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Abstract
In addition to fuel consumption and efficiency the expecta-

tions in driving comfort of heavy duty vehicles were substan-
tially increased in the last years. The driveline has an essential
role in drivability performance of the vehicle. Since it deter-
mines the driving efficiency as well, simple, but robust devices
were quite widespread in production, but these can usually make
driving more difficult to the driver. This means there is a hard
trade-off between efficiency and driving comfort. Application of
control logics can help to find the balance between simplifica-
tion of hardware components and their operation. Enhancing
the drivability without any inefficient additional assembly leads
to higher level of safety since it makes driver’s job easier, and
so it can further increase the efficiency of transportation.
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1 Introduction
Driveline control has attracted considerable attention recently

in the automotive industry. There are many possible applications
of driveline control that could benefit vehicle behavior, such as
reduction of oscillations, improvement of gearshift quality and
in general the drivability, but they have also profitable aspects
to fuel economy and environmental impact. Since the compo-
nents of the driveline are elastic, mechanical resonances may
occur. Oscillations in the driveline may be excited first of all
during transients of input torques for instance at gear-shifting or
changing accelerator pedal position rapidly.

The problem of estimating the state variables of a dynamic
system for given observations of the output variables is of funda-
mental importance in control theory since many feedback con-
trol designs require availability of the states of the plant that has
to be controlled. Automotive powertrains are furthermore of-
ten affected by nonlinearities. A rather accurate estimation of
shaft torque is needed for successful control of vehicle power-
trains. However, shaft torque is difficult and expensive to mea-
sure directly. In this paper a driveline torque observer will be
discussed. This includes examination to suitable system design
and Kalman filter theory. The Kalman filter is an observer that
contains a system model. This system model has to be suffi-
ciently accurate but not very complex.

2 Generation of suitable model
The driveline model, which contains each driveline elements

separately according to the construction of a 4×2 truck, has at
least 8 degrees of freedom [5]. It was already analyzed to be
suitable for observer design [5], but it is rather complex to real-
time control applications. Using modal analysis sufficient model
structure and reduced degree of freedom of the model can be de-
duced. This procedure agrees the determination of natural fre-
quencies and the oscillation forms; the eigenvectors belong to
given frequencies. Knowing the eigenvector of relevant natural
frequencies the importance of different flexible elements in the
driveline may be established in the given frequency range.

First of all, the complex eight-mass driveline model described
by motion equations [5] was linearized and its mass, stiffness
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and damping matrices were noted. The motion equations of each
degree of freedom (inertias) of a rotational system can be written
summarized in general matrix form:

Mq̈ + Cq̇ + Kq = f(t),

where M, K and C sign mass, stiffness and damping matri-
ces and q vector contains the general coordinates of motion, in
which θ denotes always angle position of different powertrain
elements [5]. If the Mmarks torque, Ftraction is force on the
wheel-road contact patch and rw marks wheel radius, then it can
be written:

q =

[
θm θclutch θtr1 θtr2 θkk2 θbevel θw θtire

]T
,

f =

[
Mm 0 −Mretarder 0 0 0 −Mbrake −Ftractionrw

]T
.

For model simplification the nonlinearities were neglected;
clutch characteristic was changed to a linear one, backlashes
were not taken into consideration and the total vehicle rolling
mass was coupled to the tire as a large moment of inertia.

The determination of the natural frequencies of the system is
in fact an eigenvalue problem, in that the excitation of the system
is zero, i.e. f(t) = 0. The dynamic system described ẋ = Ax ac-
cording to definition of eigenvalue problem has got λ eigenvalue
and v eigenvector, which satisfy the following equation:

Av = λv.

In this case the general motion equation can be ordered as fol-
lows f(t) = 0:

q̈ = −M−1Kq − M−1Cq̇.

If choose x =

[
q
q̇

]
, then A dynamic matrix will have the

form:

A =

[
0 I
−M−1K −M−1C

]
.

