
334|https://doi.org/10.3311/PPtr.15921
Creative Commons Attribution b

Periodica Polytechnica Transportation Engineering, 48(4), pp. 334–340, 2020

Cite this article as: Rövid, A., Remeli, V., Paufler, N., Lengyel, H., Zöldy, M., Szalay, Zs. (2020) "Towards Reliable Multisensory Perception and Its Automotive 
Applications", Periodica Polytechnica Transportation Engineering, 48(4), pp. 334–340. https://doi.org/10.3311/PPtr.15921

Towards Reliable Multisensory Perception and Its Automotive 
Applications

András Rövid1*, Viktor Remeli1, Norbert Paufler1, Henrietta Lengyel1, Máté Zöldy1, Zsolt Szalay1

1 Department of Automotive Technologies, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University 
of Technology and Economics, H-1521 Budapest, P. O. B. 91, Hungary

* Corresponding author, e-mail: andras.rovid@gjt.bme.hu

Received: 12 March 2020, Accepted: 12 March 2020, Published online: 07 July 2020

Abstract

Autonomous driving poses numerous challenging problems, one of which is perceiving and understanding the environment. Since self-

driving is safety critical and many actions taken during driving rely on the outcome of various perception algorithms (for  instance 

all traffic participants and infrastructural objects in the vehicle's surroundings must reliably be recognized and localized), thus the 

perception might be considered as one of the most critical subsystems in an autonomous vehicle. Although the perception itself 

might further be decomposed into various sub-problems, such as object detection, lane detection, traffic sign detection, environment 

modeling, etc. In this paper the focus is on fusion models in general (giving support for multisensory data processing) and some 

related automotive applications such as object detection, traffic sign recognition, end-to-end driving models and an example of taking 

decisions in multi-criterial traffic situations that are complex for both human drivers and for the self-driving vehicles as well.
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1 Introduction
In the autonomous vehicle technology evolved today, reli-
ability and response time due to the autonomous system 
are better than humans, the decision-making research 
more inclined to focus on the vehicle, rather than a human 
driver (Mersky and Samaras, 2016). Modern autonomous 
vehicles can detect the surrounding objects and classify 
the surrounding information by sensing the environment 
in real-time, so that the appropriate navigation path can 
be confirmed while observing the corresponding traffic 
rules (Bimbraw, 2015).

Sensing and understanding vehicle surroundings is one 
of the most crucial factors since any subsequent action 
taken is strongly dependent on how the scene is inter-
preted, what type of participants there are present, where 
they are located, what their intention is, etc.

In order to make self-driving safe and reliable all this 
information must be extracted with high confidence and 
more importantly must be accurate. Any misdetected or mis-
classified object may harm the self-driving safety. In order to 
increase the reliability of perception the utilization of vari-
ous types of sensors proved to be a promising direction.

In multitype sensor cases the overall joint sensing capa-
bility of the self-driving vehicle covers a wider range of 
weather and traffic conditions in general, furthermore 
the sensor redundancy is also a significant advantage 
in case of sensor failure or damage.

Up to now, we have considered the perception as a sep-
arate layer providing information about the surroundings 
of the vehicle towards different but separate layers in the 
overall system architecture such as trajectory planning, 
decision making, etc. Besides this layered architecture, 
it is worth to mention also the case where the mentioned 
layers are jointly represented in form of a single end-to-
end neural network model realizing various driver assis-
tance or self-driving functions on purely neural basis.

In this paper let us give a brief insight into both types 
of previously mentioned architectures (including our 
related findings from real experiments), namely the case 
when the perception stands for a separate layer in the 
overall system architecture and the case of the end-to-end 
approach. In relation to the first one, our proposed fusion 
model will be described, which utilizes camera image and 
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LiDAR pointcloud to detect traffic participants in the sur-
roundings of the vehicle.

As a further representative example of a safety criti-
cal perception problem the traffic sign detection is going 
to be pointed out including also some findings related 
to adversarial attacks and the possibilities of verification 
of the underlying neural network models.

End-to-end models will be discussed trough a vehicle 
steering example together with the experimental results.

2 Raw sensor fusion models for 3D object detection
Multisensory perception plays crucial role in safety critical 
systems. Depending on the level at which the fusion is per-
formed the sensory data might be processed individually or 
jointly. Here we are focusing on raw sensor fusion, namely 
when the sensory data are fused at low levels and thus uti-
lizing also the synergies between individual sensors.

