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Abstract

A new approach to create the model of individual behavior in urban public transit systems with headway-based service that is built on 

the same principles of rational decision making as discrete choice models is presented. To describe a passenger's decision-making, the 

attractiveness function which reflects the difference between trip results and costs was used. The attractiveness of the transit route 

was determined by solving the system of Fredholm's integral equations based on observed frequencies of choosing the alternative 

routes by each individual. The frequencies were determined based on multi-day survey results and range between 0 and 1 but equal 

neither 0 nor 1. To estimate the significance level of the attractiveness function, the regression analysis was used and the accuracy of 

the choice probability forecast was evaluated. Computation of model coefficients was carried out based on the parameters of home-

based work trips obtained via the travel survey that was conducted in the city of Kharkiv, Ukraine.
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1 Introduction
Public transit systems in Ukrainian cities are character-
ized by highly developed route networks that serve more 
than 60 percent of all trips taken by residents and visitors. 
Effective planning of a public transit system operation is a 
very important task under conditions of a low level of ser-
vice in Ukraine that is quite different from the typical level 
of passenger service in developed countries. In most cases, 
the timetables are not available for passengers, and most of 
them are not aware of the time of vehicles' departures from 
the stops. Municipal transportation agencies do not effec-
tively control the performance of transit operators. It often 
allows drivers to neglect the schedule and promotes exces-
sive freedom in the choice of a type of service in an urban 
transit system. As a consequence, there exist self-regu-
lated relationships between drivers at many urban routes 
that make a headway-based service the main way of the 
public transit operation. In this case, passenger waiting 
time becomes a random part of travel costs (or "imped-
ance") and deserves special attention during modeling of 
the passengers' assignment to the routes. The absence of 
regular surveys of the transportation process decreases 
the level of public transport services for passengers in 

Ukrainian cities and, as a consequence, there is a lack of 
input data to make scientifically grounded decisions to 
improve servicing.

In recent years, public transport planning in Ukraine 
has been advanced due to the use of state-of-the-art trans-
portation planning technologies. They are based on math-
ematical models and transport modeling software like 
VISUM. The feature of software of this type is that it pro-
vides transport engineers with an advanced toolkit for 
transport modeling, but there is no support for the meth-
ods to estimate model parameters. This issue is one of 
the main reasons to develop the methods of the passenger 
assignment to a public transport network based on factual 
information about the individual's behavior in a transit 
system and reasonably describe the complexity and rela-
tivity of the route choice in the urban transit systems.

2 Literature review
VISUM uses a variety of models for the assignment of the 
passenger's trips to the transit routes – Kirchhoff, Box-Cox, 
EVA, etc. – and their parameters are always the subject of cal-
ibration (de Dios Ortúzar and Willumsen, 2011). The major 
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shortcoming of any choice model is a lack of the theoret-
ical explanation of a random choice of transport mode by 
individuals. The most reliable and theoretically sound base 
for the development of the models of individual behavior 
in a route network is the microeconomic theory. According 
to this theory, individuals behave in such a way as to take 
maximum advantage from the defined set of alternatives 
(Ben-Akiva and Bierlaire, 2003). To describe the attractive-
ness of the alternative, the term "utility" is used. The term 
is a convenient theoretical structure defined as something 
that the individual wants to maximize. Since the researcher 
often does not have comprehensive knowledge of all ele-
ments affecting an individual choice, the utility is divided 
into two parts (de Dios Ortúzar and Willumsen, 2011). 
The first part is presented by the observed variable Vij where 
i = 1, …, N, j = 1, 2, …, z (N is the number of individu-
als, z is the number of alternatives available for a passen-
ger). The second part of the utility is a random variable εij 
which reflects the impact of all factors having a negligible 
influence on the individual's choice and also covers possi-
ble errors of the observation during mathematical model-
ing (Kjaer, 2005). The random variable makes it possible to 
explain the reasons for different choices because the prob-
ability that the individual i will choose the alternative j is 
the probability that the utility of this alternative will be the 
maximum among other alternatives:

P U U r zij ij ir� � � � �� �Pr , , ,1 , (1)

where Uir is the utility of the alternative r from a set of 
alternatives available and convenient for the individual i.

