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Abstract

Many traffic models and control methods have already been utilized in the public transportation system due to the increasing traffic 

congestion. Thus, an intelligent traffic model is formalized and presented to control multiple traffic light simultaneously and efficiently 

according to the distribution of vehicles from each incoming link (i.e. sections) in this paper. Compared with constant strategy, 

two methods are proposed for traffic light control, i.e., game theoretical strategy and reinforcement learning methods. Game theoretical 

strategy is generated in a game theoretical framework where incoming links are regarded as players and the combination of the status of 

traffic lights can be regarded as decisions made by these players. The cost function is evaluated and the strategy is produced with Nash 

equilibrium for passing maximum vehicles in an intersection. The other one is Single-Agent Reinforcement Learning (SARL), specifically 

with the Q-learning algorithm in this case, which is usually used in such a dynamic environment to control traffic flow so the traffic 

problem could be improved. Generally, the intersection is regarded as the centralized agent and controlling signal status is considered 

as the actions of the agent. The performance of these two methods is compared after simulated and implemented in a junction.
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1 Introduction
Traffic lights at the intersections are typically controlled 
by a constant strategy in the real world, i.e., the time inter-
vals of green or red lights are fixed and periodical, which 
would aggravate the traffic congestion while the traffic 
flow is distributed on different incoming links uniformly. 
A lower cost and more efficient control approach can be 
developed and achieved instead of building expensive 
infrastructure in an intersection.

There are plenty of novel models and approaches to con-
trolling traffic light nowadays, which are presented and 
published in some research papers. E.g., a fuzzy control 
method to public transportation is designed for the prob-
lem, the core of these methods is the fuzzy rule set which 
depends on traffic situations (Hoyer and Jumar, 1994). 
Another traffic control system based on Bayesian proba-
bility is developed to improve poor traffic management, 
which is adaptive to the high dynamics of the traffic net-
work (Khamis et al., 2012). Based on the previous historical 
information, the traffic flow can be analyzed and predicted 
by a novel traffic management system (Yousef et al., 2019). 

Besides, it is quite common and popular to integrate some 
bionic techniques into the traffic model or control meth-
ods, such as genetic algorithm (Gora, 2011; Teo et al., 2010; 
Turky et al., 2009), ant colony technology (D'Acierno et al., 
2012; He and Hou, 2012; Jabbarpour et al., 2015) and arteries 
models (Zhang and Jia, 2011). In game theoretical approach, 
the traffic management system is constructed as a game-
play problem where incoming links are commonly treated 
as game players and the optimal decisions would be made 
based on the scale of vehicular flow in one intersection 
(Alvarez Villalobos et al., 2008; Guo and Harmati, 2019). 
This method can also be implemented efficiently for mul-
tiple intersections (Bui and Jung, 2018; Fan et al., 2014). 
As machine learning technics grows, Reinforcement 
Learning (RL) is an excellent way to improve the efficiency 
in such a dynamic environment of traffic control problem, 
where the agents representing the incoming links take opti-
mal actions to make sure they gain the maximum reward 
no matter it is a Single-Agent Reinforcement Learning 
(SARL) (El-Tantawy and Abdulhai, 2010) or Multi-Agent 
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Reinforcement Learning (MARL) (Bakker et al., 2010; 
Wiering, 2000). Neural network algorithm can also be 
combined into RL to form an extension and new approach 
as Deep Reinforcement Learning (DRL), which is capa-
ble of estimating Q-value more efficiently in some cases 
(Liang et al., 2019; van der Pol and Oliehoek, 2016).

The goal of this research is to find a more efficient and 
effective method to control traffic light so that the max-
imum number of vehicles could pass the intersection 
in specific cycle time. A constant strategy is introduced 
firstly, i.e., the time intervals of green or red lights are 
fixed and periodical. Then game theoretical strategy 
with Nash equilibrium is proposed to optimize the traffic 
flow. The players represent the incoming links and make 
decisions based on the cost function. The third method – 
SARL is also presented and implemented in the experiment 
for the comparison of the previous two approaches. In this 
method, the centralized agent representing the intersec-
tion observes the state of the environment, get the cumula-
tive reward, and take actions optimally to make the vehi-
cles pass the intersection as many as possible. The final 
result indicates that the game theoretical strategy and RL 
method can both improve the efficiency of traffic manage-
ment compared with the constant strategy.

