories were taken. 
In addition to the length of the time window, a shift param-
eter was also introduced, which is an integer number lesser 
than the time window. This is the number of frames by 
which the moving time window is shifted during the sam-
pling. This prevents overly similar sequences and avoids 
over-fitting and data memorization.

3 Results of Gaussian classifier and the SVM
The SVC and v-SVC models were fitted with different 
hyper-parameters. The kernel function can be any custom 
function, but this research focused on the linear, polyno-
mial, RBF, and sigmoid functions. The kernel coefficients 
are always set to be 1/ ,N Var x⋅ ( )  where N is the number 
of features, and Var(x) is the variance of the data. The con-
stants C and v are chosen by grid search. The F1 scores cal-
culated on the test set are in Table 1.

4 Results of neural networks
The fourth approach has been used to label the sequences. 
The training samples are given by sequences cut out of the 
2 window size ranges preceding the lane change. Since 
the lane-changing frequency is low, the training set would 
be unbalanced, so the size of the training set had been 
adjusted to the minimum of the left and right lane changes. 
The data loader is capable of generating a training set with 
customizable window size and a shift parameter so that 
models can be widely tested. The shift parameter is the 
time step delay of the consecutive sequence. During the 

training, ADAM optimizer was used, and the loss func-
tion was binary cross-entropy. The data loader defines 
what data and how to be included in the training set. 

Three cases for the input had been examined. Firstly: 
∆x k v k a k( ) ( ) ( ), , ,  secondly: ∆x k y k( ) ( ),� ,  and finally, 
only the ∆x k( )  values. The best scores are produced by de 
second case. The F1 scores of the three maneuver classes 
are shown in Figs. 2 to 4 with respect to the number of 
epochs. The learning curves and accuracy with learning 
rate 0.05 are on Figs. 5 to 7. The window size and the shift 
parameter are chosen to be 30 and 5 empirically. 

The training was performed using multiple learning 
rates from 0.001 to 0.5 in logarithmic scales. With too 
small learning rates, the accuracy increases to near 0.7 
after thousands of epochs, while the value of training loss 
and validation loss freezes around 0.4 without over-fitting. 
The explanation for this may be that it oscillates around a 
local minimum. 

Table 1 The results of the classifiers.

Classifier parameter (left, keep, right)

SVC (ovr) C = 3.16 0.777; 0.683; 0.639

SVC(ovr) v = 0.45 0.769; 0.689; 0.648

Gaussian - 0.26; 0.11; 0. 57

Fig. 2 The F1 scores of left, keep, right maneuver classes (blue, orange, 
green respectively) Input: ∆x k v k a k( ) ( ) ( ), , .

Fig. 3 The F1 scores of left, keep, right maneuver classes (blue, orange, 
green respectively) Input: ∆x k( ).
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At higher learning rates, learning either does not con-
verge or fluctuates too much. Using weight decay could 
not achieve better results. If the value was set to 0.05, the 
learning curve converged after 1500 epochs, and the accu-
racy fluctuated around 0.76. The training and validating 
loss are the smallest in this case. Increased complexity 
has also been tried, with two layers of LSTM and 7 neu-
rons with learning rate 0.01. At 1000 epochs, the system 
over-fitted and gave worse results. If done at learning rate 
0.05, it became unstable and did not converge. Both the 
validation and training loss are lower while the accuracy 
and F1 scores are higher in case of the input is . The accu-
racy fluctuates around 0.86, which is the best result, bigger 
by at least 0.1 than in the other cases.

5 Conclusion
The evaluated algorithms are capable of detecting the occur-
rence of the lane change maneuver in a freeway situation 

with different results. Little information was used from tra-
jectories to train Gaussian Classifier and the whole time 
series to train SVM and neural networks. The  Gaussian 
classifier trained with the two-dimensional vector of the 
mean and variance proved to be unuseful for making high 
accuracy predictions. Approximately the same result were 
achieved for the SVM trained by the time series of ∆x k( )  
values and neural network classifiers trained by longitudi-
nal values ∆x k v k a k( ) ( ) ( ), , .  In a highway situation and 
in this particular classification task, the lateral position 
changing (lateral velocity) carries sufficient information, 
and the longitudinal parameters do not contribute.

Despite all these, the LSTM network fed by the lateral 
position change and the longitudinal position ∆x k y k( ) ( )( ),  
yielded significantly higher accuracy. It means that this 
is the most appropriate input for this particular classifi-
cation task with three different lateral maneuver classes. 
As future work, the optimal input should be thoroughly 

Fig. 4 The F1 scores of left, keep, right maneuver classes (blue, orange, 
green respectively) Input: ∆x k y k( ) ( ), .

Fig. 5 The training and validation loss (blue, orange) and prediction 
accuracy (green) with respect to the number of epochs. Input: 

∆x k v k a k( ) ( ) ( ), , .

Fig. 6 The training and validation loss (blue, orange) and prediction 
accuracy (green) with respect to the number of epochs. Input: ∆x k( ).

Fig. 7 The training and validation loss (blue, orange) and prediction 
accuracy (green) with respect to the number of epochs. Input: 

∆x k y k( ) ( ), .
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investigated for the improved task in which the three lat-
eral classes are doubled by longitudinal ones. Longitudinal 
classes could be braking and not braking based on the con-
sideration that the driver receives information that the stop 
lamp is operating or not.

Discrete values were used for labeling. However, con-
tinuous labels could be used to encode that after how 
many seconds will the lane change occur. It would make 
the prediction more accurate. Hyper-parameters for the 
SVM, like C, v, γ, and the kernel type, are not directly 
learned during the training. The hyper-parameter space 
can be searched for the best cross-validation score using 
an exhaustive grid search. 

If the hyper-parameter space is too wide, Sequential 
Model-Based Optimization (SMBO) (Hutter et al., 2009) 
or Sequential Model-based Algorithm Configuration 
(SMAC) (Hutter et al., 2010) could be applied. The best-per-
forming labeling could also be achieved by optimizing the 
SVM classification parameters and then doing the training 
with the labeled data.

In order to make better predictions, it is essential to con-
sider more information about the traffic situation. As a first 
approach, one should take into account the trajectory or even 

the type of surrounding vehicles. This possibility will be 
investigated in the future. It would be worthwhile to exam-
ine whether a complete set of trajectory data for nearby vehi-
cles is needed or the  standard deviation and mean are suffi-
cient. This would reduce the runtime of the algorithm or the 
resource requirement in real-life automotive applications.

As a next step, the predictive abilities of Auto Encoders 
shall be investigated. By training such an incomplete net-
work for copying the input trajectory to the output can yield 
a context vector with a smaller dimension than the input. 
This encoded context vector can be used for classification, 
but most importantly, it could be used for trajectory pre-
diction tasks as well. It would be possible to test whether 
such networks can encode the trajectory of the vehicle 
under investigation with the information of vehicles mov-
ing around it. First of all, one should train the network for 
yielding the future trajectory of the vehicle to the output 
by feeding the historical trajectory of the ego vehicle and 
the surroundings to the input. Secondly, it is possible to 
separate the input encoding (and copying) task to the pre-
diction task. The comparison of the two approaches can be 
instructive in designing the architecture of the networks.
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