Discrete choice models (DCM) became the main tool 
to solve the above-formulated problem. Such models can 
be divided into two classes, depending on the number of 
alternatives – binary and multinomial models. DCM have 
been applied in different fields, and many models have 
been developed specifically for transportation modeling 
(Ben-Akiva and Lerman, 1985; Ben-Akiva et al., 1986; 
Koppelman and Pas, 1980; McFadden, 1978). Koppelman 
and Wen (1998) identified a specific variable that influ-
ences the choice among transport modes. De Palma and 
Rochat (2000) considered another type of DCM – Nested 
Logit Model – for the analysis of passengers' choice of 
transport mode in Geneva. Chen and Li (2017) supple-
mented the DCM with latent variables, and the history 
of the development of these variables in the transporta-
tion field can be found in the sources (Ben-Akiva and 
Boccara, 1989; Train et al., 1987). Chen and Li (2017) 
proposed to include five latent variables into the utility 

function to explain the public transport mode choice 
behavior and identify which latent variables influence the 
passenger's choice.

Based on the presented review, we can conclude that 
the use of the abovementioned approach to model the indi-
vidual route choice behavior continually increases with 
the development of the mathematical modeling appara-
tus. Eq. (1) is a basis for all discrete choice models, and 
the main difference between them is defined by distinct 
assumptions about the distribution of random variable ε. 
Logit models are based on the assumption that errors ε are 
independent and identically distributed according to the 
I-type extremum values distribution (the Gumbel distribu-
tion). Probit models are based on the assumption about the 
normal distribution of the random part of utility. There also 
exist Mixed Logit models that are based on the assumption 
that the random component of the utility consists of two 
parts – the first part corresponds to any distribution given 
by the researcher, and the second one consists of ε errors 
that are independently and identically distributed accord-
ing to the Gumbel distribution. The DCM with latent vari-
ables are based on the assumption that error distribution 
for each utility function follows Gumbel distribution with 
a mean of 0 independently, while error distribution for the 
rest of the stochastic factor functions follows a normal dis-
tribution (Chen and Li, 2017).

Maximum likelihood method estimates DCM parame-
ters, and its inputs are the binary choice probabilities and 
parameters of alternatives. This method is easy to under-
stand as it maximizes the product of probabilities of cho-
sen alternatives. That is why the DCM are the universal 
modeling tool. However, the DCMs are based on a strict 
assumption that random components of all parameters of 
alternatives are identically distributed, although they are 
of a different nature.

Among the indices for estimation of DCM parameters, 
the most widespread one is the likelihood ratio ρ2 devel-
oped by McFadden (1974). It is used in many works, but 
it characterizes the result of coefficients estimation rather 
than the predictive capability of a choice model. The same 
is true for other standard measures of DCM quality that 
make us think about the development of an alternative 
measure that will explicitly show the discrepancy between 
the observed data and the data obtained during modeling.

Another property of DCM, in our opinion, is that these 
models are not convenient for the analysis of the results 
of the route choice modeling in urban transit systems, 
especially taking into account that in this case, the sets of 
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alternatives are different for each pair of transport zones. 
They differ in both the number of alternatives and com-
petitive transport modes (or routes). It becomes clear from 
the results presented by Senk (2010). Here to evaluate the 
respondents' route choice two alternative routes between 
given zones were proposed to consider. Such a situation 
does not allow creating an ordered array of parameters of 
alternatives and requires evaluating differences between 
travel options in every set of alternatives. Also, it is neces-
sary to consider the relative nature of alternative parame-
ters in every finite set.

