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Abstract
We investigate the dynamics of the train/track system in case

of an inhomogeneous longitudinal subgrade stiffness/damping
distribution varying periodically along the track. In our study
the track is modelled by a Bernoulli-Euler beam laying on a
Winkler foundation of stiffness/damping parameters represented
by continuous periodic functions. The damped oscillatory load
is moving along the track at a constant velocity. In order to
obtain an analytical solution to the boundary problem we utilize
our previous method for the compactly supported case, based
on the approximation of the parameter functions by generalized
functions. A finite closed-form formula can be obtained with the
help of principal values in the sense of Cauchy.
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1 Introduction
It is a long-standing problem of track/vehicle system dynam-

ics to describe the motion forms of loads moving along beams
supported by subgrades of varying stiffness/damping parame-
ters, see e.g. [2].

In the present paper we investigate the simple system con-
sisting of a moving, damped oscillatory load, a Bernoulli-Euler
beam and an elastic subgrade of continuous, periodically vary-
ing stiffness/damping parameters.

By using the method of [3], solving similar problems for com-
pactly supported continuous foundation stiffness/damping func-
tions, we obtain the analytical, closed-form solution to our prob-
lem with the help of principal values in the sense of Cauchy.

2 System model
In our model we consider a damped oscillatory load

G exp(wt) moving along a Bernoulli-Euler beam at a constant
velocity v, where w = α + iω is the complex frequency of the
load: in case α = 0 we have a harmonic load, while for w = 0
the load is constant.

Let EI and ρ A be the usual parameters of the beam, which is
laying on an elastic Winkler foundation of continuously varying,
L-periodic stiffness and damping parameters

s0 + s(x) and k0 + k(x),

respectively. Here s0 and k0 are the average stiffness and damp-
ing of the foundation, while s and k are periodic continuous
functions with (minimal) period Land with average 0, i.e.

L∫
0

s(y)dy = 0 and

L∫
0

k(y)dy = 0

are satisfied.
The motion of the system is governed by the Bernoulli-Euler

partial differential equation

E I
∂4z
∂x4 + ρ A

∂2z
∂t2 + (k0 + k(x))

∂z
∂t

+

(s0 + s(x))z = G exp(wt)δ(x − vt)
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Fig. 1.  The track/vehicle system with periodic continuous foundation parameters 

 

 The motion of the system is governed by the Bernoulli Euler partial 
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of varying coefficients, with damped oscillatory excitation along the curve vtx . 

 

The above partial differential equation must satify boundary condition 
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Fig. 1. The track/vehicle system with periodic continuous foundation pa-
rameters

of varying coefficients, with damped oscillatory excitation along
the curve x = vt .

The above partial differential equation must satify boundary
condition

lim
|x |→∞

z(x, t) = 0.

3 Approximate boundary problem with compact sup-
ports
In paper [3] the similar problem of continuous foundation pa-

rameters has been solved in the case, when the continuos sub-
grade parameters have compact supports, i. e. when in partial
differential equation

E I
∂4z
∂x4 + ρ A

∂2z
∂t2 + (k0 + k(x))

∂z
∂t

+

(s0 + s(x))z = G exp(wt)δ(x − vt)

the functions k and s are continuous functions on the finite in-
terval [x0, y0], and vanish outside.

For the solution of this auxiliary problem one can use the
characteristic polynomial

P(λ) = E Iλ4
+ ρ Av2λ2

−

v(k0 + 2ρ Aw)λ + (s0 + k0w + ρ Aw2),

of the differential equation, investigated e.g. in [1].
Let λi denote the roots of the characteristic polynomial above,

and we define sign

σi := −sgn(Reλi )

for i = 1, ..., 4, cf. [3].
If we introduce auxiliary functions

ci (x) :=
σi

4E Iλ3
i
(s(x) + (w − λiv)k(x)), i = 1, . . . , 4,

then, with the help of the approximation of discrete functions
by generalized functions (cf. [3]) the solution to the compactly
supported problem can be written into integral form

u(x, t) = G
4∑

i=1

σi

P ′(λi )

exp

wt + λi (x − vt) −

x∫
li

ci (y)dy

 H(σi (x − vt))

with li :=

{
x0 if Reλi < 0,

y0 if Reλi > 0.

4 Transition to the periodic case
In order to generalize our results to the periodic foundation

case we intend to use the principal values in the sense of Cauchy.
Since continuous functions s and k can take their zeroes at

different points, we are looking for a place x0, where both func-
tions have relatively small values.

Let x0 be a point on the real line, where function

|s(x) + wk(x)|

is minimal. (Continuity of functions s and k implies the exis-
tence of such a point.)

