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Abstract

Safe autonomous operation is a major challenge for today's technologies. In order to be able to define and evaluate the requirements 

of these technologies, a systematic and methodical approach is required. VISSE has developed such an approach over several years, 

which is now to be evaluated on the basis of various use cases. Students of the course of studies "Safety and Systems Engineering" have 

applied these procedures to a defined use case in a student project of a master study course. Driving scenarios for a road intersection 

were defined and safety critical situations were identified, analyzed and evaluated at ZalaZONE. The analysis and test results have shown 

the possibility to improve a used sensor concept in beforehand. This offers the opportunity to reduce the complexity of the driving 

scenarios respectively to avoid unknown situations.
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1 Introduction
The Vienna Institute for Safety and Systems Engineer- 
ing (VISSE) has been working on the topic "Inherent 
System Safety for Autonomous Systems" for several years. 
Students of the master study course "Safety and Systems 
Engineering" are partly integrated into these research 
activities. In the lecture "Interdisciplinary Safety Project" 
of this master study program, students were assigned to 
conduct a "Systems (of Systems) Safety Analysis" for a 
road intersection with autonomous vehicles.

Several critical situations in a defined driving scenario 
had to be identified, analyzed, and evaluated according 
to a new systematic-methodical approach, developed by 
VISSE. The evaluation part was executed at ZalaZONE. 
Our research partners Budapest University of Technology 
and Economics and ZalaZONE Proving Ground from 
Hungary, as well as our Austrian cooperation partner 
TeLo GmbH in Gersdorf, supported this study project.

ZalaZONE, the Hungarian test track, is designed 
according to a complex criteria set to fulfill the require-
ments of testing autonomous vehicle systems (Steinmetz et 
al., 2011). Following this, the test track has numerous test 
facilities that can ensure a wide range of test conditions. 

The proving ground has been designed based on the spec-
ifications of the most important industrial actors and sci-
entific organizations in Hungary. The proving ground is 
constructed on a 265-hectare area and has the follow-
ing testing facilities: High-speed oval, Dynamic surface, 
Braking surfaces, Handling courses, Motorway section, 
Rural road, Smart City Zone (Szalay et al., 2019).

The applied approach was originally developed by 
VISSE for a system (of systems) safety analyses in the rail-
way sector for safe autonomous people mover operations. 
This safety approach will now be transferred to autono-
mous operation in the road traffic. This student project is 
an important building block for demonstrating that this 
approach also works in the more complex area of road 
traffic. This paper gives an overview of the approach and 
important results of the tests at ZalaZONE.

Section 2 describes the safety analysis approach to 
identify critical situations and the resulting safety goals 
for avoiding accidents and incidents. Section 3 refers to 
the exact calculations of the critical situation with respect 
to the existing sensor technology and the derivation of 
safety requirements.
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Section 4 describes the identification and classification 
procedure with the Yolo software. The test scenarios per-
formed at ZalaZONE and the evaluation of the test data 
are described in Section 5. Section 6 concludes the results 
and shows improvement possibilities.

2 SoS safety analysis approach
The challenges for an autonomous world lie on the one hand 
in defining the necessary legal aspects and, on the other 
hand, in coping with the high degree of technical complex-
ity (Bogya et al., 2019). Autonomous systems can be a con-
crete and immediate threat to human life. Therefore, the 
state is obliged to set up a legal framework for the develop-
ment and evaluation of these systems to ensure the human 
right to life (García, 2002).

Current functional safety standards will remain import-
ant, but they do not cover the overall-safety aspects. The 
ISO 26262 (2018) safety standard for road vehicles defines 
functional safety as an absence of unreasonable risks due 
to hazards caused by malfunctioning behaviour of E/E sys-
tems. It provides requirements and guidance to control 
random hardware failure and to avoid systematic faults. 
Functional safety refers to that part of safety that depends 
on the correct functioning of the safety-related system. 
Functional safety only covers a small part of the overall 
safety. That means, in the context of autonomous driving, 
not only endogenous hazards have to be considered, but 
also exogenous hazards have to be identified. Safety must 
be considered beyond the system boundaries of an E/E sys-
tem, respectively, of a vehicle. The safety of autonomous 
systems is more than a component and/or a system prop-
erty; it is a System of Systems property.