Let us briefly point out some relevant state of the art 
results achieved in 3D object detection for autonomous 
driving (trained, validated and tested on KITTI data-
set (Geiger et al., 2013). Ku et al. (2017) have proposed 
an Aggregate View Object Detection network (AVOD). 
The authors use LIDAR pointclouds and RGB images 
to generate features that are shared by two subnetworks. 
Liang et al. (2018) also rely on both types of sensors, 
namely on LiDAR and cameras. With the help of a so called 
"continuous fusion layer" a dense Birds Eye View (BEV) 
feature map is created and fused with the BEV feature 
map extracted from LiDAR. Authors in (Xu et al., 2017) 
have proposed another approach to fuse LiDAR and cam-
era data. Their model is based on the so called PointNet 
(Qi et al., 2017a), architecture able to handle unorganized 
raw pointcloud data. They combine pointcloud features 
learnt by the PointNet with high-level features extracted 
by a ResNet based CNN (He et al., 2015). Qi et al. (2017b) 
proposed a model for 3D object detection based on point-
cloud data falling inside a frustum defined by a 2D bound-
ing box encapsulating a given object in the camera image. 
The images are used by the network to determine the 2D 
bounding boxes and thus the corresponding frustum, how-
ever the pointcloud itself is not fused with image data. 
The approach proposed in this paper extends the FPointNet 
(Qi et al., 2017b) model by assigning local - semantically 
stronger - image features from high resolution feature 
maps to each point in the LiDAR pointcloud. Here let 
us focus on the problem of low-level camera and sparse 
LiDAR data fusion, which aims to improve 3D detection 
of cars, pedestrians and cyclists for autonomous driving 

related applications where safety considerations play cru-
cial role. We built upon an existing state of the art neural 
network architecture that considers camera and LiDAR 
data only in separate, sequential phases of processing. 
We improved the concept by training the segmentation 
and 3D box estimation networks (see Fig. 1) to process 
raw signals from different types of sensors jointly which 
was achieved by projecting the LiDAR pointcloud onto the 
camera image plane and augmenting the points with a cor-
responding image feature vector taken from selected lay-
ers of the 2D detector. Depending on the depth of chosen 
layers the image features taken might have different lev-
els of abstraction. According to our experimental results, 
we have shown that more reliable detection of distant tar-
gets that are characterized by very sparse LiDAR mea-
surements is possible (see Fig. 2). In conclusion, we have 
seen that introducing lower levels of fusion into existing 
perception architectures for autonomous vehicles might be 
beneficial in accomplishing specific safety-critical tasks 
like the detection of distant or heavily obscured objects. 
We intend to explore further possibilities for improving 
raw fusion approaches in order to establish the extent of 
possible benefits of leveraging inter-sensor synergies.

3 Adversarial vulnerability of deep learning perception 
systems
Today deep learning systems are becoming ubiquitous and 
often even key components for autonomous driving func-
tionalities, especially in the perception layer. Such deep 
neural networks operate on very high dimensional input 
domains (e.g. visual images define a pixel space with thou-
sands or millions of dimensions) and can have millions of 
parameters (Krizhevsky et al., 2017). The most significant 
consequence is that now we are able to capture system mod-
els of truly super-human complexity – i.e. the machines 
now routinely learn models that human domain experts 
have no chance of understanding – e.g. cognitive models 
such as visual perception of traffic participants (LeCun 
et al., 2015). This lack of understanding is worrisome 
in safety critical applications like autonomous vehicles, 
especially in the light of the 2013 discovery of so called 
"adversarial examples" (Szegedy et al., 2013). Even though 
neural networks can achieve impressive, even super-hu-
man accuracy on various tasks, e.g. perception, the excel-
lent statistical performance bears no guarantees for any 
individual case. In the last years it has become very clear 
that even if a deep learning system is often right, it is not 
right for the right reasons. As an unfortunate consequence, 
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in the rare cases when the network is wrong, its prediction 
can be surprisingly off, and those cases can be – to the 
human observer – indistinguishable from non-challeng-
ing, entirely trivial tasks. Even worse, it seems that these 
cases – the so called "adversarial examples" – may not be 
so rare after all, as the environment can be easily manipu-
lated by a malicious attacker in such a way that the attack 
is invisible or camouflaged to the human eye yet it reli-
ably makes the deep learning system misbehave, often 
in exactly the way the attacker wants it to. This kind of 
danger is of course unacceptable in a safety-critical sys-
tem and new ways of mitigating the safety and security 
risks by validating, verifying and understanding the inner 
models of deep neural networks are urgently necessary.

