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Abstract
Having reviewed the international literature on data envel-

opment analysis (DEA), a non-parametric linear programming
method used for efficiency evaluation, the aim of the author with
the present article was to fill a gap by collecting and summariz-
ing the essence of the main variants of DEA applied in the trans-
port sector. Thus the DEA CCR, BCC and the Simar-Wilson
method are presented. DEA CCR enables the efficiency evalua-
tion under constant, DEA BCC under variable returns to scale.
The Simar-Wilson method, also referred to as the truncated
bootstrap method, is currently seen as the most reliable tech-
nique for hypothesis testing and confidence interval estimation
under DEA. Some extensions, like the super-efficient DEA, the
principal component analysis and the MNDEA are also high-
lighted. The variants included in the article were selected on
the basis of their application in the transport sector, of which
examples are also provided.
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1 Introduction
Data Envelopment Analysis (DEA) is a non-parametric linear

programming method used to determine the efficiency of a set
of companies as compared to a best practice frontier and was
introduced by Farrel [15] and Charnes, Cooper, Rhodes [11] in
the middle of the last century. Since its creation, it has been ap-
plied for the evaluation of a multitude of decision making units
(DMUs) in various fields, e.g. in the agriculture, in the bank
sector and in the health industry as well. As it can measure the
efficiency of multiple input – multiple output production units, it
has also been widely employed in the transport sector, especially
for the evaluation of airport, ports, railways and public trans-
port companies. In Hungary it is not very widespread though:
there are only two studies known to apply the method in the up-
per education and in the agriculture, respectively [26] and [10].
It shall, however, be mentioned that some other related meth-
ods like cost and performance management models have already
been discussed by Hungarian researchers [9].

Since its introduction, DEA has seen many variants, depend-
ing on the intention of the authors and on external conditions,
like the quantity and quality of available data on inputs and out-
puts. This article strives to present the essence of the most im-
portant variants of DEA applied in the transport sector, with spe-
cial emphasis on the most fundamental methods, CCR and BCC,
and the Simar-Wilson method, which is currently the most reli-
able extension of the original technique and is being employed
by more and more authors. Finally, some extensions of DEA,
like the super-efficiency method, the principal component anal-
ysis and the MNDEA are also highlighted, all of them with ex-
amples of application in the transport sector.

2 The basic method: DEA CCR
The basic idea behind the DEA efficiency estimator is the ra-

tio of outputs to inputs. A company is more efficient, if it can
produce a larger number of outputs with the same quantity of
inputs (output oriented approach), or else, if it can produce the
same amount of outputs with a smaller quantity of inputs (in-
put oriented approach). With this ratio in mind, the efficiency
of the observed DMUs can be evaluated by forming a best prac-
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tice frontier as based on the performance of the best achieving
companies and comparing the rest to them. This leads us to the
most basic DEA method, the CCR (named after the initial of the
authors, Charnes, Cooper, Rhodes in [11], the most vital char-
acteristic of which is that it deals with constant returns to scale.
This means that the DMUs investigated operate at the most effi-
cient scale size.

The idea presented in the previous paragraph can mathemat-
ically be described as follows ([13], [19]): let us assume that
there are n DMUs to be evaluated. Each DMU consumes m dif-
ferent inputs, and produces s different outputs. Thus e.g. DMU j

consumes xi j of input i, and produces yr j of output r. We also
assume that xi j ≥ 0, yr j ≥ 0 and for each DMU there is at
least one positive input and one positive output.

From these the ratio of outputs to inputs is used to measure
the relative efficiency DMU j=DMU0, the DMU to be evaluated
relative to the ratio of all the j=1,2,...,n DMU j s.