2 Traffic model formulation
In Fig. 1, four incoming links with four individual direc-
tional paths are in this common intersection. Each direc-
tional path has traffic lights individually, which is green 

and red in Eq. (1). Red light is represented by 0, and green 
is 1, yellow light is not considered to simplify the control 
process. Fig. 1 and Eq. (1) are shown as follows:

g =




0

1

red

green
.  (1)

The initial incoming link where the vehicles depar-
ture is defined as w, w = 1,…,4 and the target incoming 
link where the vehicles arrive is defined as z, z = 1,…,4. 
Based on that, the moving direction of the vehicle flow can 
be represented as w − z, i.e., the vehicles are going to the 
target incoming link z from incoming link w. Waiting vehi-
cles at the traffic light is defined as queue length with a 
notation Lwz , and incoming stream Sw is the incoming vehi-
cles outside the queues with each second. Turning rate twz 
determines how much ratio of the vehicles will be selected 
from the incoming stream for going different target incom-
ing links. The speed of the leaving traffic flow is FL,wz , and 
te is defined to remove all the waiting vehicles in the queue 
and incoming vehicles from outside the queues.

Thus, Eq. (2) can be created with te , i.e., the incoming 
vehicles and waiting vehicles should be equal to the leav-
ing vehicles in te at the k time slice (Eq. (2)):

L k S t t k F t kwz w wz e L wz e
( ) + ( ) = ( )

, .  (2)

Solving te from Eq. (2) (Eq. (3)):

t k
L k

F S te
wz

L wz w wz

( ) =
( )
−,

.  (3)

Some cases for updating queues can be discussed 
based on Eq. (3).

Case 1: 0 < te (k) < Ts . Where time slice Ts is a part of 
cycle time Tc and gwz can represent the status of a traffic 
light as in Eq. (1). All the waiting vehicles on the path 
will be removed in the period Ts − te (k) and the incoming 
vehicles can also be removed in the , if the traffic light is 
green (gwz = 1). Otherwise, any vehicles cannot leave the 
intersection if the traffic light is red (gwz = 0). The updated 
queue length Lwz (k + 1) can be expressed (Eq. (4)):

L k L k g k F t k

g k S t T t k S t
wz wz wz L wz e

wz w wz s e w

+( ) = ( ) − ( ) ( )

− ( ) − ( )( ) +
1 ,

wwz sT .
 (4)

Case 2: te (k) ≤ 0 or te (k) ≥ Ts . Removing all the waiting 
vehicles and incoming vehicles in the period Ts is nor pos-
sible even while the traffic light is green. Thus, it is simpler 
to consider the updated queues in the period Ts (Eq. (5)):

L k L k g k F T S t Twz wz wz L wz s w wz s+( ) = ( ) − ( ) +1 , .  (5)
Fig. 1 General structure of a single intersection
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Case 3: te (k) = 0. The initial queue length Lwz (k) = 0 
results in te (k) = 0 from Eq. (3). This situation mainly 
depends on whether the speed of leaving vehicle stream 
FL,wz is larger or not, compared with the speed of incom-
ing vehicle stream Swtwz . The difference between them 
can be defined as FSwz . If the sign of FSwz is positive, then 
the queue length will keep empty. However, if it is nega-
tive, then the queue length will be increased even though 
a small part of the vehicle stream is leaving the intersec-
tion with the speed FL,wz . Otherwise, if it is 0, then the 
queue will remain 0 during this period. The queues can be 
updated in period Ts (Eq. (6)): 