3.1 Adversarial traffic sign stickers
Detection and classification of traffic signs is a popular and 
well-researched example of reliance on environment percep-
tion in highly automated driving. Clearly the misidentifica-
tion of a traffic sign can have huge costs in terms of safety. 
The road sign recognition problem is also a good choice from 
the technical perspective as it is simple enough that classi-
cal computer vision methods achieve industrially acceptable 
performance while also being complex enough that employ-
ing deep learning systems yields tangible improvements.

In our recent work (Lengyel et al, 2019) we call atten-
tion to the easily exploitable vulnerabilities of deep 
learning technologies by developing home printable and 
readily deployable stickers that appear to be artwork / van-
dalism similar to what is frequently encountered on traf-
fic signs in many places. Our stickers contain specific 
adversarial patterns however, nondescript to the human 
eye but highly misleading to a neural network. A nefar-
ious lay person can easily affix such a sticker to a road 
sign and thus effectively change its meaning in a targeted 
way. The especially grave danger arises from the fact that 
the human observers (drivers, road authorities, etc.) will 
not recognize that an attack was deployed and will there-
fore fail to counter it.

The adversarial patches we developed work in the phys-
ical world and are fairly robust to perturbations arising 
from printer quality, environmental conditions, camera 
angles, noise and resolution. Our stickers are unique since 
they are also insensitive to deployment inaccuracy with a 
generous margin of about ±10 cm, making technical know-
how entirely unnecessary and requiring no special access 
to the attacked infrastructure either. An example is shown 
in Fig. 3 where our patch makes the algorithm misclassify 
the 30 km/h speed limit as 120 km/h, while a similarly 
placed random patch does not affect the algorithm at all.

Fig. 1 Architecture of the object detector (Rövid and Remeli, 2019).
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The threat posed by adversarial examples is especially 
severe since they were shown to generalize across dif-
ferent neural architectures and across networks trained 
on different training sets (Szegedy et al., 2013). The car-
ry-over effect is somewhat diminished but still significant 
enough to enable black-box attacks with no query access 
to the attacked system.

3.2 Verifying an image classification network
After demonstrating the practical danger of adversarial 
tampering in physical environments, we are interested 
in knowing what kinds of guarantees a deep learning 
system can make, if any. The robustness of a deep neu-
ral network can be evaluated via methods shown in pre-
vious research (Katz et al., 2017). However, in practice 
this is computationally feasible only as a statistical esti-
mate of robustness from a sample taken at a certain num-
ber of points in input space: system behavior is guaran-
teed in their ε-radius vicinity only. It is not trivial to verify 
guaranteed properties for substantial regions of the input 
space. An even more interesting question is whether use-
ful and humanly interpretable specifications of input 
regions that we wish to regulate – beyond simplistic ones 
like Euclidean ε-radius – can be formulated at all.

In Remeli et al. (2019) we show that ReLU- and soft-
max-activated networks can be transcribed as a mixed-in-
teger linear systems. In this case, specification regions 
defined as linear combinations of the inputs (and similarly 
defined forbidden regions in the output) can serve as the 
basis for a mixed-integer linear program formulation. If the 
program has a feasible solution, that solution constitutes 
an adversarial (or deviant) example that does not conform 
to the specification. If the program has no solution how-
ever, that proves that the network fulfills the specification.

With the above method we analyzed a simple 555-neu-
ron multi-layer neural network that performs traffic sign 
classification with 88 % accuracy on the GTSRB bench-
mark. We were able to certify a guaranteed property 
stating that the network would never classify the image 
as a STOP sign if the red color content in the image was 
extremely low, making it entirely resistant to this specific 
type of adversarial attack. Since this was a naively trained 
network, we were not expecting practically significant 
properties, but were rather able to prove the presence of 
weak properties in a human-interpretable way. For techni-
cal details, please refer to (Remeli et al., 2019).

Fig. 3 Left: our adversarial sticker causes high confidence targeted 
misidentification in a deep learning classifier. Right: a similarly 
placed random sticker causes no divergence from the correct class. 