Thus the function to be maximised is:

max h0(u, v) =

s∑
r=1

ur yr0

m∑
i=1

vi xi0

(1)

where ur , vi are weights,
yr0, xi0 are the observed input/output values of DMU0 (the
DMU to be evaluated). We introduce the following constraints
so as to give a limit to the values:

s∑
r=1

ur yr j

m∑
i=1

vi xi j

≤ 1 (2)

for i = 1, 2, ..., n and ur , vi ≥ 0.
Using the Charnes-Cooper transformation this leads us to the

following equivalent linear programming problem:

max z =

s∑
r=1

µr yr0 (3)

subject to

s∑
r=1

µr yr j −

m∑
i=1

υi xi j ≤ 0

m∑
i=1

υi xi0 = 1

µr , υi ≥ 0

where (u, v) change to (µ,υ) as a result of the Charnes-Cooper
transformation. By virtue of the duality theorem in LP (where
z*= θ∗), (3) can be transformed into:

θ•
= min θ (4)

subject to

n∑
j=1

xi, jλ j ≤ θxi0 i = 1, 2, ..., m

n∑
j=1

yr, jλ j ≥ yr0 r = 1, 2, ..., s

λ j ≥ 0 j = 1, 2, ..., n

(4) is called the “strong disposal” or “weak efficiency” model,
as it ignores non-zero slacks. Should we want to take them also
into account, we have to use the following modified model, also
called the envelopment model:

min θ − ε

( m∑
i=1

s−

i +

s∑
r=1

s+
r

)
(5)

subject to

n∑
j=1

xi jλ j + s−

i = θxi0 i = 1, 2, ..., m

n∑
j=1

yr jλ j − s+
r = yr0 r = 1, 2, ..., s

λ j , s−

i , s+
r ≥ 0 ∀i, j, r

where ε is a non-Archimedean element, defined to be smaller
than any positive real number.

Using these formulae a DMU0 is efficient if and only if θ*=
1 and s−∗

i =s+∗
r = 0 for all i,r, and it is weakly efficient, if θ*= 1,

and s−∗

i , 0 and/or s+∗
r , 0 for some i and r in some alternate

optima [13]. Formula (5) represents the input-oriented DEA
CCR model (envelopment form). The output oriented model
is also very similar with the difference in the values to be maxi-
mized/minimized.

3 The BCC model
The DEA BCC (named after Banker, Charnes and Cooper in

[4]) model incorporates an additional constraint, the convexity
constraint:

n∑
j=1

λ j = 1 (6)

which enables to take into account the non-constant returns to
scale. Undoubtedly, in most of the cases the possibility of vari-
able returns to scale has to be considered. That is why sev-
eral studies employ both techniques at the same time, and if
the efficiency values do not match, there is scale inefficiency
and the companies at hand display variable returns to scale. In
these cases the original DEA CCR value can be decomposed
into scale inefficiency and “pure technical inefficiency” [12]. Ta-
ble 1. shows a selection of studies which apply CCR, BCC or
both of the methods in the transport sector.
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Tab. 1. Studies applying the CCR and/or the BCC DEA method

Source CCR BCC Transport mode

Adler and Berechman, 2001

[1]

X airports

Barros and Dieke, 2008 [7] X X airports

Barros, 2008. [5] X X airports

Cullinane and Wang, 2005.

[14]

X X ports

Jitsuzumi and Nakamura,

2010. [18]

X railways

Martin and Roman, 2001. [20] X X airports

Pacheco and Fernandes,

2003. [22]

X airports

Pina and Torres, 2001. [23] X urban public transport

Sampaio et al., 2008. [24] X public transport

Wu and Goh, 2010. [27] X X ports

Yoshida and Fujimoto, 2004.

[28]

X X airports

[source: own research]

4 The Simar-Wilson method
L. Simar and P.W. Wilson have realised that there is an aspect

of DEA that can be and also needs to be improved. They point
to the nature of the efficiency value determined by the DEA
method: in many studies the authors do not take into account
that it is not the result of a deterministic process and the out-
come of the calculations relies on the data observed, i.e. the
composition of the dataset [13]. That is why Simar and Wilson
have developed the truncated bootstrap method (also referred to
as the Simar-Wilson approach), which enables the researchers to
calculate a confidence interval along with their results, and the
efficiency values can also be corrected. An intermediate step in
the algorithm enables hypothesis testing later on as well.