This eigenvalue problem was numerically solved in Matlab R©.
The system has 8 degrees of freedom and 16 states. The analy-
sis executed for each transmission gear ratio delivers 16 natural
frequencies and eigenvectors concerned. Two of 16 eigenvalues
are zeros, these describe the rigid body motion of the system.
The other 14 eigenvalues are conjugate complex and describe
the natural oscillations of the system. Natural frequencies of the
system parameterized for a given 4x2 truck are shown in Table 1
[Hz].

As can be seen in Table 1, in the really comfort relevant low
frequency range only the first, possibly the second natural os-
cillation mode are to be found. The eigenvector belongs to the
significant first oscillation mode is shown in Fig. 1. The am-
plitudes were reduced to the engine concerning gear ratios of
transmission and final gear. This figure shows us that especially
at lower gears the rotational masses from engine to the rear axle
oscillate with the same amplitude, while wheel and vehicle body
swing with opposite amplitude. At higher gears the amplitudes

of wheel and vehicle body will be smaller, while amplitudes of
masses from transmission and rear axle show slight losses com-
pared with the amplitude of the engine, but the masses on the
front part of the driveline move rather in same phase. On the
other hand the wheel oscillates in counter phase to engine at
lower gear, then in phase at higher gear.

The result of modal analysis shows consequently, that first of
all driveshaft has got a high importance according to dynamic
behavior of the driveline. The second most significant is tire
elasticity, and probably the propeller shaft follows it. But the
engine and transmission can be treated as one single unit, i.e. the
elements from engine to transmission output can be substituted
by one moment of inertia. In this sense a two-mass, i.e. 2nd

order model is seemed to be sufficient to return the motion of
the system in the comfort-relevant lower frequency range and at
lower gears.

The reduced model means smaller computing demand.
Therefore the observer design will be based on a simple two-
mass rotational model. Focusing on the nonlinearities it can be
declared that the tire slip is the same as damping concerning its
effect; therefore it can be added to tire damping. If the same
modal analysis is executed with the lower stiffness value of the
nonlinear clutch characteristic, then the increasing significance
of clutch elasticity at higher gears will be demonstrated. But at
lower gears, where the driving comfort can be destroyed signifi-
cantly by driveline oscillations, the following statements remain
valid; the lower clutch stiffness indicates approximately same
importance as propeller shaft, while driveshaft and tire represent
main elastic elements in the driveline. Furthermore, it should be
noted that this reduced stiffness is only valid in a small torsion
range, which fact reduces the importance of clutch even further.
That is the reason why clutch stiffness was ignored during ob-
server design. 
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Fig. 1. The first mode eigenvector of the driveline model for each gears of
test vehicle

In accordance with the two statements above, between inertias
of the driveline, of which speed are measurable, namely between
the engine-transmission unit and wheel, the only nonlinearities
are the backlashes in gears and joints that can be summarized
into one backlash. Look at the measured torque in the driv-
eline of the vehicle equipped with torque sensor the effect of
backlash can be observed. That was the motivation to design
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Tab. 1. Natural frequencies [Hz] in each gear

Gear

M
od

e

. . . 1 2 3 4 5 6 7 8 9 10 11 12

5 379.2 366.9 377.5 365.6 374.9 363.9 207.9 208.8 209.3 211.7 226.8 232.9

4 113.8 113.8 115 115 117.8 117.9 103.8 103.3 117.5 118 135.2 136.6

3 65.35 55.06 63.77 53.71 60.52 50.95 54.04 46.45 46.03 40.04 38.58 34.33

2 17.88 17.88 17.88 17.87 17.86 17.84 17.71 17.67 17.59 17.49 17.36 17.14

1 0.77 0.9 1.09 1.33 1.63 2.02 2.53 3.15 3.94 4.81 5.71 6.73

a nonlinear observer which is able to treat the nonlinearities of
backlash in the driveline and makes the torque estimation more
accurate even if the engine goes from braking to acceleration or
vice versa. The observer bases on the simplified model that is
shown in Fig. 2.