Accordingly, the ISO/PAS 21448:2019 (2019) Safety Of 
The Intended Function standard answers some of the ques-
tions related to the safety of automated vehicle functions. It 
proposes to divide the space of the possible operation sce-
narios of the investigated system into known, unknown, 
safe, and unsafe scenarios. Based on this, the main objective 
of the approach recommended by the standard is to extend 
the set of known and safe scenarios as much as required. 
However, we have to mention that the infinite spread of 
autonomy of cooperative systems results in an infinite num-
ber of possible scenarios indeed. Therefore, further model 
development efforts are needed to combine the bottom-up, 
inductive, and top-down, deductive analytical safety appro- 
aches (ben Othmane et al., 2013; Zöldy, 2018).

The concept of systems used in functional safety stan-
dards has to be extended to larger systems by analytically 

considering all existing systems in a kind of a pre-defined 
super-system, their interdependencies, and emergences. A 
System of Systems (SoS) is a set of heterogeneous enti-
ties that operate independently to each other but related to 
each other on an undefined level. The identification of the 
SoS and all its possible entities, e.g. the EGO system, cars, 
cyclists, pedestrians and so forth, is the basis for safety 
analysis. Fig. 1 shows the process.

After the SoS definition, all the possible use cases in the 
SoS environment will be identified. A use case describes 
the service, which has to be provided by the EGO-System 
in its defined application (e.g., road intersection). It cov-
ers the complete driving scenario with all the necessary 
scenes. In each scene, possible situations are identified. 
Each situation is transferred into a critical situation trig-
ger by possible events that can occur. Such critical situ-
ations are the basis for a SoS Hazard identification. An 
SoS-Hazard is a critical situation that can cause injury or 
death to humans and/or loss of the EGO-System and/or 
other systems and/or damage to the environment.

Based on a subsequent risk assessment, necessary SoS-
Safety Goals will be derived. The SoS-Safety Goals provide 
the basis for safety requirements of all available entities, 
especially for the required technologies that are necessary 
for safe traffic. One of the most important technologies in 
the context of autonomous driving is the sensor concept.

3 Sensor evaluation
In the following sections, the investigation focuses on the 
requirement of "environment perception related sensor 

Fig. 1 SoS safety analysis approach
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systems" ( hereinafter mentioned as "sensor" ). Safety 
requirements for the sensor technology must be included 
in the appropriate specification according to a mature 
requirements engineering process. Additional require-
ments for the sensor system result from the required abil-
ity of the measured values and data. This results from the 
requirements of the neighboring "sister" systems for the 
sensors. The measured values and data must contribute to 
the fact that the environment can be captured by the func-
tional chain: sensor, sensor fusion, and semantic under-
standing (see Fig. 2).

There are four fundamental questions to be answered 
when defining the sensor requirements:

1. Which objects have to be recognized?
2. How big are these objects?
3. What are the smallest relevant dimensions of these 

objects?
4. At what distance from the EGO vehicle must these 

objects be recognizable?

Beyond the above-mentioned four aspects, the system 
should also fulfill the requirements related to the real-
time image processing in the case of transportation-re-
lated object detection processes. In accordance with this, 
the requirement specification needs to put considerable 
emphasis on the computational complexity and on the 
time demand of the applied object detection system model.

We note that beyond the response time of the system, 
the synchronization of the sensors is also a crucial issue 
in evaluating the safety characteristics of a sensor fusion 
based environment perception system. It is an outstand-
ingly important issue how we merge signals with different 
frequencies and how we utilize the intermediate data of 
the denser signals.

However, this study primarily focuses on the spatial per-
ception aspects of the detection process, especially consid-
ering the spatial extent and position of the detected object.

Accordingly, the dimensions of the objects are relevant to 
define the horizontal and vertical boundaries of the area that 
must be covered by the sensors in order to detect the object 

in the identified critical situation. In addition to the require-
ments for horizontal and vertical coverage, requirements for 
the resolution of the sensors are also important. The small-
est relevant dimensions are those that must be recorded by 
the sensors in order to enable the classification of the objects. 
An example to illustrate this: a bicycle is approx. 2 m long 
and 1.5 m high. An algorithm dealing with object classifica-
tion will not be able to recognize the bicycle as such unless 
the rods of the bicycle frame can also be recognized from 
the measured values and data. The smallest relevant dimen-
sion would, therefore, be 3 cm.

One way to answer these questions is described in 
detail in [8] in the context of self-driving railway vehicles.

This method was adapted and used for analyzing the 
identified critical situations in detail. Fig. 3 shows one of 
the analyzed critical situations in an intersection.