It has to be noted that their approach is not the mere
application of the bootstrap known in statistics (to which
Simar and Wilson refer to as naive bootstrap), since un-
like in the linear regression model, the data generating
process, F , has bounded support over P , and also the
conditional density f(D(x,y|P) |x,η) has bounded support
over the interval (0,1), and is right-discontinuous at 1.

F the data generating process (DGP), F = F(P, f (x, y)),
P production set, whereP ≡ {(x, y) | x can produce y},
x denotes a vector ofp inputs,
y denotes a vector of q outputs,
η cylindrical coordinate of the probability density function,
D is the output distance function, D(x, y|P).

These constraints cause the naive bootstrap to give inconsis-
tent estimates. That is why Simar and Wilson have developed
their method which can be summarised as follows [13]:

1 Let us calculate the “traditional” DEA efficiency (D), utiliz-

ing e.g. the BCC method.

D(xi , yi | P̂) i = 1...n (7)

i the number of DMUs
P̂ refers to the production set and the application of the BCC
method.

2 If the DMU0 has not been part of the set involved in the cal-
culation (Sn), calculate the efficiency for DMU0 as well:

D(x0, y0 | P̂) i = 1...n (8)

3 Reflect the efficiency values about unity, and determine the
bandwidth parameter h needed in the next step for kernel den-
sity estimation. The reflection is necessary so as to enable us
to apply a (kernel) density function.

4 Applying the rules of bootstrapping and the kernel density
function with bandwidth value h, determine new efficiency
values (D∗

i ).

5 Create a new dataset as based on the efficiency values of
step 4.

y∗

i =
D∗

i yi

D(xi , yi | P̂)
; x∗

i = x (9)

6 Give a new efficiency estimate, as based on the new dataset
(P̂∗) created in step 5:

D∗(x0, y0 | P̂∗) (10)

Thus the previous steps have yielded a single efficiency esti-
mate relative to DMU0, on the basis of the new dataset created
with the bootstrapping method using a kernel density func-
tion.

7 Repeat steps 4-6 B times. This results in B number of effi-
ciency estimates relative to DMU0, as based on B different
datasets.

8 Determine the confidence interval (Ia). For this, calculate
âαand b̂α from

Pr(−b̂α ≤ D(x0, y0 | P̂∗) − D(x0, y0 | P̂) ≤ −âα | F̂(Sn))

≈ 1 − α (11)

where
Pr stands for probability,
1-α the required significance level,
Sn the set of the observed data.

Values âα and b̂αcan be found via sorting the values

D(x0, y0 | P̂∗) − D(x0, y0 | P̂) b = 1...B

in an increasing order and then deleting (α
2 · 100)-percent of

the elements at both ends of the list (hence the name “trun-
cated” bootstrap), and then setting -âαand - b̂αequal to the
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endpoints of the truncated, sorted array, with âα ≤ b̂α .
Then the (1-α)-percent confidence interval is:

D(x0, y0 | P̂) + âα ≤ D(x0, y0 | P) ≤ D(x0, y0 | P̂) + b̂α

(12)

Finally, the bias-corrected estimator can be calculated in the
following way:

ˆ̂D(x0, y0) = 2D(x0, y0 | P̂) − B−1
B∑

b=1

Db(x0, y0 | P̂∗) (13)

Should we be interested in the confidence intervals for all the
efficiency estimates of all the DMUs observed, then we can ob-
viously omit step 2, and it is computationally more cost-effective
to incorporate step 7 into step 6, i.e. calculating the “new” ef-
ficiency estimates (D∗(xi , yi qmid P̂∗)) in each bootstrapping
loop for each DMU, i=1...n.

The process presented above can be further improved by us-
ing an iterative approach in which a second-level bootstrap sam-
ple (S∗∗

n ) is generated from S∗
n in the same way as S∗

n was created
from Sn . Using S∗∗

n , a new confidence interval is determined (by
calculating the values â∗

a , b̂∗
a), and by repeating the first-level

bootstrap many times, the proportion of times can be established
when D(x0, y0 | P̂) is in this new confidence interval. The re-
sulting value (π̂(α)) can be used to estimate how many times
the original efficiency value is covered by the initial confidence
interval, Ia . We can search for a solution α̂ in the equation:

π̂(α̂) = 1 − α0 (14)

and create with this value the final, corrected confidence inter-
val, Iα̂ .

