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Abstract

Road-induced vibrations are in the scope of various environmental testing protocols, e.g., for packaging vibration testing (PVT) purposes. 

This field matures with well-understood methods for analyzing amplitude-type non-stationarity (NS) in road vehicle vibrations (RVV). 

Albeit frequency-type NS is well known, only suggestions are provided for processing the phenomenon in PVT. Both types of NS can be 

jointly investigated in the time-frequency domain; thus, the current study initiates the investigation of spectral non-stationarities (SNS) 

in RVV. Three vibration series were recorded from 118 km traveled distance supplying an empirical insight.
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1 Introduction
Statistics, econometrics, and acoustics are typically con-
cerned with the challenge of time series' stationarity. It 
may be impractical to indulge in a comprehensive listing; 
instead, the current paper discusses the results in the con-
text of packaging vibration testing (PVT). The discipline of 
PVT is fundamentally involved with non-stationarity (NS), 
present in road vehicle vibrations (RVV). Scholars have 
presented various methods accounting for amplitude-type 
NS. Albeit the phenomenon of frequency-type or spectral 
non-stationarities (SNS) is pointed out, mostly sugges-
tions are provided. Therefore, the current article presents 
an empirical validation of the presence of SNS in RVV 
obtained by three measurements in a passenger car, such as:

H
0
: ,SNS does not exist in RVV  (1)

HA : .SNS exist in RVV  

It is assumed under H0 that spectral moments of the mea-
sured RVV are stationary over time. The reverse arrange-
ments test (RA) is used to assess the null hypothesis, and 
the study is augmented by changepoint analysis (CPA).

A stochastic process is said to be stationary in the strong 
sense if its unconditional joint probability distribution does 
not change when shifted in time (Gagniuc, 2017). On the 
other hand, the exact process is said to be stationary in the 
wide sense if its mean and auto-covariance do not vary with 
respect to time. Simply put, if the mean and autocorrelation 

function of a stochastic process is time-invariant, the pro-
cess is weakly stationary; and the process is strictly station-
ary if all moments are time-independent (Faber, 2012:p.74).

Parametric models, frequently used for stationarity test-
ing, cover the augmented Dickey and Fuller (1981) test for 
a unit root, the KPSS test (Kwiatkowski et al., 1992), the 
Leybourne and HcCabe (1999) stationarity test, and the 
Phillips and Perron (1988) test for one unit root. The above 
tests, however, rely on model assumptions in the form of 
autoregressive integrated moving average (ARIMA) pro-
cesses. Therefore, one might turn toward alternative solu-
tions without a specific model in question. A semi-para-
metric analysis is the variance ratio test (VR) for a random 
walk, initially suggested by Lo and MacKinlay (1988). 
The VR investigates the random walk hypothesis against 
stationary alternatives (Pradhan, 2012).

Non-parametric methods, also devoted to station-
arity problems, include the runs test (David and Siegel, 
1957:p.538), the reverse arrangements test (RA) (Bendat 
and Piersol, 2010:p.97), and the modified RA test (Bilodeau 
et al., 1997). Unfortunately, the three non-parametric tests 
can show inconsistencies, as discussed later.

The current study suggests the changepoint detection 
in spectral descriptors from the time-frequency domain of 
recordings to strengthen the investigation of stationarity. 
Control charts introduced by Shewhart and Deming (1986) 
are typical examples in manufacturing to monitor and 
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control capable processes. Statistical process control (SPC) 
can be enhanced by CPA. While SPC can be updated at 
each incoming sample, CPA can be performed once all data 
points are collected. SPC detects abnormal observations 
and major changes, but CPA can also find minor changes 
and controls the change-wise error rate (Taylor, 2000).

The establishment of CPA can be credited to Page (1954; 
1955; 1957), who developed a test for a change in a param-
eter occurring at an unknown point. The setup of the prob-
lem consists of independent observations xn for n = 1, ..., N 
ordered in time, incurring a changepoint at n = m. The 
procedure investigates whether all the observations are 
from the same population with the distribution function 
F x | ,�� �  i.e., under the alternative xn = 1, ..., m are from 
F x |�� �  and xn = m + 1, ..., N come from F x | '�� �  � ��� �' .  
The cumulative sum (CUSUM) schemes are further dis-
cussed in Subsection 2.5, which are commonly sharpened 
by resampling methods. In short, the probability of the 
changepoint's actual existence can be assessed by a corre-
sponding p-value from a resampling technique.