Taking into account a relatively simple issue of how 
individuals select routes in urban transit systems, there 
is a possibility to simplify a problem formulation and 
develop a special modeling method. This method should 
be based on the features of a headway-based public transit 
service when the individual makes a decision directly at 
the stop according to the experienced transport situation.

3 Methodology to create a new route choice model
The method being developed is based on the same prin-
ciple of the individual's rational behavior as in DCMs. 
A basis of modeling is the assumption that an individ-
ual maximizes efficiency which represents the quality of 
the trip. The quality is defined as a set of trip parameters 
that determines the ability of route alternatives to meet 
the individual's need to change location. Then, a choice 
efficiency must fully reflect the travel purpose and can be 
determined as a difference between the result and costs 
of travel. Taking into account the maximization princi-
ple, the efficiency of trip between a pair of transport zones 
using the alternative j can be determined as

E E R C j r zj r r r r� � �� � �� �max , , ,1 , (2)

where j is the index of the chosen alternative route between 
the origin and destination zone, r is the index of one of the 
alternative routes between zones; z is the number of alter-
native routes between zones; Ej , Er are the travel efficiency 
of the alternatives j and r respectively; Cr are all travel 
costs by the alternative r between zones; Rr is the result of 
using the alternative r.

A travel result is determined by its necessity and 
urgency which depends on the passenger's attitude to the 
travel purpose. These factors are not directly related to the 
transportation process and may vary widely.

For the correct use of the principle of travel efficiency 
maximization, it is necessary to make an additional 
assumption that the individual has a clear understanding 

of the route choice results. This assumption seems to be 
quite valid if modeling of individual behavior in the public 
transportation system is limited to home-based work trips. 
Such restriction also allows a substantial reduction of the 
possible range of Rr values due to the similarity of passen-
ger trips since the travel purpose is the same for every-
one – to be at work in time. Therefore, for the considered 
trips we can assume that

R R r zr � � � �� �const for, ,1 . (3)

Regardless of Eq. (3), incorporation of trip results into 
Eq. (2) is an important step, not only from the method-
ological point of view but also from a perspective of the 
proposed model since it provides the actual content for the 
y-intercept of the regression model.

Research of the individual's behavior in the context of 
public transportation significantly differs from the situa-
tion which is standard for the DCMs and implies that trav-
eling by car and traveling by public transport are consid-
ered competing alternatives. This choice is often made 
before leaving home. If an individual always uses public 
transit for home-based work trips, then taking into account 
the headway-based service in Ukrainian cities, the deci-
sion on the route choice is usually made directly at the 
stop. This leads to the special set of travel costs that dif-
fer from the typical quantitative parameters of the DCMs. 
Firstly, not all the quantitative transit route parameters are 
deterministic that especially relates to the waiting time. 
Secondly, the individual does not know the exact result of 
their trip when deciding on choosing one from all avail-
able routes. That is why it is necessary to introduce the 
measurable factors of the transit trip into the model. It is 
assumed that an individual is aware of the values of the 
measurable factors at the moment of the route choice, and 
they are constant for every route alternative.

It is quite clear that fare, number of transfers and walk-
ing time can be considered measurable factors of the route 
choice. At the same time, other types of travel impedance 
require more detailed analysis. At the moment of decision 
making an individual does not know the values of such 
parameters as in-vehicle time, transfer time, and in-vehicle  
crowding during the trip. But the individual has a clear 
notion about the expected values of these parameters due to 
the permanent use of public transport for home-based work 
trips. These expected values are determined by the experi-
ence of the use of one route versus another. The mentioned 
parameters can be taken as measurable factors of the route 
choice because of considering home-based work trips only.
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Besides the measurable factors mentioned above, there 
are two random factors in the headway-based transit ser-
vice. They are the waiting time of the vehicle at the stop 
and in-vehicle crowding at the moment of boarding which 
can be represented by the load factor. The latter factor dif-
fers from the average load factor during the trip, which 
can be considered as deterministic one. At the moment 
of boarding the transit vehicle, it may vary from trip to 
trip. But it turned out that this is not a significant factor 
for home-based work trips, and it is not considered at this 
modeling stage.