The truncated bootstrap method has been used for different
purposes in the literature. Obviously, it is excellent (and in the
present regarded as the only valid method) for the determination
of the confidence intervals and the bias-corrected efficiency esti-
mates. Hung et al. [17] for instance evaluate the efficiency of 31
Asian container ports with the DEA method, and correct for bias
inherent in the method and provide confidence intervals for the
estimated efficiency values with the Simar-Wilson technique. It
is worth noting that some ports which were ranked as efficient
in the first stage of the process (i.e. efficiency value = 1), proved
to be much less efficient when applying the bootstrap method,
while some ports gained a higher ranking in the second stage of
the process. The authors do not offer an explanation of the phe-
nomenon but the differences might be attributed to the fact that
the efficiency scores are biased in the first stage DEA, as there
might be some production feasibilities that are possible but are
not included in the sample [7].

Surprisingly, this use of the Simar-Wilson method cannot be
found in many studies yet. Most of the authors who employ the
technique, rather apply it for testing the parameters influencing
efficiency. Such statistical inference can be found in [7] which
examines the efficiency of 31 Italian airports over a time frame

of three years and uses the following equation to describe the
components of efficiency:

T Êi ≈ a + Ziδ + εi j = 1...n (15)

where
TEi technical efficiency of the i th firm,
a constant term,
Zi row vector of observed specific variables for

DMU j ,
δ weights,
εi statistical noise, and where ε j ≥ 1 – a – Z jδ.

Form (15) is then rewritten as:

θi,t = β0 + β1trendi,t + β2hubsi,t+

+β3W LUi,t + β4 privatei,t + β5 Northi,t + εi,t (16)

θi,t efficiency of DMUi in time period t ,
β0 constant term,
β j , j=1,..,5, weights,
trend the yearly trend,
WLU dummy variable, showing whether the airport is

a regional hub,
private dummy variable, showing whether the airport is

a private firm,
North dummy variable, showing whether it can be

found in the North of the country.
Very similar functional form can be found in [5] where again

the Simar-Wilson technique is utilized alongside with DEA for
the efficiency evaluation of 32 Argentinean airports, and in [6],
which investigates 27 European airlines.

The same approach is also taken by Odeck [21], who exam-
ines 18 Norwegian road toll companies and uses the truncated
bootstrap method to investigate the influence of different exoge-
nous parameters (the age of the toll company, the share of au-
tomatic vehicle identification, presence of passenger payment,
number of lanes) on efficiency.

Finally, a very interesting application of the truncated boot-
strap method can be found in [16] which examines the efficiency
of 179 German public transport companies. As based on previ-
ous work of Simar and Wilson [25] the authors point out that
if the ratio of CRS and VRS efficiency values is not unity then
one cannot determine whether the difference is the result of a
non-CRS efficiency, or it is simply caused by sampling varia-
tion. Thus after carrying out a traditional DEA analysis, the
authors employ the Simar-Wilson method to determine the re-
turns to scale of the decision making units. The robustness of
the results is also tested.

5 Some extensions to DEA
5.1 The super-efficient DEA
Traditional DEA does not fully rank the DMUs, that is, there

is no order provided between the efficient companies (since all
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receive an efficiency value of one). There are some cases, how-
ever, when such a rank would be desirable. That is why An-
dersen and Petersen [3] have developed the super-efficient DEA
method (also called A&P method). In this the best practice fron-
tier is created first without evaluating DMU0, and then with its
inclusion, the extent to which the envelopment frontier becomes
extended is investigated. Thus DMU0 can even be attributed an
efficiency value higher than unity.

An advantage of this method is that no a priori information
is needed to create a full rank of the DMUs. Adler and Berech-
man [1] evaluate 26 airports of Western Europe, North America,
and the Far East with the super-efficient DEA method, Bazargan
and Vasigh [8] apply super-efficiency for the ranking of 45 US
airports, Hirshhausen and Cullmann [16] treat the problem of
outliers with this method in their study, while Wu and Goh [27]
utilize the method to investigate the efficiency of 21 container
ports.