2 Materials and methods
Section 2 presents first the details of experiments and 
the pre-processing of the recorded vibration series. It 
is accompanied by introducing the considered spectral 
descriptors, the RA test, and the CPA, the latter includ-
ing a permutation resampling method assessing the signif-
icance of candidate changepoints.

2.1 Experimental
Three measurements are recorded on routes A, B, and C, 
reported in Fig. 1. Capitals denote the experiments, and 
lower-case letters signify sub-figures throughout the paper. 
Common factors are the passenger car (Suzuki Swift Sedan 
1.3 GLX year 2002), the personnel (one chauffeur and one 
experimentist, approx. 150 kg in total), the GPS position 
recorder (Columbus P1,  fs

(gps) = 1 Hz), the DC MEMS accel-
erometer (Recovib Tiny 15G, fs

(acc) = 1024 Hz, effective 
bandwidth 250 Hz). The accelerometer's placements are:

1. in the coin toss attached with thick double-sided tape,
2. on the right-hand side upper plane of the cockpit 

attached with thin double-sided tape, and
3. in the trunk on the right-hand side attached to the 

chassis with magnets.

The traveled distances are:
1. 35.50,
2. 29.88, and
3. 52.53 km, respectively.

2.2 Preprocessing
The current method relies on the short-time Fourier trans-
form (STFT) with one-sec non-overlapping Boxcar win-
dows yielding an equidistant 1 Hz and 1 sec resolution. 
The power spectral densities (PSD) in Fig. 1. d) are given 
up to the Nyquist frequencies. In other cases, STFT spec-
trograms are band-limited to [1, 250] Hz with an ideal 
numerical band-pass filter. Fig. 2 depicts only [1, 175] Hz 
intervals for further readability.

2.3 Spectral moments
The RA test and CPA are applied to the first four spectral 
moments denoted by μi for i = 1, 2, 3, 4, respectively, the 
spectral centroid, ~ spread, ~ skewness, and ~ kurtosis. 
The frequency-weighted sum of sk spectral values normal-
ized by the unweighted sum is the spectral centroid (The 
MathWorks, Inc., 2021):
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where f k is the k-th frequency bin in Hz. The bandwidth 
is given by b1 and b2 bins. The spectral centroid can be 
used in music interpretation and genre identification as a 
brightness measure (Grey and Gordon, 1978). The spec-
tral spread is defined as the standard deviation across the 
spectral centroid, which stands for the spectrum's instan-
taneous bandwidth (The MathWorks, Inc., 2021):

��
2

1

2

1

2

1

2

�
�� �

�

�

�
�

k b

b
k k

k b

b
k

f s

s

�
.  (3)

The spread, for instance, widens as the tones diverge 
and narrows as they converge. Spectral skewness is a met-
ric that calculates symmetry around the centroid (The 
MathWorks, Inc., 2021):
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Spectral skewness can discern the articulation point 
(Jongman et al., 2000), showing the relative frequency 
of higher and lower harmonics in harmonic signals. The 
spectral kurtosis is a measure of the spectrum's flatness (or 
non-Gaussianity) around the centroid (The MathWorks, 
Inc., 2021):
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Fig. 1 A, B, C measurements per column. Each measurement is accompanied by rows of a) place of accelerometer, b) GPS coordinates, 
stops marked by crosses (⨉), c) vertical acceleration with the notion of stops (⨉ on grey intervals), and d) power spectral density. In 

panes d) the average (solid), 25th and 75th percentiles (dashed), and the max-min envelopes over time (dotted) are plotted. Note that the 75th 
percentile is likely to overlap with the average
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Fig. 2 Short-time Fourier (STFT) transforms of measurements A, B, C. Below each STFT, spectral moments μi for i = 1, 2, 3, 4 corresponding to the 
spectral centroid, ~ spread, ~ skewness, and ~ kurtosis are plotted. The first panes also show the changepoints by different symbols
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showing the peaked nature of a spectrum. Therefore, 
an increasing white noise on tonal components yields a 
decreasing kurtosis indicating a spectrum with less peaky 
character. The Discussion introduces other frequency 
domain measures like entropy, flatness, crest, flux, slope, 
decrease, and roll-off point.