Also, there are other factors that can be both quanti-
tative and qualitative and cannot be defined via observa-
tions. So, there are three categories of travel impedances 
that the individual considers during the route choice:

• measurable (fare, number of transfers, travel time, 
and load factor);

• random (waiting time);
• unspecified (non-identifiable and perceptional 

non-measurable factors).

Measurable and random costs are the base for the model 
being developed because the impact of unspecified factors 
can be estimated only after the statistical processing of the 
experimental data. So, the question of this research is how 
to determine the probability of the route choice when the 
decision significantly depends on passenger waiting time 
at the stop, which under conditions of headway-based pub-
lic transport service is a random variable.

The result of the travel costs analysis can be written as 

C c g c tr i ir t r
i

m

� �� �
�
�

1
, (4)

where m is a number of measurable attributes considered 
by individuals when choosing among the best alternative 
routes between a pair of transport zones; ci is the weighting 
factor of the variable i (estimated parameter); gir is the value 
of the variable i for the alternative r; tr is the waiting time 
(random variable) till the first boarding when choosing the 
alternative r; ct is the weighting factor of the waiting time.

Taking into account the constancy of the travel result in 
Eq. (3), the modeling goal is to obtain the objective values 
of weighting coefficients of the measurable attributes ci , 
i ∈ [1,m], that will allow adequate description of the indi-
vidual's attitude toward the corresponding travel parame-
ters. The first step in this direction is the transformation 
of Eq. (4). It is convenient to introduce a variable yr which 
is determined by dividing the difference between travel 

result and measurable costs from Eq. (4) by a coefficient ct 
of the random waiting time tr : 

y R
c

c
c

gr
t

i
ir

i

m

t

� � �
�
�

1

. (5)

Taking into account Eq. (2) it can be written that 

E
c

y tr

t
r r� � . (6)

Let a new variable Xr be introduced as follows:

X E
cr
r

t

= . (7)

In this case, it is possible to rewrite Eq. (6) as follows:

X y tr r r� � . (8)

New variables Xr and yr have a theoretical sense. Xr is the 
travel efficiency in units of time including a random part of 
the costs (waiting time). In the considered problem, Xr is a 
positive random variable due to the influence of the wait-
ing time. Variable yr is the travel efficiency in units of time 
that does not refer to the waiting time. This positive vari-
able hereinafter will be called "attractiveness of the route". 
According to the formula of the joint probability for a con-
tinuous random variable (Gnedenko, 1962), the probability 
of choosing the alternative j is determined by the integral 

p P X X f x dxj j r r j j
D

� � � �� �� � �� max , (9)

and according to Eq. (8)

p P y t y t f t dtj j j r r r j j
D

� � � �� �� �� � �� max , (10)

where D is the domain of integration of random variables 
Xj and Xr ; f( xj ) is the probability density function of the 
waiting time if choosing the alternative j.

Equation (10) has the same form as a base equation of 
DCM, e.g. Eq. (4.14) in the (Kjaer, 2005). The differences 
lie in distinct measurable attributes and random variables.

In general, it can be assumed that under headway-based 
service the arrival time of the vehicles operating on a cer-
tain route does not depend on the arrival time of the vehi-
cles that operate on another route. Then, random events 
A y t y tr r j r j j j� � � �� �� �  and A y t y ts s j s j j j� � � �� �� �  

for r j s z� � �� �1,  are independent and 

P A A P Ar s r� � � � � , (11)
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p P A f y t dtj r
r r j

z

j j j
D

� � �� �� �
�
��
:

. (12)

