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Abstract

The conducted literature review aimed to provide an overall perspective on the significant findings of past research works related to 

vehicle crashes and prediction models. The literature review also provided information concerning past road safety research methodology 

and viable statistical analysis and computing tools. Though the selection of a specific model hinges on the objective of the research and 

nature of the response, when compared to statistical modeling techniques, Artificial Neural Networks (ANNs), which can model complex 

nonlinear relationships among dependent and independent parameters, have been witnessed to be very powerful.

Keywords

crash prediction models, Artificial Neural Network, statistical methods, road safety, soft computing tools, methodological issues

1 Introduction
Mobility is essential for welfare, and passengers demand 
safe, efficient, and reliable transport systems (Kiss et 
al., 2013). Crash prediction models significantly contrib-
ute to road safety, from establishing relationships among 
crashes and different covariates to predicting values 
(Geedipally et al., 2012).

The article's main aim is to compile methodological 
components that can be used in further research and pro-
vide an overall perspective on the significant findings of 
past research works related to vehicle crashes and predic-
tion models (Szabó and Török, 2020). The conducted liter-
ature review also aimed to provide an overall perspective 
on the significant findings of past research works related 
to vehicle crashes and the effect of geometric road features 
on the severity and the number of crashes. The literature 
review also provided information concerning past road 
safety research methodology viable statistical analysis 
techniques. It also aims to describe the Artificial Neural 
Network technique as a Cesrobust modeling tool.

In recent years, considerable research works have been 
conducted on crash prediction models. With the increase 
in computers' computing capability, many researchers 
attempted to mimic the human brain's functioning using 
Artificial Neural Network tools. Few experts believe that 
this approach is at the nascent stage but hold promise for 
the analysis of the future problems.

2 Crash data and methodological issues
In the past years, crash data and methodological issues 
were highly discussed. They were proven to be sources of 
errors in crash models, leading to erroneous forecasting 
results and wrong inferences related to factors contribut-
ing to a vehicle crash.

2.1 Over-dispersion and under-dispersion
Overdispersion means that variance is higher than the 
mean of the crash data. Over-dispersion is mainly caused 
by the heterogeneity of the subjects (Agresti, 2002). The 
number of crash frequencies is highly skewed. An esti-
mated overdispersion parameter would determine a suit-
able modeling technique, and such type of data is usually 
modeled with a negative binomial method.

Crash data is sometimes characterized by under-dis-
persion. Under-dispersion is when a variance is lower 
than the mean of the crash dataset. It is not as common as 
overdispersion.

2.2 Temporal and spatial correlation
Crash counts are influenced by temporal factors such as 
economy, weather, traffic flow, and crash reporting prac-
tices (Lord and Persaud, 2000). Ignoring temporal correla-
tion could lead to loss of information and models of dis-
torted risk-factors (Usman et al., 2011).
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Road vehicle crashes can occur at a specific time and 
location but are affected by comprehensive interaction 
among spatial factors like human factors, spatial road 
environments, and other factors (Hong et al., 2013).

2.3 Low sample mean and small sample size 
Crash datasets are mostly characterized by small sample 
size and low sample mean values. (Lord and Miranda-
Moreno, 2008) Crashes are considered rare events, and 
data collection is expensive because of these two main 
reasons; only a few crashes can be observed for any study. 
The low sample mean is caused by too many zero-crashes 
registered and high skewness.

3 Literature review
3.1 Works done based on statistical methods
Mountain et al. (1996) considered G.L.M. modeling to 
estimate common crashes, and an empirical Bayes proce-
dure was applied to improve the estimates.

Turner and Nicholson (1998) described the implemen-
tation of G.L.M. models to forecast specific crash types at 
junctions. The result showed that generalized linear mod-
els of separate crashes are better than models of the total 
crashes. Jones and Jørgensen (2003) implemented a regres-
sion model developed recently, which measures multiple 
influences on casualty outcomes, to introduce the potential 
of multilevel models. Chin and Quddus (2003) described 
using the Random-Effect Negative-Binomial (RENB) 
model to identify elements that affect intersection safety. 

Caliendo et al. (2007) developed crash-prediction mod-
els namely Negative-Binomial, Poisson, and Negative-
Multinomial regression models to the model frequency of 
crash occurrence. The models appeared to be useful for 
many applications. 

Milton et al. (2008) applied the mixed logit model and 
demonstrated a substantial promise as a modeling tool in 
road safety studies. 

