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Abstract
We study the dynamics of the train/track system in case of an

inhomogeneous longitudinal subgrade stiffness/damping distri-
bution. Our model consists of a Bernoulli-Euler beam, fixed
at infinity, laying on a viscoelastic Winkler foundation of con-
tinuously varying stiffness/damping parameters, and a damped
oscillatory load moving along the beam at a constant velocity.
In order to obtain an approximate, semianalytical solution we
build up a new discretization method based on the approxima-
tion of the discretized stiffness/damping values by generalized
functions. The approximate solutions tend to continuous func-
tions represented in a closed-form, analytical fashion.
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1 Introduction
In our simple model we consider a viscoelastic Winkler foun-

dation of continuously varying stiffness/damping parameters
given by functions s0 + s(x), k0 +k(x), a Bernoulli-Euler beam
of parameters E I, ρ A laying on the subgrade, and a load of
weight G moving along the beam at a longitudinal velocity v,
and vibrating dampedly at complex frequency w = α + iω. In
case α = 0 we have a harmonic load, while w = 0 stands for
the case of a constant load.

The motion of the system is governed by the Bernoulli-Euler
beam equation

E I
∂4z
∂x4 + ρ A

∂2z
∂t2 + (k0 + k(x))

∂z
∂t

+ (s0 + s(x))z =

G exp(wt)δ(x − vt), (1)

where δ stands for Dirac’s unit impulse distribution, while con-
tinuous functions s and k vanish outside the finite interval
[x0, y0].

Eq. (1) satisfies boundary conditions

lim
|x |→∞

z(x, t) = 0 (2)

at ±∞.

 
 

 
 

Fig. 1. System model 
 

2. APPROXIMATE  BOUNDARY  PROBLEM 
 
First we discretize parameter functions of the subgrade in the following way.  
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is satisfied, hence we have the following commutative diagram: 
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The different limits of discretized function sequences are illustrated in Fig. 2. 
 

 

     
 

        
 

      
 
 

                                  
    

 
 
 

Fig.2. The limits of the discretized function sequences 
 
 

 The beam equation discretized to  n  parts in case  has the form k →+∞
 

4 2

0 04 2
u u uEI A k s

t
u

x t
∂ ∂ ∂

+ρ + +
∂∂ ∂

=

1
exp( ) ( ) ( ) ( , ) ( ) ( , )   ( )

n
j j j j j

j
G wt x vt s x u x t k x u x t h x x

t=

∂⎛ ⎞δ − − + δ −∑ ⎜ ⎟∂⎝ ⎠
.  (3) 

 
Response to  the first term is 
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Fig. 2. The limits of the discretized function sequences

2 Approximate boundary problem
First we discretize parameter functions of the subgrade in the

following way.
We build up step functions

skn(x) :=

{
s(x j )

k
n if x ∈ [x j , x j +

hn
k ), j = 0, 1, . . . , n − 1,

0 otherwise.

by discretizing continuous function s(x) (or k(x)), for k ≥ n,
where h := (y0 − x0)/n and x j := x0 + jh, j = 0, 1, . . . , n
hold.

In this case lim
n→+∞

snn(x) = s(x) is satisfied. For the limit,

which is a generalized function, in case k → +∞

sn(x) := lim
k→+∞

skn(x) =

n∑
j=1

s(x j )δ(x − x j )h

holds, and for its limit

lim
n→+∞

sn(x) =

y0∫
x0

s(y)δ(x − y)dy = s(x)

is satisfied, hence we have the following commutative diagram:
is satisfied, hence we have the following commutative diagram: 

 

     n
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s
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The different limits of discretized 
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The different limits of discretized function sequences are il-
lustrated in Fig. 2.

The beam equation discretized to n parts in case k → +∞

has the form

E I
∂4u
∂x4 + ρ A

∂2u
∂t2 + k0

∂u
∂t

+ s0u = G exp(wt)δ(x − vt)−

n∑
j=1

(
s(x j )u(x j , t) + k(x j )

∂

∂t
u(x j , t)

)
hδ(x − x j ). (3)

Response to the first term is

G
4∑

i=1

σi

P ′(λi )
exp(wt + λi (x − vt))H(σi (x − vt))

with characteristic polynomial

P(λ) = E Iλ4
+ρ Av2λ2

−v(k0+2ρ Aw)λ+(s0+k0w+ρ Aw2)

(4)
and signs σi := −sgn Reλi , P(λi ) = 0, i = 1, . . . , 4, see e.g.
[1],[3].