The moments of inertia of elements from engine to final gear
were summarized into JEngT r Di f f . Here will be presented the
two masses model, in which the moments of inertia of wheel,
tire and reduced vehicle rolling mass were denoted with Jw +

Jtire +mrollr2
w. The elastic elements were combined into kdrivel

resultant stiffness and cdrivel resultant damping. The b viscous
damping coefficients for gear elements can be further applied to
considering losses, itr and iD denote the gear ratios in gearbox
and in final gear respectively.

Above all the motion equations of the simplified driveline
model were written if backlash is engaged (or zero):

JEngT r Di f f · θ̈m =

u −
kdrivel

itr iD

(
θm

itr iD
− θw

)
−

cdrivel

itr iD

(
θ̇m

itr iD
− θ̇w

)
− btotal θ̇m

(1)

(
Jw + Jtire + mrollr2

w

)
· θ̈w =

kdrivel

(
θm

itr iD
− θw

)
+ cdrivel

(
θ̇m

itr iD
− θ̇w

)
−

1
2

Awcwρr3
w θ̇w

− mroll gcwr2(1 + 0.06r2
w θ̇w)rw − mroll grw · δ, (2)

where drive resistances were linearized omitting the quadratic
functions in equations of air drag and rolling resistance; and as-
sumed that cos δ ≈ 1 and sin δ ≈ δ at small δ road incline
angles.

The drive resistance was implemented into the observer ac-
cording to Eq. (2). However, since the road slope angle δ is
unknown, it has to be estimated also. This was done by intro-
ducing the road slope as a new state of the system. Since the road
slope changes slowly compared to torque excitation of the driv-
eline, its derivative was considered to be constant but disturbed
with (white) noise. This way of resistance modeling makes it
possible that braking on wheel is interpreted as a resistance as
well.

Introducing the state vector

x =

[
θ̇m θ̇w 1θ δ vδ

]T
,

where 1θ denotes the torsion of driveline elasticity:

1θ =
θm

itr iD
− θw,

and vδ denotes derivatives of road inclination angle, the equa-
tions of system can be written in matrix form.

3 Extended Kalman filter
Looking at the backlash it can be seen that it causes zero

torque transmission in driveline during its traverse, i.e. it means
torque break. That is the reason why backlash is a major source
of drivability limitations. Linearization of backlash can not be
a suitable method to manage it; this would efface exactly its
nature. The non-continuous backlash characteristic can be ap-
proached with only high ordered polynomials, which on the one
hand have expected accuracy only inside a small working range
and cause huge discrepancy out of their scope, and on the other
hand they make the computing of partial derivatives for Lie-
bracket necessary to feedback linearization extremely hard. At
the same time the rotating mechanical system affected by back-
lash can not be written in affine form, because varying parame-
ters depend directly on a state of the system, in this case on the
angle difference between the two sides on the backlash.

According to the considerations over linearization and gain
scheduling, it was investigated in a method, which involves lin-
ear models to cover the whole operating range, but it does not
demand to solve a Riccati equation on-line. This leads to an
observer the same as the extended Kalman filter, but simpli-
fied in gain variance. (That is the so-called constant gain ex-
tended Kalman filter.) Instead of gain calculation in each time
step predefined feedback gains for certain linearization points
are switched depending on the state vector and its derivative. In
addition to the continuous state variables such a model contains
at least two discrete states that determine which gain is actually
switched, i.e. the observer may be considered a hybrid system.
To achieve the goal a new backlash model was introduced.

The so-called physical backlash model was introduced in [4].
This model makes it possible to treat the driveline in two states:
if backlash is actually engaged, then driveline is in contact
mode, or if backlash is actually traversing, then driveline is in
backlash mode. It introduces the relative angle difference be-
tween the two sides of backlash as a state variable, which is
strictly speaking equal to the position inside the backlash. The
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Fig. 2. Simplified driveline model for observer design

switch between contact and backlash modes is based on the po-
sition state variable and its derivative. The applied classical
dead-zone model is shown to be wrong when the shaft has non-
negligible internal damping, because it gives the output shaft
torque as a function of displacement between the input and out-
put elements only. This new more exact backlash model takes
the internal damping also into account. The shaft torque is given
by:

Mdriveline = kdrivel (1θ − θb) + cdrivel

(
θ̇m

itr iD
− θ̇w − θ̇b

)
.