L k
g k S t T S t T FS
L k FS
g k

wz

wz w wz s w wz s wz

wz wz

wz
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3 Traffic control methods
3.1 Constant strategy
As aforementioned before, the constant strategy is that 
the time interval of green light or red light is fixed and 
periodical for the incoming links. In general, the simple 
traffic light controllers are what are known as electro-me-
chanical signal controllers, which are utilized worldwide 
in reality nowadays, unlike computerized signal control-
lers. These controllers use dial timers that have fixed, sig-
nalized intersection time plans. The plans can be sched-
uled according to the scale of the traffic flow through the 
intersection in history. This traffic light can only store 
only a one-time plan while it is working, which is not so 
efficient to control the traffic flow when the scale of traffic 
flow changes on some occasions such as holidays, acci-
dents, and bad weather. In this case, the specific actions 
for the signal controllers are generated, and it will be 
explained in later research.

3.2 Game theoretical strategy
In game theory, the traffic management problem is con-
structed as a gameplay problem where incoming links are 
regarded as the players. As is known that there are 4 play-
ers in this case from Fig. 1, and the decisions of these 
players represent the status of traffic control light (red 
and green) for each directional path. The notation indi-
cates the status of a traffic light for the directional path. 
Thus, the decision vector for each player  can be combined 
by the status of traffic light of each path belonging to its 
incoming link (Eq. (7)):

d g g g gw w w w w= ( )1 2 3 4 ,  (7)

where dw is a decision vector with 16 possible values since 
it combines 4 bits binary code gwz .

The cost function can also be defined for the goal of 
passing maximum vehicles, the same as minimum queues, 
which corresponds to the smallest cost value in the cost 
function. However, it has the greatest cost value if the traf-
fic light is red since the corresponding path will gather 
maximum vehicles without any passing vehicles. Thus, it 
can be described as (Eq. (8)): 
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where Cwz is the capacities defined as the largest queue 
length and Jmax is a great constant which is far larger than 
general cost value.

The cost function of each player is derived from Eqs. (7) 
and (8) (Eq. (9)):

J d Jw w wz
z

( ) = ∑ .  (9)

A rational optimal strategy called Nash equilibrium 
in game theory can be generated to balance the cost of 
each player. The levels of the players are the same in this 
non-cooperative game, and the players cannot improve the 
interest any more with other decisions once the Nash equi-
librium is reached among the players (Başar and Olsder, 
1998). The Nash equilibrium solution can be got (Eq. (10)):

d d d d J d d d d
d

w
i

1 2 3 4 1 2 3 4

* * * *, , , argmin , , , .( ) = ( )  (10)

In such a high quantity of decision-combination, it is 
quite common to get not only one solution of Nash equilib-
rium. However, only one Nash equilibrium solution can be 
selected for calculating, and the minimum average value 
of four players should be chosen (Eq. (11)):

d d d d J
d

i
ii

1 2 3 4

1

4

4* * * *, , , argmin .( ) =
=
∑  (11)

3.3 Reinforcement Learning
Reinforcement Learning (RL) is a learning method 
in which agents learn a policy π(s) = a that mapping to an 
action from the current state of environment s. The agents 
have to find an optimal policy π* and the corresponding 
action will be taken to maximize the cumulative reward 
r (s, a). The SARL with Q-learning algorithm is imple-
mented in such a dynamic environment since it is an online 
method, and the optimal actions are updated in a repeated 
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process. The Q-function is the core of Q-learning, which 
reflects the relation between state and action. Due to 
the uncertainty of its parameters in a dynamic environ-
ment, the Q-function can start with an arbitrary Q0 and be 
updated at iteration step t as follows (Eq. (12)):
Q s a Q s a

r Q s a
t t t t t t

t a t t t

+

+

( ) = −( ) ( )
+ + ( ) 