The chosen situation involves only one object (right-
hand vehicle in yellow, abbreviated A) that must be 
detected by the sensor concept. The following calcula-
tion, therefore, only reveals a part of the necessary sen-
sor requirements. The exhaustive application of the situ-
ation analysis method with the subsequent determination 
of the respective sensor requirements gives the complete 
requirements.

The method is briefly described by using this example. 
The EGO vehicle at the intersection must be able to either 
safely cross the intersection or stop at the stop line in good 
time. For this purpose, the vehicle A on the right must be 
recognized so far from the intersection that the EGO vehi-
cle can make a qualified decision. The range and opening 
angle of the sensors are thus largely determined by the 
speeds of the vehicles involved and the braking distance 
of the EGO vehicle.

The dimensions – length l, width w and height h – of the 
vehicles in the present situation must be roughly defined. 
While the dimensions of the EGO vehicle ( lEGO , wEGO , hEGO ) 
can be precisely determined, the dimensions of the vehicle 
approaching the intersection from the right-hand side ( lA , 
wA , hA ) must be determined based on a worst-case estimate 
to cover all possible variants of the object class car.

The trajectories of the EGO vehicle must be defined. 
This determines a critical time span, which affects the 
further calculation. Firstly, the speed of the EGO vehicle 
approaching the intersection is set. Based on the speed, 
the braking distance sBrake,EGO can be calculated. If the 
vehicle is to stop in front of the stop line in good time to 
avoid a crash, the EGO vehicle must decide at a distance 
sBrake,EGO ahead of the intersection whether it should stop or Fig. 2 Functional chain "Object detection"
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drive. The distance s∫,EGO is the length of the trajectory of 
the EGO vehicle through the intersection area including 
the distance sBrake,EGO before the intersection. At the end of 
s∫,EGO the EGO vehicle has reached the target speed. Then 
a driving profile has to be created, which defines the speed 
at which the EGO vehicle drives through the immediate 
intersection area. This gives the time span t∫,EGO. This is 
the time that the EGO vehicle needs to travel the distance 
s∫,EGO + lEGO. The length of the vehicle must be taken into 
account here since the EGO vehicle enters the dangerous 
intersection area with the front and leaves it with the rear. 
Now it can be calculated from which distance s∫,A vehicle 
A, which is approaching the intersection from the right-
hand side, could dangerously verge onto the EGO vehicle. 
Based on t∫,EGO and the speed vA of the vehicle A coming 
from the right, s∫,A can be calculated: s∫,A = t∫,EGO × vA. For 
the brake or drive decision, the EGO vehicle must fully 
capture the vehicle A at a distance of s∫,A from the poten-
tial collision point, by the sensors. Before one can deter-
mine the sensor requirements, a measuring time tMeas,EGO 
must be taken into account. During this time, the EGO 
vehicle determines the speed of the vehicle on the right. 
The approach speed of the EGO vehicle vEGO,0 influences 
the distance sMeas,EGO that the EGO vehicle travels during 
the measurement time. Similarly to this, vA sets the trav-
elled distance sMeas,A of the vehicle A within the investi-
gated time frame tMeas,EGO. The required range rsens of the 
sensors thus results from:

r s s d s ssens buf= + +( ) + +( )∫Break,EGO Meas,A A Meas,A

2 2

,
,  

where dbuffer is the distance between the stopping line and the 
potential collision point. The minimum vertical opening angle 
αsens,vert results from the sensor range rsens and the height of the 
right-hand vehicle hRV1: αsens,vert = 2 * arctan [ hRV1 / (2 * rsens )].

The determination of the minimum sensor resolution is 
not trivial. It is determined by the smallest relevant dimen-
sion of interest. This depends on the algorithms that pro-
cess the measured values and data. The discussion in the 
following section shows that a few pixels are sufficient for 
image object classification algorithms. (Pesci et al., 2011) 
dealt in their work with the processing of LiDAR data 
and empirically defined a formula that defines resolution 
requirements. If one wants to resolve a 15cm detail at a 
distance of 100 m, the LiDAR must have a horizontal and 
vertical resolution of 0.009°. LiDAR sensors for driving 
applications currently do not offer this. Further research 
efforts will still be necessary here to improve object rec-
ognition and resolution in this area. Subsequently, the cal-
culation method for determining the requirements in this 
area must be improved and expanded.