(3)
where 1θ is the total shaft displacement as defined before, θ̇m

and θ̇w stand for the speeds of engine as drive element and of
wheel as driven element and θb denotes the position in the back-
lash: θb = θ2 − θ3 , where θ2 is the angle of driving shaft at
the backlash according to marking in Fig. 2 and θ3 = θw in our
discussion.

With α denoting half backlash size, the backlash position is
governed by the following dynamics:

θ̇b =


max

(
0, θ̇m

itr iD
− θ̇w +

kdrivel
cdrivel

(1θ − θb)
)

, θb = −α

θ̇m
itr iD

− θ̇w +
kdrivel
cdrivel

(1θ − θb), θb < α

min
(

0, θ̇m
itr iD

− θ̇w +
kdrivel
cdrivel

(1θ − θb)
)

, θb = α

(4)

We have now a nonlinear dynamical system, which is suitable
to augment the two-mass model with a new state of backlash
position θb.

Next the exploiting of the structure of the physical backlash
model will be shown, how the driveline model can be written
as a system switching between two linear models called – as
mentioned above – backlash mode and contact mode.

Using updated state vector:

x =

[
θ̇m θ̇w 1θ θb δ vδ

]T
.

The backlash dynamics based on Eq. (4) can be rewritten as:

θ̇b = ẋ4 = H(x) =
max (0, h(x)) x4 = −α

h(x), |x4| < α

min (0, h(x)) x4 = α

(5)

where h(x) is linear:

h(x) = abldynx =

[
1

itr iD
−1 kdrivel

cdrivel
−

kdrivel
cdrivel

0 0
]

x.

(6)
The linearization of the nonlinear process model to derive the
extended Kalman filter is in this case equal to linearization of
the H(x) function.

a4 =
∂ H
∂x

=



0 abldynx < 0 x4 = −α → co
abldyn abldynx ≥ 0 x4 = −α → bl
abldyn |x4| < α → bl
0 abldynx > 0 x4 = α → co
abldyn abldynx ≤ 0 x4 = α → bl

(7)
So the nonlinearity consists of only two distinct modes, both lin-
ear. The fourth row of dynamic matrix A, denoted a4 takes the
value abldyn or zero row vector value, depending on the five sets
of conditions in Eq. (??). The abldyn row vector corresponds to
the disengaged driveline, if backlash is being open, or in con-
tact, but moving toward opening. The value of zero row vector
corresponds to permanent stable contact.

Substitute the torque written in Eq. (3) into motion equa-
tions Eq. (??) – (??) and apply the updated state vector x, the
state-space representation turns into following matrices in con-
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tact mode:

Aco =



−
cdrivel/(i2

tr i2
D)+btotal

JEngT r Di f f

cdrivel/(itr iD)
JEngT r Di f f

−
kdrivel/(itr iD)

JEngT r Di f f

kdrivel/(itr iD)
JEngT r Di f f

0 0
cdrivel/(itr iD)

Jw+Jtire+mrollr2
w

−cdrivel−
1
2 Awcwρr3

w−mroll gcwr20,0036r3
w

Jw+Jtire+mrollr2
w

kdrivel
Jw+Jtire+mrollr2

w

−kdrivel
Jw+Jtire+mrollr2

w

−mroll grw

Jw+Jtire+mrollr2
w

0
1

itr iD
−1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0



As mentioned before, during backlash mode no torque can
be transmitted that leads to disassembling of driveline, which
is treated by the backlash model introduced above. In backlash
mode, the JEngT r Di f f front part of the driveline rotates inde-
pendently on Jw + Jtire + mrollr2

w (rear part of the driveline),
excited by Mm engine torque and Mtraction traction (or load)
torque correspondingly (see Fig. 2). This fact causes very sim-
ple equations of motion for both moments of inertia, namely:

JEngT r Di f f · θ̈m = u − btotal θ̇m (8)(
Jw + Jtire + mrollr2

w

)
· θ̈w = −

1
2

Awcwρr3
w θ̇w

− mroll gcwr2(1 + 0.06r2
w θ̇w)rw − mroll grw · δ (9)

According to the Eqs. (9) – (9) motion equations of disassem-
bled driveline and to the backlash dynamics, the dynamic matrix
in backlash mode can be written as:

Abl =



−btotal
JEngT r Di f f

0 0 0 0 0

0 −
1
2 Awcwρr3

w−mroll gcwr20,0036r3
w

Jw+Jtire+mrollr2
w

0 0 −mroll grw

Jw+Jtire+mrollr2
w

0
1

itr iD
−1 0 0 0 0

−
1

itr iD
−1 kdrivel

cdrivel
−

kdrivel
cdrivel

0 0
0 0 0 0 0 1
0 0 0 0 0 0


The nonlinearity appears only in dynamic matrix, input and out-
put matrices remain the same.

Bco = Bbl =

[
1

JEngT r Di f f
0 0 0 0 0

0 0 0 0 0 1

]T

,

Cco = Cbl =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



According to its definition a continuous extended Kalman fil-
ter does not use the stationary solution of a Riccati equation. It
can be formulated using a nonlinear process model for predic-
tion, and its linearization for the on-line calculation of feedback
gain. However, since the model only switches between two lin-
ear modes and this model treats the phenomena of backlash quite
accurately, an extended Kalman filter based on two stationary
linear gains are used in this work. In general, the observer can
be formulated:

˙̂x =

{
Acox̂ + Bu + Lco

(
y − ŷ

)
Ablx̂ + Bu + Lbl

(
y − ŷ

) (10)

ŷ = Cx̂, (11)

where LcoandLbl are observer feedback gain matrices designed
for their respective cases.

3.1 Observer realization
The realization of the observer based on theory and on the

simplified two-mass nonlinear driveline model presented above
was performed in the following main steps. First the simpli-
fied driveline model was parameterized using the parameters of
complex driveline model presented in [5]. Then observability of
models for both contact and backlash modes were checked. The
observer gain was calculated in continuous and discrete time us-
ing Matlab R© as a computing tool. Finally the coupled complex
driveline and two-track vehicle models were applied to tuning
and optimizing observer performance.

As mentioned before, the model represented in state-space
form is only suitable for observer design, if it satisfies observ-
ability term. Introducing the backlash model with Eqs. (5) –
(??) our model dissolved into two parts, the so-called “contact”
(co) and “backlash” (bl) modes. The models are linear both in
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contact and backlash modes, and the aim is to find proper ob-
server feedback matrices Lco and Lbl for both linear models.
But for observer design they have to be observable or have to be
transformed into observable form. The observability matrix for
contact mode has not got full rank, i.e. the model is not observ-
able in state-space form given by matrices Aco, Bco and Cco; the
number of unobservable states is one.

The non-observable state is the backlash position x4 = θb,
which has zero dynamic in contact mode as seen on a4 in Eq.
(7); while it is also a non-measured output of the system as
shown by the fourth row of output matrix Cco. This statement is
really consequent, since the backlash position has to take con-
stant value concerning known backlash size, i.e. x4 = θb is not
to be taken into consideration by the observer in contact mode.
For that purpose the unobservable state of the backlash position
was eliminated for observer design. The resulted state-space
model has minimal order and the same response characteristics
as the original model.