1

1

1, ,

max , ,

α

α γ
 (12)

where α ∈[ ]0 1,  is the learning rate, which determines 
to what extent newly acquired information overrides old 
information. In general, the agent learns nothing if α = 0, 
while a factor of 1 makes the agent consider only the most 
recent information. The discount factor γ ∈[ ]0 1,  deter-
mines the importance of future rewards. If γ = 0, then the 
agent only considers the current reward which is short-
sighted, while a factor approaching 1 will make it strive 
for a long-term high reward. As can be seen from Eq. (12), 
the Q-values corresponding to the pair of current state and 
action is updated according to the previous Q-values and 
new feedback reward. Meanwhile, ε-greedy algorithm can 
be applied to find the optimal action while the Q-values 
converge the maximum point after all state-action pairs 
( st, at ) are visited as many as possible and also balance 
the exploration of a new state with random action. That is 
described in as follows (Eq. (13)):

a
Q s a

t
t t=

( ) −



argmax ,
,

1 ε
εrandom action

 (13)

where ε ∈[ ]0 1,  is the exploration probability, which deter-
mines how fast the agent explores the external environ-
ment. The agent exploits the optimal action based on the 
highest Q-values with the probability of 1 − ε. Otherwise, 
the agent chooses a random action to explore the external 
environment with probability ε.

State: defined as st , which reflects how the traffic situa-
tion in the environment at the time step t, in specific, how 
many vehicles are in the queues or pass the intersection 
is considered in this research. The reward function and 
actions of the agents are determined by the definition of 
the state space S s s sn1 2, ... .

Action: defined as at , action space A a a an1 2, ... , which 
determines how much reward the agent can get, and the 
state of the environment ate the time step t + 1. In this 
case, controlling traffic lights is regarded as the actions of 
agents, which is similar to the decision vector as in Eq. (7) 
in game theoretical strategy part.

Reward: defined as rt , which indicated how much positive 
benefits the agent can receive to control traffic flow more 

efficiently after they observe the state of the environment 
and take the selected actions. In general, the reward func-
tion is reverse to the cost function in game theoretical strat-
egy, and it can be such as queue length, cumulative delay or 
throughput (i.e., the number of vehicles that go through the 
intersection). The reverse of the cost function of the player in 
Eq. (9) can be the reward function of the agent, which would 
find the maximum reward instead of minimum cost.

Configuration of input parameters such as initial 
Q-values Q0 , state s0 and the number of calculation iter-
ations is the first step in the RL procedure. Then the 
actions will be selected based on ε-greedy algorithm as in 
Eq. (13). After implementing these actions from optimal 
policy, the new state will be updated and the reward will 
be received by the agent. This process will be repeated 
until finish the iterations. A Single Agent Reinforcement 
Learning (SARL) algorithm is shown in Algorithm 1.

4 Implementation
4.1 Parameters
The parameters are shown Table 1 and Table 2. Table 1 
shows the collision rate parameters Y ( w1, z1, w2, z2 ), ( w1, z1 ) 
represents the first bent track where the vehicles are going 
to the target incoming link z from the initial incoming 
link w, similar to ( w2, z2 ) which represents the second 
bent track. The value in Table 1 represents how much per-
cent of the speed of the vehicle stream is reduced while 
two vehicles flow pass through the intersection from dif-
ferent directions at the same time. If the value is 0, then 
these two vehicle flow cannot be allowed to pass the inter-
section at the same time. Similarly, if it is 1 and they can 
both pass without any collision or interference. That can 
be simply expressed as:

F F w z w z
L w z L w z w z, , ,

, , , ,1 1 1 1 2 20

1 1 2 2= ( )∏  (14)

Algorithm 1 Q-learning with a single agent

Result: The optimal action of the current state.
Initialization: initialize Q-function Q0 , initialize state
                         s0 , number of iterations X;
While Iteration counter c < X do
           Choose a random number m∈[ ]0 1,

           If m∈[ ]ε ,1  then
                         a Q s at t t= ( )argmax , ;
           Else
                         at = random action
           End
           Implement the corresponding action at ;
           Get the new state st+1 and the reward rt ;
           Update Q-function;
           c = c + 1;
End
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where F
L w z, ,1 1 0

 is the speed of the vehicle stream that 
would leave the intersection without disturbing by any 
other vehicles on other bent tracks.