4 Object detection and classification
Object detection is the process of detecting objects and 
their bounding box in an image. A bounding box is the 
smallest rectangle of an image that contains an object 
completely.

A common input for an object detection algorithm is an 
image. A common output is a list of bounding boxes and 
object classes. For each bounding box, the model outputs 
the corresponding predicted class and its probability.

Fig. 3 Example of an identified critical situation at ZalaZONE
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In object recognition, precision means the probabil-
ity that the predicted bounding boxes match the detected 
boxes. Precision is also referred to as the positive pre-
dicted value and is calculated as the percentage of diag-
nosed objects out of all detected bounding boxes (includ-
ing the boxes included as 'false positive'). It measures how 
accurate the predictions are.

Recall is the true positive rate, also called sensitiv-
ity, which measures the probability that all objects will 
be detected. It is the percentage of all existing bounding 
boxes (including those not included as 'false negative') 
that are diagnosed. Recall measures how well all objects 
are found.

Choosing a threshold of accepted objects for preci-
sion and recall is always a compromise, as both parame-
ters are in a trade-off relationship. When a model detects 
pedestrians, a high recall rate is usually chosen so as not 
to miss a passer-by, even if this means stopping the car 
from time to time without a valid reason. When a model 
detects investment opportunities, high precision is chosen 
to avoid choosing the wrong opportunities, even if this 
means missing some.

YOLO (You only look once) was used for object recog-
nition on the test track. This object detection system, based 
on Convolutional Neural Networks, divides the image into 
regions and predicts bounding boxes and probabilities for 
each region. These bounding boxes are weighted with the 
predicted probabilities.

In YOLO, class possibilities are learned for individ-
ual images using bounding box coordinates, and recogni-
tion is performed by regression. YOLO divides each input 
image into a grid of size S × S. Each grid cell has the task 
of locating the object if the center of this object falls into a 
grid cell. YOLO simultaneously performs a classification 
and localization problem for each of the grid cells. Each 
grid cell predicts N bounding boxes and their confidence. 
The confidence reflects the precision of the bounding box 
and whether the bounding box actually contains an object 
despite the defined class. YOLO predicts the classification 
value for each box and class.

This predicts the total number of S × S × N boxes. If 
the confidence of the boxes is below a threshold value, the 
boxes are discarded.

The version 3 of YOLO used here works with 3 scales 
for the division into grid cells, where the size of the input 
image is reduced by 32, 16, 8 to detect small, medium and 
large objects, respectively.

This model has several advantages over classifi-
er-based systems (such as R-CNN (Girshick et al., 2014)), 

Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et 
al., 2017), where only the generated region suggestions are 
considered in the first step. This context-related information 
helps to avoid false-positive results.

Classifier-based systems analyze an input image in two 
steps:

1. identification of promising regions of interest (ROI) 
in an input image, which probably contains fore-
ground objects. This is done with a Region Proposal 
Network (RPN)

2. calculating the object class probability distribution 
of each ROI using a Classification Network - i.e., 
calculating the probability that the ROI contains an 
object of a particular class. Then the object class 
with the highest probability is selected as the clas-
sification result.

In contrast, YOLO considers the entire image at test 
time, so its predictions are influenced by the global con-
text in the image. It also makes predictions with a single 
network evaluation, unlike systems like R-CNN, which 
requires thousands of such evaluations for a single image. 
This makes it extremely fast.

However, YOLO has to struggle with smaller objects 
because of the way it detects objects. For example, it would 
have difficulty detecting individual birds from a flock. As 
with most deep learning models, it has difficulty correctly 
recognizing objects that are too different from the training 
set (unusual aspect ratios or appearance). The latest version 
used here, YOLOv3, can run at more than 170 frames per 
second (FPS) on a modern GPU at a frame size of 256 × 256.

YOLO was first released in 2015 (Redmon et al., 2016) 
and surpassed almost all other object recognition architec-
tures, both in speed and accuracy. Since then, the architec-
ture has been improved several times [YOLOv2 (Redmon 
and Farhadi, 2017) and YOLOv3 (Redmon and Far- 
hadi, 2018)]. The latest version, YOLOv3, has, among other 
things, predictions of boxes in various dimensions. In addi-
tion, the network has been greatly enlarged with 53 layers. 
The smallest bounding box size is 13 × 13 pixels.

As a platform for object detection, "TensorFlow 2" with 
the model "YOLOv3" was used. The 80 object classifica-
tions were used with the Microsoft COCO dataset (Lin 
et al., 2014) The weights of the pre-trained network were 
taken from the official "DarkNet GitHub Repository".