Berhanu (2004) carried out an extensive crash study on 
the Addis Ababa-Nazareth road. He tried to fit both qua-
si-Poisson and Negative-Binomial models, using only one-
year crash data and concluded that the Negative-Binomial 
model was generally preferable. 

Tuladhar and Justo (1981), Kadyali et al. (1984), and 
Chandra et al. (2004) modeled crashes using regression 
techniques.

3.2 Works done based on Artificial Neural Network
Hashemi et al. (1995) formulated a logistic regres-
sion model, multiple discriminant analysis, and a neural 

network to predict container-ship crashes. The neural 
network has shown a better performance than the oth-
ers. Delen et al. (2006) employed Artificial Neural 
Networks and all models, compared to a model with a 
five-category outcome variable, were witnessed to have a 
better predictive capability. 

Cansiz and Easa (2011) targeted their study mainly to 
forecast collision-frequency on the vertical curves com-
bined with horizontal tangents using ANNs. It is wit-
nessed that Artificial Neural Network models have the 
lowest mean-square-error value compared to the statisti-
cal models (Moghaddam et al., 2011).

Bayata et al. (2011), Akin et al. (2017), Moghaddam et al. 
(2011), and Chiou (2006) used Artificial Neural Networks 
to model crashes and identified crash-related factors. 

Chang (2005) employed an Artificial Neural Network 
model and a negative-binomial model to analyze crash 
data. The Artificial Neural Network model was better for 
locations with one or more crashes when the negative-bi-
nomial model was slightly better for zero crash locations 
with no crashes.

4 Modeling techniques
The most used crash prediction models are explained in 
the following subtopics, from basic ones to mostly prac-
ticed and state-of-the-art ones.

4.1 Multiple linear regression model
Linear regression is the fundamental modeling tech-
nique in crash data modeling. It is not commonly utilized 
because crash data usually violate the linear regression 
analysis assumptions, for instance, normal error structure 
and constant error variance (Al-Qadi et al., 2008). Its gen-
eral form is given by Eq. (1):

y xit
k

k itk it� � �� �� � � ,  (1)

where for i = n observations:
•  yit : number of observed crashes in the segment i at 

time t ;
•  xit : explanatory variables or factors contributing to 

crashes;
•  β° : intercept (constant term);
•  βk : regression coefficients;
•  εit : the model's error term (also known as the residuals).

4.2 Poisson regression model
Crash data are count data, and the traditional regression 
models are not suitable because they do not account for 
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heterogeneity among observations (Elvik, 2011). Poisson 
regression assumes that the observations' mean and vari-
ance are equal (Moksony and Hegedűs, 2014). The general 
form of Poisson regression is explained by Eq. (2):

P n ie
ni

i� � � �� �� �

!
,  (2)

where:
•  P ( ni ): probability of n number of crashes occurring 

at segment i ;
•  ni : number of observations per time period;
•  λi : expected crash-frequency on the segment i .

λi is expressed with Eq. (3):

� �i EXP� � �xi ,  (3)

where:
•  xi : a vector of independent variables;
•  β : a vector of coefficients of the independent variables 

xi . 

4.3 Negative binomial (Poisson-gamma) model
Crash data have unique behavior like over-dispersion 
(Shirazi et al., 2016). Overdispersion is when a variance is 
greater than the mean of the observations. Underestimation 
or deflation of standard errors of estimates is caused by 
overdispersion (Hilbe, 2011).

Because of overdispersion associated with Poisson 
model usage, researchers usually consider the negative 
binomial model a potential alternative (Agresti, 2007).

The negative binomial (Poisson-gamma) distribution 
has the same 'sample space' as the Poisson distribution and 
has an additional parameter used to model the variance. 
This parameter is referred to, unsurprisingly, as the dis-
persion parameter (Gardner et al., 1995). The model is spe-
cialized by Eq. (4):

yit it~ ,Poisson �� �  (4)

where:
•  yit : the number of crashes observed in the segment 

i at time t.
•  θit : expected Poisson-rate, which is the expected 

crash-frequency for the segment i at time t.

The Poisson-rate is modeled as a function of the covari-
ates following the log link shown in Eq. (5):

log ,� � � �it
k

k itk itx� � � � �� �  (5)

where β° is called the intercept. The regression coefficients 
βk are unknown parameters that are estimated from a set of 
data. εit is the error-term for the segment i at time t.