The initial value of turning rate twz , queue length Lwz , 
and capacities Cwz are shown in Table 2, as well as the 
incoming stream Sw in the last column. Turning rate twz 
determines how much ratio of the incoming stream Sw will 
be split into a different path. E.g., the values of turning 
rate twz are (0, 0.5, 0.5, 0) corresponding to row w = 2 and 
Sw = 2, thus, the split vehicle stream for path 1, 2, 3, 4 
of incoming link 2 is (0, 1, 1, 0) respectively. In specific, 
the value is (0.5, 33, 100) when it comes to the first row and 
the second column, which means the initial queue is 33, 
and capacity is 100 for this bent track (2-3).

4.2 Results
After implemented in Matlab, the performance of the con-
stant strategy, game theoretical strategy, and SARL algo-
rithm are compared.

As can be seen in Table 3, the optimal decimal deci-
sions or actions in each incoming link of the intersection at 
each time slot ki , i = 1,…,4 for these methods, S1 , S2 and S3 

represent constant strategy, game theoretical strategy, and 
RL algorithm respectively. At the time slot k1 , the deci-
sions are [6 0 0 0] corresponding to S1, which stands for the 
status of a traffic light for each incoming link respectively. 
Specifically, 6 represents the controlling of traffic light of 
the incoming link w = 1, the corresponding binary code of 
6 is [0 1 1 0], so the traffic lights are [red green green red] 
respectively. Thus, all the status of traffic light can be con-
trolled by the generated code in these methods.

Fig. 2 shows the Q-values from Q-function of all the 
permissible actions in a long-term iteration of SARL algo-
rithm, which corresponds to the current state during the 
different time slots in the whole cycle time. The sub-fig-
ure for k1 slot can be considered as an example to be intro-
duced. Each curve represents the Q-values of a permissible 
action which are exploited and explored based on Eq. (13) 
and there are 112 permissible actions according to the col-
lision rate in Table 1 corresponding to 112 curves in this 
sub-figure. This can be obvious that all the curves trend to 
be convergent as the iterations increase (i.e. 50000 itera-
tions in one time slot), and the optimal action correspond-
ing to the maximum Q-values will be selected in the end.

Table 1 Initial value of collision rate Y ( w1, z1, w2, z2 )

( w1, z1 / w2, z2 ) (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)

(1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1,2) 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1

(1,3) 1 1 1 1 1 1 0 0 1 1 0.9 0 0 0 0.8 1

(1,4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(2,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2,3) 1 0 0 1 1 1 1 1 0 1 0.9 0 1 0 0.8 1

(2,4) 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1

(3,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3,2) 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1

(3,3) 1 1 0.5 1 1 0.5 1 1 1 1 1 1 1 1 0.9 1

(3,4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(4,2) 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1

(4,3) 1 1 1 0.5 1 1 0.5 1 1 1 0.9 1 1 1 1 1

(4,4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3 Comparison of decimal decisions in one cycle 
with three strategies

ki / Sj S1 S2 S3

k1 [6 0 0 0] [0 13 6 4] [0 13 6 4]

k2 [0 13 0 4] [0 13 6 4] [0 13 6 4]

k3 [0 0 6 0] [6 1 4 4] [6 1 4 0]

k4 [0 9 0 6] [0 13 6 4] [0 13 6 4]

Table 2 Initial value of turning rate twz , queues Lwz , capacities Cwz and 
incoming stream Sw

w / z 1 2 3 4 Sw

1 0, 0, 25 0.5, 33, 100 0.5, 83, 250 0, 0, 100 2

2 0.25, 33, 100 0, 0, 25 0.25, 33, 100 0.5, 83, 250 3

3 0, 0, 250 0.9, 33, 100 0.1, 8, 25 0, 0, 100 3

4 0, 0, 100 0.9, 83, 250 0, 1, 33, 100 0, 0, 25 2
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