5 Test-scenarios and data-evaluation
According to the SoS Safety Analysis Approach, the entire 
intersection was demarcated, the driving scenarios were 
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defined, and the critical situations were identified before-
hand (Wagner, 2019). The sensor technology used on the 
EGO vehicle is an important basic element for identifying 
critical situations that are not addressed in detail in this paper.

Two critical situations were chosen for the tests at the 
ZalaZONE proving ground:

1. Situation 1 (see Fig. 3): A vehicle on the main road 
on the right-hand side (viewed from the EGO vehi-
cle) had to be identified in time to avoid an accident.

2. Situation 2 (see Fig. 4): A rolling football in front of 
the EGO vehicle had to be identified and classified in 
order to be able to draw conclusions about any fol-
lowing persons, to avoid an accident.

The test results were evaluated on the basis of the 
sensor data with the YOLOv3 software. In prepara-
tion for YOLOv3, the camera data was rendered from 
960 × 604 pixels to 256 × 256 pixels (Fig. 4), and an image 
brightener was used for the camera shots due to the rel-
atively dark environment. Microsoft COCO was used to 
classify the detected objects using a pre-trained network.

The camera data was first recorded using the 
GPU (Graphics Processing Unit) during the test drives 
and evaluated after the end of the test using YOLOv3. 

YOLOv3 was applied to the input images in a frame-
wise manner. Only the pre-trained network was used for 
the evaluation. There was no supervised learning by hand-
mapped bounding boxes from the input images to achieve 
a comprehensible result. The frames were then compared 
regarding the prediction probabilities and the detected 
objects from the COCO classification. YOLOv3 is able to 
evaluate the individual frames of the cameras in real-time. 
Cars and persons were detected very well and for the crit-
ical situation with very high probability.

Due to the triple scaling of YOLOv3, even relatively 
small objects could be detected if they were cars or per-
sons, although with a low predictive probability (e.g., in 
Fig. 4, the car at the right edge of the image with a predic-
tion probability of 0.7).

The football, appearing on the road in front of the EGO-
vehicle, was not detected regardless of their size. Although 
Microsoft COCO has a corresponding category for these 
objects ("football").

6 Conclusion
Both the test scenarios and the test results at ZalaZONE 
have shown that the SoS Safety Analysis Approach is 
also working in the more complex road traffic. On the one 
hand, critical situations could be evaluated in advance. 
On the other hand, it provides the possibility to improve a 
used sensor concept beforehand.

This offers the opportunity to reduce the complex-
ity of the driving scenarios because such an approach 
can avoid most of the unknown situations. Unknown sit-
uations in such complex SoS area can leave individual 
systems uncontrolled, leading to a completely new, for-
mally non-existing type of accidents, which we call SoS-
Accidents. A certain part of these are related to autono-
mous systems, and therefore would probably never occur 
in case of human control.

Many new findings were also gained during the tests 
at ZalaZONE. For example, an improvement of the 
results, especially for predictions in dynamic tests, can 
be expected by localizing the vehicle and sensor fusion of 
camera, GPS, and LiDAR data using Kalman filters.

The results of object recognition using YOLOv3 show 
the ambivalence of these methods based on convolutional 
neural networks (YOLO, Faster R-CNN): The convolution 
layers reduce spatial dimension and resolution. Therefore, 
the models can only detect relatively large objects. For small 
objects, the pre-trained networks have to concentrate on 
certain objects to achieve sufficient accuracy; on the other 
hand, the networks should work as universally as possible. 
A possible way out of this dilemma would be a situation 
analysis carried out in real time during autonomous driv-
ing and then the use of pre-trained networks for the respec-
tive detected situation; in the test cases, for example, a con-
centration (= weighting) on objects such as "car", "bicycle", 
"person", "bus" would be conceivable for the detected situ-
ation "road traffic", while other categories such as "tvmoni-
tor", "sofa", "toilet" would have a lower weight.Fig 4 Frame from the test series including recognized persons and cars 

with corresponding probability
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The results have also shown that autonomous systems 
can be an immediate threat to human life. Therefore, a 
legal framework for developing and evaluating systems 
for autonomous driving will be necessary to ensure the 

human right to life. The SoS Safety Analysis Approach 
is an important tool for the development of complex sys-
tems for autonomous driving and can also be extended to 
a safety case.
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