The full response has the form u(x, t) =

4∑
i=1

exp(wt + λi (x −

vt))ui (x), and can be given in a recursive way as

4∑
i=1

σi exp(wt + λi (x − vt)){GH(σi (x − vt))/P ′(λi )−

h
n−1∑
j=1

ci (x j )ui (x j )H(σi (x − x j ))}

with functions defined by

ci (x) : = σi exp(λi x)
s(x) + (w − λiv)k(x)

4E Iλ3
i

,

i = 1, 2, 3, 4, (5)

cf. [2],[4].
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3 Recurrence formulae
For Reλi < 0 we have σi = 1 and recursion

ui (xk) =
G

P ′(λi )
H(xk − vt) − h

∑
j≤k

ci (x j )ui (x j )

with solution

ui (xk) =
G

P ′(λi )
H(xk − vt) 5

j≤k

1
1 + ci (x j )h

.

If n → +∞ holds, then we obtain

lim
n→+∞

5
x j ≤x

(1 + ci (x j )h) =

lim
n→+∞

5
x j ≤x

((1 + ci (x j )h)1/(ci (x j )h))ci (x j )h =

exp lim
n→+∞

∑
x j ≤x

ci (x j )h = exp

x∫
x0

ci (y)dy.

In the case Reλi > 0 we have recurrence formula

ui (xk) =
−G

P ′(λi )
H(vt − xk) + h

∑
j>k

ci (x j )ui (x j )

with solution

ui (x) =
−G

P ′(λi )
H(vt − x) 5

x j >x
(1 + ci (x j )h) →

−G
P ′(λi )

H(vt − x) exp

−

x∫
y0

ci

 , n → +∞.

Summarizing the results obtained above we get a finite closed-
form integral formula for the continuously supported problem
(1-2) in form

z(x, t) = G
4∑

i=1

σi

P ′(λi )

exp

wt + λi (x − vt) −

x∫
li

ci (y)dy

 H(σi (x − vt)) (6)

with li :=

{
x0 if Reλi < 0,

y0 if Reλi > 0.

4 Numerical results
In the example, similar to that of [5], the parameters of the

beam are E I = 6 · 106 Nm2, ρ A = 60 kg/m. The weight of the
constant load is G = 6.5 · 104 N, while its horizontal velocity
is v = 40 m/s. The parameters of the subgrade are given by
constants s0 = 9 · 107 N/m2, k0 = 4.6 · 104Ns/m2 and single
sinusoidal waves

s(x) =

{
(cos( πx

(20 m)) − 1) · 107N/m2, if 0 m ≤ x ≤ 40m,

0 otherwise,

k(x) =

{
(cos( πx

(20 m))−1)
· 2500 Ns/m2, if 0 m ≤ x ≤ 40 m,

0 otherwise.

Summarizing the results obtained above we get a finite closed-form integral 
formula for the continuously supported problem (1-2) in form 
 

4
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z x t G wt x vt c y y x vt
P=

⎛ ⎞σ
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with   0

0

   if   Re 0,
:

   if   Re 0.
i

i
i

x
l

y
λ <⎧
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4. NUMERICAL RESULTS 
 

In the example, similar to that of [5], the parameters of the beam are 
, . The weight of the constant load is , 

while its horizontal velocity is 

26 Nm 106 ⋅=EI kg/m 60ρ =A N 105.6 4⋅=G
m/s 40=v . The parameters of the subgrade are given 

by constants ,  and single sinusoidal waves 27
0 N/m 109 ⋅=s 24

0 Ns/m 106.4 ⋅=k
7 2(cos( /(20 m)) 1) 10  N/m ,   if  0 m 40 m,( )

0                                       otherwise,
x xs x

⎧ π − ⋅ ≤ ≤⎪= ⎨
⎪⎩

 

 
2(cos( /(20 m)) 1) 2500 Ns/m ,   if  0 m 40 m,( )

0                                       otherwise.
x xk x

⎧ π − ⋅ ≤ ≤⎪= ⎨
⎪⎩

 

 
 

 
 

 
Fig.3. The vertical position  of the load ( , )z vt t
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Fig. 3. The vertical position z(vt, t) of the load
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