Using Eq. (12), it is possible to describe the probabil-
ity of choosing all real alternative routes. The route vari-
ants which have a non-zero statistical assessment of choice 
probability are the real alternatives. This is a difference 
from Discrete-choice models that deal with individual 
choice probabilities that equal either 0 or 1. But the equa-
tion system for one pair of alternatives can be directly 
solved only when observed relative frequencies of the 
choice equal neither 0 nor 1. So, we need to observe the 
behavior of every individual in more than one choice situ-
ation and involve only equations with the non-zero statis-
tical assessment of choice probability in the corresponding 
system. When there are z real alternatives between a pair 
of transportation zones, it is possible to create a system of 
z integral equations: 

p P y t y t f t dt

p P y t y t

r r
r

z

D

j r r j j

1 1 1

2

1 1
� � � �� �� � �

� � � ��

�
��

. . . . . . . . .

��� � �

� � � �� �� �

�

�

�

��

�

r r j

z

j j
D

z r r z z
r

z

z

f t dt

p P y t y t f t

:

. . . . . . . . .

1

1

��

�

�

�
�
�
�
�

�

�
�
�
�
� � dtz

D

. (13)

In this system, it is required to compute the values of yr , 
r ∈ [1,z] using the statistical probabilities pj and the distri-
bution function f( tr ) of the actual waiting time till the first 
boarding. The system of Eq. (13) is a system of integral 
equations with a multiplicative integrand, where the num-
ber of unknown variables yr equals the number of equa-
tions z. Nevertheless, it is necessary to prove that Eq. (13) 
has a unique solution. The need is caused by the special 
property of the attractiveness of the routes yr .

The comparison condition of random variables in each 
equation in the system of Eq. (13) has a form 

y t y t j r j r zr r j j� � � � �� �; ; , ,1  (14)

that can be rewritten as follows: 

t t y y j r j r zj r j r� � � � �� �; ; , ,1 . (15)

Equation (15) contains two unknowns – yr and yj which 
are constant values allowing to rewrite the equation 
as follows: 

t t y yj r j r� � � � �� �; const . (16)

It necessary to introduce a new designation for the con-
stant ξ. Taking into account that indices r and j vary within 
the range [1,z] depending on the equation in the system 
of Eq. (13), it is reasonable to define a comparison base, 
and the first alternative in the set of all alternatives under 
investigation is suitable for this purpose 

�y y y r zr r� � �� �
1

2, , , (17)

where ∆yr is the relative attractiveness of the first alterna-
tive in the set compared to the alternative r.

A computational meaning of ∆yr is a shift of the dis-
tribution f( tr ) of the random waiting time that leads 
to the change of the probability P t y t yj j r r� � �� �� �  
(Horbachov and Svichynskyi, 2014; 2018).

When the statistical probabilities of choosing the alter-
natives pj and the waiting time distribution f( tr ) are known, 
z − 1 values of ∆yr can be obtained. These values mean a 
relative attractiveness of the first alternative in the set com-
pared to alternative r, i.e. how much worse is alternative r 
compared to the first one. So, the value of the real attrac-
tiveness of the first alternative in the set remains unknown. 
It completely corresponds to the relativity of the choice 
among alternative routes between a pair of transport zones 
but does not allow to produce a final decision at this stage. 
This decision is a vector of the relative attractiveness of 
the alternatives that can be compared with the measurable 
travel costs through the forming of the system of Eq. (18).

This system is the basis for the multiple regression anal-
ysis of the set of alternatives between a pair of transport 
zones and a0 in this system is the constant term of the 
regression model, ai – the slope term of ith type of the mea-
sured travel costs.

An undefined variable y1 appears on the right side of the 
system of Eq. (18), and it does not affect the probability of 
the choice of a certain route: 

a a g y

a a g y y

i i
i

m

i ir
i

m

r

0 1

1

1
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1

1

� � �
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�

�

�

�

. . . . . . . . . . . .

. . . . . . . .