At first we compute the solution to the problem in case of a
support, where our parameters vary only inside the finite interval

[x0 − nL , x0 + nL]

of length 2nL. Here n is a natural number and L stands for the
common period of functions s and k.

The results of [3], mentioned in the previous section, imply,
that the solution un to this case has the form

un(x, t) = G
4∑

i=1

σi

P ′(λi )

exp

wt + λi (x − vt) −

x∫
x0−σi nL

ci (y)H(nL − |y − x0|)dy


H(σi (x − vt)).

The integral in the above formula can be transformed into the
form

x∫
x0

ci (y)H(nL − |y − x0|)dy =

x∫
x0

ci (y)dy H(nL − |x − x0|),

since if for any y, settled between x0 and x , relation
|y − x0| < nL holds, then it is equivalent to the satisfaction of
relation |x − x0| < nL .

Functions ci , i = 1, ..., 4 have vanishing averages:

x0∫
x0−L

ci (y)dy = 0,
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Fig. 2.  The shape of the foundation parameters in approximation step 1n  

 

 
Fig. 3.  The shape of the foundation parameters in approximation step 2n  

 

  
Fig. 4.  The shape of the foundation parameters in approximation step 3n  

 

Fig. 2. The shape of the foundation parameters in approximation step n=1
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Fig. 2.  The shape of the foundation parameters in approximation step 1n  

 

 
Fig. 3.  The shape of the foundation parameters in approximation step 2n  

 

  
Fig. 4.  The shape of the foundation parameters in approximation step 3n  

 

Fig. 3. The shape of the foundation parameters in approximation step n = 2
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Fig. 2.  The shape of the foundation parameters in approximation step 1n  

 

 
Fig. 3.  The shape of the foundation parameters in approximation step 2n  

 

  
Fig. 4.  The shape of the foundation parameters in approximation step 3n  

 
Fig. 4. The shape of the foundation parameters in approximation step n = 3
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5. NUMERICAL  RESULTS 
 
 

In our simulation we use beam data  
26 Nm 106EI  and  kg/m 60A .  The 

constant load is N 106.5  4G ,  moving along the beam at velocity m/s 40v .  

 The average values of the foundation stiffness and damping are 
27

0 N/m 109.05s   and  2
0 Ns/m 250 47k , respectively, while the continuously 

varying, averageless stiffness and damping is respresented by functions 

 
27 N/m 10m)) 20/(πcos()( xxs  

2Ns/m 2500m)) 20/(πcos()( xxk  

 

of period  m 40L . 

 

 

 
 

 

Fig. 5.  The shape of the foundation parameters 

 

 

 

Fig. 5. The shape of the foundation parameters

hence the periodicity of ci implies
x∫

x0−σi nL

ci (y)dy =

x∫
x0

ci (y)dy,

and for the solution to this case

un(x, t) = G
4∑

i=1

σi

P ′(λi )

exp

wt + λi (x − vt) −

x∫
x0

ci (y) dy H(nL − |x − x0|)


H(σi (x − vt))

is satisfied.
The solution to the original, continuously supported problem

can now be given as limit

u(x, t) = lim
n→+∞

un(x, t).

Since
lim

n→+∞
H(nL − |x − x0|) = 1

holds, i.e. |x − x0| < nL is satisfied for sufficiently large num-
bers n, for the solution we have formula

u(x, t) = G
4∑

i=1

σi

P ′(λi )

exp

wt + λi (x − vt) −

x∫
x0

ci (y)dy

 H(σi (x − vt)),

where

ci (x) :=
σi

4E Iλ3
i
(s(x) + (w − λiv)k(x)), i = 1, ..., 4

is satisfied and
|s(x0) + wk(x0)|

is minimal.
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5 Numerical results
In our simulation we use beam data E I = 6 · 106 Nm2 and

ρ A = 60 kg/m. The constant load is G = 6.5 · 104 N, moving
along the beam at velocity v = 40 m/s.

The average values of the foundation stiffness and damping
are s0 =9.05·107 N/m2 and k0 =47 250 Ns/m2, respectively,
while the continuously varying, averageless stiffness and damp-
ing is respresented by functions

s(x) = cos(πx/(20 m)) · 107N/m2

k(x) = cos(πx/20( m) · 2500 Ns/m2

of period L=40 m.
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Fig. 6.  The motion of the load 

 

 
 

Fig. 6  illustrates the motion of the constant load moving along the beam laying on an 

elastic subgrade of periodically varying, continuous  parameter functions of the form shown 

in Fig. 5. 
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Fig. 6. The motion of the load

Fig. 6 illustrates the motion of the constant load moving along
the beam laying on an elastic subgrade of periodically varying,
continuous parameter functions of the form shown in Fig. 5.
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