## TT periodica polytechnica

Transportation Engineering
39/2 (2011) $83-85$
doi: 10.3311/pp.tr.2011-2.06
web: http://www.pp.bme.hu/tr
(c) Periodica Polytechnica 2011

RESEARCH ARTICLE

On dynamics of the track/vehicle system in presence of inhomogeneous rail supporting parameters

Vilmos Zoller / István Zobory

Received 2010-09-06


#### Abstract

We study the dynamics of the train/track system in case of an inhomogeneous longitudinal subgrade stiffness/damping distribution. Our model consists of a Bernoulli-Euler beam, fixed at infinity, laying on a viscoelastic Winkler foundation of continuously varying stiffness/damping parameters, and a damped oscillatory load moving along the beam at a constant velocity. In order to obtain an approximate, semianalytical solution we build up a new discretization method based on the approximation of the discretized stiffness/damping values by generalized functions. The approximate solutions tend to continuous functions represented in a closed-form, analytical fashion.


## Keywords

railway track dynamics • beam equation • inhomogeneous supporting field

## 1 Introduction

In our simple model we consider a viscoelastic Winkler foundation of continuously varying stiffness/damping parameters given by functions $s_{0}+s(x), k_{0}+k(x)$, a Bernoulli-Euler beam of parameters $E I, \rho A$ laying on the subgrade, and a load of weight $G$ moving along the beam at a longitudinal velocity $v$, and vibrating dampedly at complex frequency $w=\alpha+\mathrm{i} \omega$. In case $\alpha=0$ we have a harmonic load, while $w=0$ stands for the case of a constant load.

The motion of the system is governed by the Bernoulli-Euler beam equation

$$
\begin{align*}
& E I \frac{\partial^{4} z}{\partial x^{4}}+\rho A \frac{\partial^{2} z}{\partial t^{2}}+\left(k_{0}+k(x)\right) \frac{\partial z}{\partial t}+\left(s_{0}+s(x)\right) z= \\
& G \exp (w t) \delta(x-v t) \tag{1}
\end{align*}
$$

where $\delta$ stands for Dirac's unit impulse distribution, while continuous functions $s$ and $k$ vanish outside the finite interval $\left[x_{0}, y_{0}\right]$.

Eq. (1) satisfies boundary conditions

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} z(x, t)=0 \tag{2}
\end{equation*}
$$

at $\pm \infty$.


Fig. 1. System model

## István Zobory

Dept. Railway Vehicles, BME, H-1521 Budapest, Hungary
e-mail: railveh@rave.vjt.bme.hu

## Vilmos Zoller

Dept. Railway Vehicles, BME, H-1521 Budapest, Hungary
e-mail: zoller.vilmos@rkk.uni-obuda.hu


Fig. 2. The limits of the discretized function sequences

## 2 Approximate boundary problem

First we discretize parameter functions of the subgrade in the following way.

We build up step functions
$s_{k n}(x):=\left\{\begin{array}{l}s\left(x_{j}\right) \frac{k}{n} \text { if } x \in\left[x_{j}, x_{j}+\frac{h n}{k}\right), j=0,1, \ldots, n-1, \\ 0 \text { otherwise. }\end{array}\right.$
by discretizing continuous function $s(x)$ (or $k(x)$ ), for $k \geq n$, where $h:=\left(y_{0}-x_{0}\right) / n$ and $x_{j}:=x_{0}+j h, j=0,1, \ldots, n$ hold.

In this case $\lim _{n \rightarrow+\infty} s_{n n}(x)=s(x)$ is satisfied. For the limit, which is a generalized function, in case $k \rightarrow+\infty$

$$
s_{n}(x):=\lim _{k \rightarrow+\infty} s_{k n}(x)=\sum_{j=1}^{n} s\left(x_{j}\right) \delta\left(x-x_{j}\right) h
$$

holds, and for its limit

$$
\lim _{n \rightarrow+\infty} s_{n}(x)=\int_{x_{0}}^{y_{0}} s(y) \delta(x-y) \mathrm{d} y=s(x)
$$

is satisfied, hence we have the following commutative diagram:

$S$
The different limits of discretized function sequences are illustrated in Fig. 2