�

.. . . .

a a g y yi iz
i

m

z0

1

1
� � � �

�

�

�
�
�
�
�

�

�
�
�
�
�

�
� �

. (18)

Thus, the attractiveness of the first alternative can be 
determined freely. The existence of this independent vari-
able is logical and reasonable enough because an indi-
vidual compares travel options and the result here can be 
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relative only. Moreover, the presence of an unspecified 
"base" variable confirms the correctness of this approach 
since it is fully consistent with the relative nature of the 
choice of the route between origin and destination.

When using a standard variant of the regression anal-
ysis to solve the system of Eq. (18), the constant term a0 
linearly depends on the y1 value:

a y
0 1
� �� , (19)

where ϖ  is a constant defined via regression analysis.
Slope terms for factors gir do not depend on the y1 : 

a f g y i m r zi ir r� � � �� � �� �, ; , ; ,� 1 2 . (20)

So, in this case, the value of a0 cannot be considered as 
the desired solution. It can freely vary jointly for y1 and a0 . 
There exists one logical restriction only – the calculated 
attractiveness for all alternative routes has to be positive 
that follow from Er = Rr − Cr > 0.

This situation is understandable considering the value of 
R/ct represented by a0 in the regression equation. According 
to Eq. (3), R/ct is a constant. As was noted above, this con-
stant could not be determined based only on transportation 
factors because it is not enough to have information about 
choice probability and route parameters to uniquely define 
a level of satisfaction with the home-based work trip.

Thus, considering one trip it is possible to determine 
the regression coefficient a0 through setting a value of the 
attractiveness of the first alternative in the set of all alterna-
tives under consideration. Other regression coefficients and 
statistic parameters of the model are independent of a0 . This 
conclusion is very important for expanding the data array 
to many trips that are usually observed during the surveys, 
and it is a prerequisite to get the route attractiveness model.

System of Eq. (18) does not provide enough opportuni-
ties to determine the regression coefficients. To obtain the 
desired result, i.e. the route attractiveness function, it is 
necessary to enlarge the data set from one respondent to a 
full array of observed trips: 

a a g a g y

a a g a

m m

z

0 1 111 111 11

0 1 1 11

� � ��� � �
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. . . . . . . . . . . . . . . . . .
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0 1 1

� ��� � �

� � ��� ��

g a g y

a a g a g

N m m N N

N m mz

. . . . . . . . . . . . . . . . . .

NN NN N Nzy y� �
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�

. (21)

The last index of travel parameters and attractiveness 
that appears in this equation denotes an ordinal number 
of respondents. System of Eq. (21) consists of m unknown 
values of the attractiveness of the first route y1k , k ∈ [1,N], 
that should vary for every pair of origin and destination 
zones. Thus, it is incorrect to specify the same attractive-
ness of the first route for different pairs of transport zones. 
The difference between specified attractiveness is more 
explicit when Eq. (3) is valid and parameters of the route 
can vary due to different locations of origins and destina-
tions. A priori, an increase in measured costs leads to the 
reduction of travel attractiveness and vice versa. Owing 
to this, the unknown value of the attractiveness of the 
first route is a relative factor, which helps to determine 
a mutual placement of the attractiveness of the different 
travels. In other words, all trip attractivenesses are addi-
tional unknown values, which affect modeling results. At 
the same time, it should be understood that during the 
modeling of individual behavior in the transit system the 
relation of individuals to the transport parameters should 
be identical. So, 

a i mi � �� �const, ,0  (22)

for all individuals for whom statistical probabilities of the 
work travel choice were determined.

Taking into account the expression in Eq. (20), the con-
stancy of the coefficients for all respondents is provided 
automatically. An intercept of the regression line, based 
on Eq. (19) and Eq. (22), can be expressed as follows: 

y y k q k q Nk k q q1 1
1� � � � �� �� � ; ; , , , (23)

where ϖ k , ϖ q  are the constant part of the intercept of the 
regression line in Eq. (19) for respondents k and q respec-
tively; y1k , y1q are the specified attractiveness for the first 
alternative route for respondents k and q respectively.