4.4 Poisson log-normal model
Poisson log-normal regression models have been pro-
posed recently in highway traffic safety analysis as a bet-
ter means to handle low sample mean, compared to nega-
tive-binomial (Poisson–gamma) models (Aguero-Valverde 
and Jovanis, 2008; Lord and Miranda-Moreno, 2008; Ma 
et al., 2008; Miaou and Lord, 2003). Even though it gives 
greater flexibility, the marginal distribution Poisson-
lognormal models don't have closed-form like Poisson-
gamma models, making the model estimation more com-
plex (Aguero-Valverde, 2013). The Poisson-log-normal 
model is like the Poisson-gamma model, except that the 
Poisson-rate is modeled by log-normal distribution given 
in Eq. (6) (Aguero-Valverde, 2013):

log ,� � �it
k

k itk itx v� � � � �� �  (6)

where vit is the random effect.

4.5 Zero-inflated Poisson and negative-binomial model
It is ubiquitous to encounter crash data containing exces-
sive zero observations. Since the number of zeros is greater 
than expected in using the negative binomial regression or 
Poisson regression models, they are called zero-inflated 
data (Jang et al., 2010). This method has been applied by 
many researchers recently, and the following are among 
them, Kumara and Chin (2003), Lord et al. (2007), Huang 
and Chin (2010), Jiang et al. (2013), and Xu et al. (2017).

4.6 Conway-Maxwell Poisson regression model
This method is an extension of the Poisson regression method 
and was introduced by researchers to analyze under-dis-
persed or over-dispersed count data (Lord et al., 2008). The 
method was applied by Boatwright et al. (2006) and Lord 
and Guikema (2012).

4.7 Generalized linear model
Generalized Linear Models with negative-binomial 
error distribution have been used for road safety anal-
ysis (Gardner et al., 1995; Geedipally et al., 2012; 
Hilbe, 2011; Shirazi et al., 2016; Wood, 2002). G.L.M.s 
with log link function and negative binomial distributions 
are widely used to relate crashes with explanatory vari-
ables (Wood, 2005; Maher and Summersgill, 1996).
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The Generalized Linear Model consists of three ele-
ments. A linear predictor, an exponential family of prob-
ability distributions, and a link function (Aliakbar Golkar 
and Valizadeh Haghi, 2011).

4.8 Random parameter model
The random-parameters negative-binomial regression 
model allows to account and correct for heterogeneity 
that can occur from different factors (Anastasopoulos and 
Mannering, 2009).

Greene and Hensher (2007) have developed estimation 
procedures to incorporate random parameters in Poisson 
and negative binomial count-data models and to account 
for heterogeneity with random parameters.

4.9 Artificial Neural Networks (ANNs)
They are made of parallel distributed information pro-
cessing systems, mimicking human brains' nature, 
which can model complex nonlinear relationships among 
dependent and independent parameters. Errors are very 
low as the function works based on error backpropaga-
tion (Moghaddam et al., 2011).

Numerous researchers applied the method in safety 
analysis and crash modeling. A few of them are Hashemi 
et al. (1995), Delen et al. (2006), Moghaddam et al. (2011), 
Bayata et al. (2011), Cansiz and Easa (2011), Zeng et 
al. (2016), and Chakraborty et al. (2019).

4.10 Hybrid intelligent genetic algorithms (G.A.s)
Liyan and Chunfu (2009) came to the conclusion in 
their study that the genetic algorithms' accuracy and 

generalization abilities are better than a neural network. 
Amiri et al. (2020) concluded that even though ANNs out-
smart G.A.s, they model high severity crashes better than 
Artificial Neural Networks. 

Many recent studies tried to combine the best out of these 
two methods in improving the learning of ANNs by G.A.s.

5 Conclusions
This paper has presented a review of crash prediction mod-
els. In the past few years, many statistical methodological 
innovations have been established, holding a great prom-
ise to enhance our understanding of the factors that affect 
crash frequencies.

In statistical modeling techniques, it is assumed that 
there is a relationship between the dependent and inde-
pendent variables, which may sometimes be challenging 
to get in case of complex crashes. If this assumption is 
violated, it will lead to erroneous results. 

The selection of a specific model hinges on the research's 
objective and the nature of the response compared to sta-
tistical modeling techniques. Artificial Neural Networks 
(ANNs), which can model complex nonlinear relation-
ships among dependent and independent parameters, have 
been witnessed to be very powerful.

Few researchers believe that this approach is at a 
nascent stage but hold promise for the analysis of the 
future problems.
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