The beam equation discretized to $n$ parts in case $k \rightarrow+\infty$
has the form

$$
\begin{align*}
& E I \frac{\partial^{4} u}{\partial x^{4}}+\rho A \frac{\partial^{2} u}{\partial t^{2}}+k_{0} \frac{\partial u}{\partial t}+s_{0} u=G \exp (w t) \delta(x-v t)- \\
& \sum_{j=1}^{n}\left(s\left(x_{j}\right) u\left(x_{j}, t\right)+k\left(x_{j}\right) \frac{\partial}{\partial t} u\left(x_{j}, t\right)\right) h \delta\left(x-x_{j}\right) .  \tag{3}\\
& \text { Response to the first term is }
\end{align*}
$$

$$
G \sum_{i=1}^{4} \frac{\sigma_{i}}{P^{\prime}\left(\lambda_{i}\right)} \exp \left(w t+\lambda_{i}(x-v t)\right) \mathrm{H}\left(\sigma_{i}(x-v t)\right)
$$

with characteristic polynomial
$P(\lambda)=E I \lambda^{4}+\rho A v^{2} \lambda^{2}-v\left(k_{0}+2 \rho A w\right) \lambda+\left(s_{0}+k_{0} w+\rho A w^{2}\right)$
and signs $\sigma_{i}:=-\operatorname{sgnRe} \lambda_{i}, P\left(\lambda_{i}\right)=0, i=1, \ldots, 4$, see e.g. [1],[3].

The full response has the form $u(x, t)=\sum_{i=1}^{4} \exp \left(w t+\lambda_{i}(x-\right.$ $v t)) u_{i}(x)$, and can be given in a recursive way as

$$
\sum_{i=1}^{4} \sigma_{i} \exp \left(w t+\lambda_{i}(x-v t)\right)\left\{G \mathrm{H}\left(\sigma_{i}(x-v t)\right) / P^{\prime}\left(\lambda_{i}\right)-\right.
$$

$$
\left.h \sum_{j=1}^{n-1} c_{i}\left(x_{j}\right) u_{i}\left(x_{j}\right) \mathrm{H}\left(\sigma_{i}\left(x-x_{j}\right)\right)\right\}
$$

with functions defined by

$$
\begin{align*}
c_{i}(x) & :=\sigma_{i} \exp \left(\lambda_{i} x\right) \frac{s(x)+\left(w-\lambda_{i} v\right) k(x)}{4 E I \lambda_{i}^{3}}, \\
i & =1,2,3,4 \tag{5}
\end{align*}
$$

cf. [2],[4].

## 3 Recurrence formulae

For $\operatorname{Re} \lambda_{i}<0$ we have $\sigma_{i}=1$ and recursion

$$
u_{i}\left(x_{k}\right)=\frac{G}{P^{\prime}\left(\lambda_{i}\right)} \mathrm{H}\left(x_{k}-v t\right)-h \sum_{j \leq k} c_{i}\left(x_{j}\right) u_{i}\left(x_{j}\right)
$$

with solution

$$
u_{i}\left(x_{k}\right)=\frac{G}{P^{\prime}\left(\lambda_{i}\right)} \mathrm{H}\left(x_{k}-v t\right) \prod_{j \leq k} \frac{1}{1+c_{i}\left(x_{j}\right) h}
$$

If $n \rightarrow+\infty$ holds, then we obtain

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \prod_{x_{j} \leq x}\left(1+c_{i}\left(x_{j}\right) h\right)= \\
\lim _{n \rightarrow+\infty} \prod_{x_{j} \leq x}\left(\left(1+c_{i}\left(x_{j}\right) h\right)^{1 /\left(c_{i}\left(x_{j}\right) h\right)}\right)^{c_{i}\left(x_{j}\right) h}= \\
\exp \lim _{n \rightarrow+\infty} \sum_{x_{j} \leq x} c_{i}\left(x_{j}\right) h=\exp \int_{x_{0}}^{x} c_{i}(y) \mathrm{d} y .
\end{gathered}
$$