Expression (23) can be rewritten as follows: 

y y k q k q Nk q q k1 1
1� � � � �� �� � ; ; , , . (24)

So, if Eq. (21) is used to determine coefficients in the 
model of the route attractiveness, it is enough to specify only 
one basic value of the attractiveness for the first alternative 
route, e.g. for the first respondent, q = 1. For all other equa-
tions of Eq. (21) values of y1k are determined by Eq. (24).

Thus, the proposed model to predict the route choice 
probabilities provides an assessment of individual attitude 
toward travel costs related to home-based work trips in a 
city using the mixed analytical-statistical approach.
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4 Experimental results
The experiment was carried out in the second biggest city 
in Ukraine, Kharkiv, with a population of almost 1.5 mil-
lion people. In the beginning, the simulation experiment 
allowed us to discover that when the public transport ser-
vice is headway-based the distribution of the passenger 
waiting time at the stop corresponds to the gamma dis-
tribution with scale and form parameters that linearly 
depends on the average headway on the route. At the same 
time, the major characteristics of the transit system, such 
as measurable parameters and scheduled headways of the 
routes, were determined.

Then 866 commuters were surveyed concerning their 
home-based work trips made during five days. 307 of the 
obtained questionnaires appeared to be acceptable for fur-
ther research because they contained information about 
more than one alternative route and were correctly filled 
in. The survey results include questionnaires that were 
filled in by the passengers who used 2 or 3 routes. All set 
of observed routes counts 681 alternatives.

This survey largely coincides with the investigation 
of the transportation process described by Raveau et al. 
(2010). However, the distinction of the survey is that the 
number of binary probabilities estimated for each respon-
dent was less than five, depending on the number of route 
alternatives chosen by an individual and the frequency of 
their choice.

In the next stage, values of the attractiveness of route 
alternatives were calculated numerically by the Gauss 
method. It was defined, that waiting time was distrib-
uted by the gamma distribution with parameters based 
on the scheduled route headway. Calculation results are 
illustrated for one respondent who used three routes with 
choice probabilities P1 = 0.2; P2 = P3 = 0.4 and head-
ways of the corresponding routes J1 = 16 min; J2 = 6 min; 
J3 = 5 min. The initial distribution of waiting time with the 
equal route attractiveness is shown in Fig. 1.

The probabilities of choosing the routes, that corre-
spond to this base mutual placement of the waiting time 
distribution, equal P1

0 = 0.13; P2
0 = 0.36; P3

0 = 0.51 accord-
ing to the numerical integration results. To obtain the 
probabilities that were observed in the survey, the corre-
sponding waiting time distribution was corrected by add-
ing the route attractiveness ∆y2 and ∆y3 .

When solving the system of Eq. (13), the objective func-
tion is the minimum magnitude of the vector of dispari-
ties between empirical and calculated values. The calcula-
tions resulted in the following values of the relative route 
attractiveness: ∆y2 = 1.186 min for the second route and 
∆y3 = 1.668 min for the third route. Taking into account 
relative attractiveness, the corresponding distributions of 
the waiting time are shown in Fig. 2.

Under these distributions, calculated values of route 
choice probabilities are P1

0 = 0.204; P2
0 = 0.399; P3

0 = 0.397 
and they can be considered as final ones. Based on these 
calculations, a data array for regression analysis of the 
attractiveness function for home-based work trips was 
formed. Processing of the data allowed obtaining the route 
attractiveness model which is as follows: 

y t C
T

� � � � � � �
� �
103 25 1 029 9 227 83 544

11 430

. . . .

.

� , (25)

where t is in-vehicle time travel from home to work, min; γ 
is the load factor at the moment of boarding; C is the travel 
cost, $; T is the number of transfers on the way to work.