(SL stands for Speed Limit)

(a)

(b)

Fig. 2 Results of the model evaluation for sparse 3D pointclouds 
consisting of 8 points. The figures show the detection precision 
(Positive Predictive Value (PPV)) measured in two different cases: 
firstly, the original architecture where the cloud is represented as 
[X, Y, Z] and secondly our modified architecture that augments the 
original [X, Y, Z] point coordinates with 29 semantically strong 

image features. (a) 3D IoU (b) 3D IoU ≥ 70
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4 Perception based end-to-end models
In case of an end-to-end model the entire process from 
perception to actuation involves a properly trained, single 
convolutional neural network without any modularization 
whereas the neural models for perception (see Section 2) 
are providing information about the environment to other 
modules such as maneuver planning, control, etc.

The aim of Section 4 is to show the end-to-end concept 
and related problems through a vehicle steering example. 
In Fig. 4 the training set creation, the training itself and 
validation are illustrated together with the underlying dia-
grams. During these experiments we relied on a state-of 
art CNN architecture published in (Bojarski et al., 2016) 
and investigated how different driving behaviors might 
be achieved, what factors must be considered during the 
training set preparation. The ground truth data for training 
was generated with the Carla software (see Fig. 5), which 
is an open-source simulator for autonomous driving sys-
tem development. The simulator gives the ability to add 
and control multiple vehicles to create traffic scenarios, 
attach different type of sensors to the vehicles.

During the experiments two different sets have been 
generated for training, i.e. firstly a spline-based track was 
used as a reference trajectory along which the camera 

images for training have been acquired together with the 
corresponding steering commands.

In the second case the steering of the vehicle was 
controlled by a Model Predictive Controller (MPC) and 
the obtained path was used to generate camera images 
together with the corresponding steering angles for train-
ing. In case of the end-to-end model (trained on the lat-
ter dataset) the vehicle started to drift off the path after a 
certain amount of time and was unable to recover itself 
afterwards. In order to avoid this effect, the training data-
set had to be extended by additional images represent-
ing "faulty" states and the corresponding steering angles. 
The trajectory including "faulty" states have been gen-
erated artificially by rotating and translating the vehicle 
to critical poses and then letting the MPC controller to fol-
low the reference path (see Figs. 6 and 7).

Another important consideration during the preparation 
of the training dataset was to use different augmentations 
to handle problems associated with the tilt of the horizon 
in the camera images. As the vehicle drives along a curved 
path the horizon tilts in the camera image according to the 
curvature of the path and speed of the vehicle. In order to 
force the network to associate the characteristics of the path 
with the corresponding steering angles the training dataset 

Fig. 4 Overall diagram of project's structure
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had to be augmented by rotation about the image center 
by random angles being within a certain range (see Fig. 8). 
In addition to rotations some additional augmentations 
have been applied, as well such as brightness modifica-
tion, vertical translation and random shadow. By using the 
mentioned augmentations significant improvement was 
achieved, the network was able to steer the vehicle along 
a trajectory similar to that generated by the MPC even 
in case of the validation track, which was not "seen" by the 
network during the training phase (see Fig. 9).

For testing the robustness of the network the camera 
pose was modified and the model was evaluated accord-
ingly. According to the experiments the network is robust 
to camera rotations and also to change of the camera FOV 
in a reasonable range.

5 Conclusion
In this paper we have shown an overview on AI percep-
tion related problems such as how lower fusion might 
be performed, pointed out the threat posed by adversar-
ial examples which is especially severe since they were 
shown to generalize across different neural architec-
tures. On top of that we have touched the topic on how the 
underlying neural networks might be verified. We have 
also given an example to end-to-end steering control and 
pointed out some problems which have to be considered 
in order for the network to work properly. Our next step 
is to integrate the proposed low-level fusion concept into 
end-to-end models, as well, in order to improve their 
robustness and reliability.
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Fig. 5 CNN input frame example (size: 66 × 200 pixels)

Fig. 6 The figure shows the steering control value on the y axis, 
which was estimated by the MPC controller. At timestamp 428 we 
can see an example of faulty state injection followed by the recovery 

from that state by MPC.

Fig. 7 Artificially disturbed trajectory (blue line) of the vehicle.

Fig. 8 An example image for the random rotation augmentation

Fig. 9 The trajectory of the vehicle (blue line) on validation track, 
steering by the CNN network output based on a dashboard camera
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