In the case $\operatorname{Re} \lambda_{i}>0$ we have recurrence formula

$$
u_{i}\left(x_{k}\right)=\frac{-G}{P^{\prime}\left(\lambda_{i}\right)} \mathrm{H}\left(v t-x_{k}\right)+h \sum_{j>k} c_{i}\left(x_{j}\right) u_{i}\left(x_{j}\right)
$$

with solution

$$
\begin{aligned}
& u_{i}(x)=\frac{-G}{P^{\prime}\left(\lambda_{i}\right)} \mathrm{H}(v t-x) \prod_{x_{j}>x}\left(1+c_{i}\left(x_{j}\right) h\right) \rightarrow \\
& \frac{-G}{P^{\prime}\left(\lambda_{i}\right)} \mathrm{H}(v t-x) \exp \left(-\int_{y_{0}}^{x} c_{i}\right), \quad n \rightarrow+\infty .
\end{aligned}
$$

Summarizing the results obtained above we get a finite closedform integral formula for the continuously supported problem (1-2) in form

$$
\begin{align*}
& z(x, t)=G \sum_{i=1}^{4} \frac{\sigma_{i}}{P^{\prime}\left(\lambda_{i}\right)} \\
& \exp \left(w t+\lambda_{i}(x-v t)-\int_{l_{i}}^{x} c_{i}(y) \mathrm{d} y\right) H\left(\sigma_{i}(x-v t)\right) \tag{6}
\end{align*}
$$

with $l_{i}:=\left\{\begin{array}{l}x_{0} \text { if } \operatorname{Re} \lambda_{i}<0, \\ y_{0} \text { if } \operatorname{Re} \lambda_{i}>0 .\end{array}\right.$

## 4 Numerical results

In the example, similar to that of [5], the parameters of the beam are $E I=6 \cdot 10^{6} \mathrm{Nm}^{2}, \rho A=60 \mathrm{~kg} / \mathrm{m}$. The weight of the constant load is $G=6.5 \cdot 10^{4} \mathrm{~N}$, while its horizontal velocity is $v=40 \mathrm{~m} / \mathrm{s}$. The parameters of the subgrade are given by constants $s_{0}=9 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2}, k_{0}=4.6 \cdot 10^{4} \mathrm{Ns} / \mathrm{m}^{2}$ and single sinusoidal waves
$s(x)=\left\{\begin{array}{l}\left(\cos \left(\frac{\pi x}{(20 \mathrm{~m}))}-1\right) \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2}, \text { if } 0 \mathrm{~m} \leq x \leq 40 \mathrm{~m},\right. \\ 0 \text { otherwise, }\end{array}\right.$
$k(x)=\left\{\begin{array}{l}\left(\cos \left(\frac{\pi x}{(20 \mathrm{~m}))-1)} \cdot 2500 \mathrm{Ns} / \mathrm{m}^{2}, \text { if } 0 \mathrm{~m} \leq x \leq 40 \mathrm{~m},\right.\right. \\ 0 \text { otherwise. }\end{array}\right.$


Fig. 3. The vertical position $z(v t, t)$ of the load

## References

De Pater A D, Inleidend onderzoek naar het dynamisch gedrag van spoorstaven, 1948. Thesis: Waltman, Delft.
2 Zobory I, Zoller V, Dynamic response of a railway track in case of a moving complex phasor excitation., Progress in Industrial Mathematics at ECMI 96 (Brøns M, Bendsøe M P, Sørensen M P, eds.), Teubner/Stuttgart, 1997, 8592.

3 Zobory I, Zoller V, Zibolen E, Theoretical investigations into the dynamical properties of railway tracks using a continuous beam model on elastic foundation., Periodica Polytechnica Ser. Transp. Eng., 22(1), (1994), 35-54.
4 Zoller V, Zobory I, Relations between the motion-responses caused by fixed and moving loads acting on discretely supported strings and beams., Progress in Industrial Mathematics at ECMI 2000 (Anile M, Capasso V, Greco A, eds.), Springer/Berlin, 2002, 657-661.
5 Zoller V, Zobory I, Track dynamics with longitudinally varying track stiffness., Proc. 9th Mini Conf. Vehicle System Dynamics, Identification and Anomalies (I. Zobory, ed.), Budapest Univ. Technology Economics, 2004, 119-126.