5.2 Principal component analysis
Another, recurrent problem inherent in DEA is the limited

number of inputs and outputs. As the best practice frontier is
created on the basis of the observed data, the greater the number
of inputs and outputs, the more DMUs are deemed to be effi-
cient. Thus, as a thumb rule, the number of observations should
be three times greater than the number of the inputs plus out-
puts; and the number of DMUs should be equal or larger than
the product of the number of inputs and outputs. But sometimes
this constraint can not be adhered to as the researchers wish to
include a larger number of inputs and outputs.

The resulting problem can be overcome by principal com-
ponent analysis (PCA) which describes data through a reduced
number of variables. These principal components are created
through linear combination of the variables and they generally
describe 80-90% of the variance in the data, so they can be used
instead of the original variables, in our case, the inputs and out-
puts [1]. PCA can be combined with DEA as introduced in the
work of Adler and Golany [2]. Adler and Berechman [1] use
this technique to reduce the 5 observed output variables to 3
principal components in their analysis related to the efficiency
of airports.

5.3 MNDEA
Transport has some specific features which distinguish it from

other types of production or service processes. One of these is
its “unstorability”. This characteristic is a factor that should be
taken into account when evaluating the efficiency of companies
active in the transport sector. This was realized by Yu and Lin
who created a novel variant of DEA, network data envelopment
analysis (NDEA) or also referred to as multi-activity network
data envelopment analysis (MNDEA). Although this technique
is not very widespread yet, it is still worth mentioning, as it can
provide deeper insights into the efficiency characteristics of the
transport companies.

The method applied by Yu and Lin [30] introduces some spe-
cific changes to the traditional DEA method, hence enabling a
novel approach to the efficiency evaluation of transport compa-
nies, in this case, railway companies. The idea behind the MN-
DEA model is that transport companies create multiple outputs
from multiple inputs which should not be treated in an aggre-
gated way as this would blur the results of efficiency evalua-
tions. So Yu and Lin introduce a new model that handles freight
transport and passenger transport on railways separately and es-
tablishes technical efficiency for these two individually. Hav-
ing calculated technical efficiency, service effectiveness is deter-
mined by taking into account the data of consumption, i.e. the
load factors achieved by the different railway companies. In this
way the specific feature of transport production – that the con-
sumption of the goods created is strongly interrelated with the
date and time of their production, and thus they cannot be stored
– can be taken into account in this MNDEA approach. The re-
sulting model is applied to 20 European railway companies and
it is not only their efficiency that is determined, but the areas of
inefficiency (e.g. passenger or freight transport) are also identi-
fied. Yu [29] then applies MNDEA again to the railway sector,
while Yu [31] shows an example of its application to the airports.

6 Conclusion
Having reviewed the international literature on the variants

and applications of DEA in the transport sector, it has become
clear how a scientifically well-founded research work is to be
carried out in the field of efficiency evaluation with data en-
velopment analysis. After determining the scope of research
and selecting the desirable inputs and outputs (keeping in mind
the possibility of reducing them to principal components with
PCA), the first step is obviously to collect the necessary amount
of data. With premeditations about the nature of production
characteristics of the DMUs, the DEA CCR or BCC method
has to be chosen. In case of doubt, both techniques have to be
applied, and the results obtained will show clearly, whether the
production features constant or variable returns to scale. The
results regarding the returns to scale can also be crosschecked
with the Simar-Wilson method, which should by all means be
utilized for determining the confidence intervals of the efficiency
estimates, and the bias-corrected estimates. If a full rank of the
efficiency values is needed, the super-efficient DEA model will
come in handy, and in case of transport companies, the appli-
cation of MNDEA can provide deeper insights into the compo-
nents of efficiency. As DEA is a mathematically well-founded
technique with a large number of international examples of its
application, there is no reason why its merits should not be prof-
ited of in the Hungarian transport sector. Thus, further research
can be directed towards its utilization in Eastern Europe, and
within that, in Hungary.
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