Looking at the state-space model of backlash mode, the ob-
servability analysis shows two unobservable states. In backlash
mode the driveline dissolves actually into two independent ro-
tating parts, to drive and driven moments of inertia as can be
seen on Fig. 2. Therefore the torsion x3 = 1θ that constitutes
originally in contact mode the coherence between the rotating
bodies have no physical effect anymore on either moments of
inertia, i.e. on the measured outputs of the system. Similarly,
as a consequence of the same considerations the backlash posi-
tion x4 = θb is the second unobservable state in backlash mode.
Since both unobservable states may be computed using observ-
able states x1 and x2, and a suitable algebraic method based on
Eqs. (12) and (13), the estimation of unobservable states is not
necessary, i.e. the observer has not to take these into considera-
tion.

ẋ3 = 1θ̇ =
x1

itr iD
− x2 (12)

ẋ4 = θ̇b =
x1

itr iD
− x2 +

kdrivel

cdrivel
x3 −

kdrivel

cdrivel
x4 (13)

The minimal realization of the system is useful for observer de-
sign in backlash mode the same way as in contact mode. The
resulted feedback matrices were always augmented with zeros
for unobservable states in order to get a suitable structure for im-
plementation with state-space models described by matricesAco,
Bco and Cco, and by matrices Abl , Bbl and Cbl .

4 Observer evaluation
The outputs of the observer presented above were also com-

pared with measurement results in order to check the perfor-
mance of the observer. The measurements were recorded in the
vehicle, than the observer was simulated off-line over the mea-
sured signals. The torque of the engine, engine speed, wheel
speeds and actual gear and gear ratio, each measured on the ve-
hicle CAN, while the driveline torque sensed on the propeller
shaft by additional sensor. Twelve L feedback matrices, twelve

B input matrices and twelve A dynamic matrices for each gear
were implemented into the observer both for contact and back-
lash modes which are shifted, depending on actual gear. How-
ever the results presented below were achieved using the same
Q and R covariance matrices for each gear, some improvement
in the observer’s performance may probably be achieved by the
variation of these.

The results of a tip-in/back-out maneuver demonstrated in
Fig. 3 show absolutely the same accuracy that was achieved us-
ing the complex model as simulation tool [5].

Looking at the speeds in Fig. 4 the higher accuracy of wheel
speed (left) estimated by the observer can be seen compared to
the engine speed (middle) that is represented here reduced also
to the wheel side of the driveline. This matches expectations
according to the actual setup of the design parameter matrices.
While the increasing dynamics in the wheel speed are quite well
estimated at higher gears too, the accuracy gets worse in the en-
gine speed with rising gear number, but only the amplitudes of
the observer’s signal miss the measured signal. A limited error
in estimated driveline torque appears when backlash is travers-
ing, which is visualized on the right side of Fig. 4.

5 Conclusions
It was shown in this paper that a simplified two-mass drive-

line model can be suitable to observer design to estimate driv-
eline torque. The speed measurements on a vehicle can make
certain nonlinearities in the driveline visible, usually the effects
of clutch and backlash. It was demonstrated that the physical
backlash model is applicable not only in backlash size observer
[3], but also in the observer for driveline torque estimation. In
order to achieve higher accuracy the observer presented here was
tuned to follow wheel speed with bigger sensitivity than engine
speed, which can be explained with signal qualities in the pre-
sented case. Driveline torque control may be a really useful tool
to achieve quicker gear-shifting and smaller traction force gap
that enhances the longitudinal dynamics. And it can be quite ef-
fective to influence additional vehicle body motions. Its benefits
can be smaller torque changes during gear-shifting, well damped
pitch oscillations that are directly related to longitudinal dynam-
ics.
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same accuracy that was achieved using the complex model as simulation tool [5]. 

 
Figure 3. Observer output driveline torque (right) over system input engine torque (left) 
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Fig. 3. Observer output driveline torque (right) over system input engine torque (left)visualized on the right side of Figure 4. 

   
Figure 4. Measured and observed wheel speed (left), engine speed (middle) and driveline 

torque (right) 

1 Conclusions 
same accuracy that was achieved using the complex model as simulation tool [5]. 

 
Figure 3. Observer output driveline torque (right) over system input engine torque (left) 

 

Fig. 4. Measured and observed wheel speed (left), engine speed (middle) and driveline torque (right)
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