Characteristics of Eq. (25) are given in Tables 1 and 2. 
Model parameters and attractiveness of the routes show 
a high correlation, and regression coefficients in the model 
turned out to be significant, Table 2. However, high statis-
tical results cannot guarantee the accuracy of computed 
route choice probabilities. To reach that, the actual values 
of probabilities should be compared with the estimated 
ones, and then it will be possible to make conclusions 

Fig. 1 Distribution of the waiting time when using alternative routes
Fig. 2 Distribution of the waiting time when using alternatives routes 

taking into account the relative attractiveness ∆y
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regarding their accuracy. To do this, a chi-squared test is 
acceptable: 
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�
, (26)

where sN
2 is the measure of deviation between the observed 

frequencies and calculated choice probabilities – the cri-
terion of model accuracy which is asymptotically χ2-dis-
tributed; υjk are observed frequencies of the choice of 
alternative routes j by individual k; Pjk is the theoretical 
probabilities of the choice of alternative routes j by indi-
vidual k; n is the number of choice situations which were 
described in the questionnaire of each individual k, n = 5.

The criterion of Eq. (26) was applied to make two 
assessments of choice probabilities. Besides the proposed 
model presented by Eq. (25), the equiprobable forecast 
was made via the simplest model when Pj = 1/z.

The results were not encouraging. For the proposed 
model sN

2 = 673.3 that is more than the analogous value 
for the simplest model sN

2 = 579.6. The significance level 
for both values of the criterion is practically equal to 0. 
It means that the direct transition from the observed fre-
quency to regression between the route attractiveness 
and the route parameters gave acceptable results, but the 
reverse transition from the route parameters to the choice 

probability appeared to be unsatisfactory. Taking into 
account that the proposed method is based only on the 
confirmed assumptions, a weak predictive ability of the 
developed model leads to the following conclusions.

5 Conclusions
The proposed model describes an individual behavior in a 
specific public transit system with a definite type of ser-
vice. This narrowing during the research allows getting 
a straight assessment of an individual's attitude to travel 
parameters taking into account the relative character of 
alternatives and the mechanism to join trips of different 
individuals into single array for the regression analysis.

The obtained distribution of the waiting time for the case 
when public transport service is headway-based and the 
passenger departure time is random gives a specific sense 
to this random variable in the expression for the travel effi-
ciency and solves the problem of the relative attractiveness 
of route alternatives based on integral equations.

In-vehicle travel time, load factor at the moment of 
boarding the vehicle, fare and the number of transfers 
appeared to be significant factors which an individual 
considers when choosing between the routes to get from 
home to work.

Unsatisfactory results in predicting the probability 
of the choice of alternative route may be caused by high 
requirements for accuracy of the waiting time description. 
An additional reason is in the used approach when the 
most significant and stable part of the route attractiveness 
is determined by comparing the relatively small random 
elements in travel costs. Subject to the presence of unac-
counted factors in the model, this approach can lead to 
serious forecasting errors.

It is necessary to develop an approach to model individ-
ual's behavior in a transport system that would be based on 
the classic principles of data alignment when the modeling 
purpose is to minimize the difference between predicted 
and factual data. It should be realized that in contrast to 
the classical approach, the dependent variable – the quan-
titative estimate of alternative attractiveness – cannot be 
surveyed, but the frequency of the use of alternatives can 
be fixed instead.

Table 1 Regression analysis of the route attractiveness model

Factor Value

Multiple Correlation Coefficient (R) 0.903

R squared 0.816

Standard error 9.159

Number of observations 681

Table 2 Characteristic of regression coefficients

Factors Coefficients Standard error t-value P-value

Y-intercept 103.25 4.47 9.68 7.44E-21

Travel time −1.03 0.09 −12.71 2.16E-33

Load factor −9.23 3.07 −3.01 0.002706

Travel cost −83.44 12.20 −4.75 2.47E-06

Number of 
transfers −11.43 2.33 −4.91 1.14E-06
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