2.4 Reverse arrangements test
The RA test (Bendat and Piersol, 2010:p.97) is a non-para-
metric test that does not assume any underlying distribu-
tion, trend, or model. It evaluates a sequence of ordered 
data obtained from independent observations of the same 
random variable by deciding if the observations undergo 
a significant trend. The n-th reverse arrangement An is the 
number of times that xn > xm for n < m given a sequence of 
N observed values of a random variable, xn for n = 1, ..., N. 
Then An is summed to get the total number of reverse 
arrangements, A A

n

N
n�

�

�� 1

1

.  Given xn is a collection of N 
independent observations of the same random variable, A 
is a random variable with the mean of:

��A N N
�

��
�
�

�
�
�
1

4
,  (6)

and variance:

� A N N N2
1
2 5

72
� �� � ��

�
�

�
�
�.  (7)

Then, A is expected to be above or below of μA when an 
increasing or a decreasing trend underlies the data. Albeit 
tabulated values of A are available, the tendency to nor-
mality is highly rapid for N ≥ 14 and:

z A A

A

�
� ��
�

,
 (8)

approximately follows the standard normal distribution. The 
z-value is used to reject H0 , thus Eq. (1) can be written as:

H A0
0: ,�� �  (9)

HA A: .�� � 0  

2.5 Changepoint detection
The method is individually set up in Matlab based on the 
work presented by Taylor (2000). The CPA is applied here 
on x = xn = μi, such as:

S xn n

N
n� � ��

�� 1
x ,  (10)

where:

x �
��1 1N
x

n

N
n ,  

that is the cumulative sum of differences between xn and 
its total mean, x,  is computed. The extremum Sn yields 
a candidate changepoint at μi, m and the permutation loop 
decides upon the significance. Each reference set com-
prises R = 104 permutations, and an α = 0.05 significance 
limit is chosen for demarcation. The interested reader is 
referred to Kowalewski and Novack-Gottshall (2010) for a 
comprehensive overview of resampling methods. A differ-
ence compared to Taylor (2000) emanates from using the 
same Sn statistic Eq. (10) at each permutation, instead of 
max  Sn − min  Sn. Given a significant changepoint at µµ

i m, * ,  
the i-th series μi is divided into two parts: n = 1, ..., m* and 
m* + 1, ..., N, each submitted to the same CPA until no more 
changepoint is found. The programmatic realization of the 
algorithm will be published in Hári and Földesi (2022).

The cardinality of significant changepoints per the i-th 
spectral moment is symbolized by γi = #{m*}. The number 
of unique and significant changepoints for the set of μi is:

� � � ��
# .

i i1

4



�  (11)

Finally, the temporal density of changepoints is proposed:

� �� � / ,T  (12)

where T is the length of the recording. The following 
reporting scheme is recommended for RVV analysis 
accommodating the method in large-scale experiments 
and cross-validation studies:

� � � � �� �� � � ���i R t f s, , , , / ,� 1  (13)

with Δt, Δf time- and frequency resolution of the DFT-
based spectrogram, respectively.

3 Results
The results supported the investigated alternative hypoth-
esis in Eq. (1). The spectral moments ��i

j� �  for i = 1, 2, 3, 4 
in j = A, B, C show at least cv ��

2
5 41

C� �� � � . %  and at most 
cv ��

3
461 32

( )
. %

C� � � �  coefficient of variation. The null 
hypothesis of stationarity Eq. (9) is rejected in favor of the 
alternative by the RA test at the α = 0.05 significance level 
in all cases, but ��

1

A� �
,  ��

3

A� �
,  and ��

4

C� �
.  Therefore, measure-

ments A, B, and C can undergo spectral non-stationarity 
since at least one of four spectral moments per experiment 
is non-stationary. It is worth recalling that SNS is present 
regardless of the accelerometer's fixture and position.

ˆ
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While RA tests confirmed SNS in most cases, the CPA 
delivers further insights into the non-stationarity since no 
changepoints would be expected under H0. First, let us not 
consider the spatial- or temporal distribution of change-
points in Fig. 2. Then, 2.65, 3.35, 2.46 [1/km] unique 
changepoints per kilometer for routes A, B, and C show 
that roughly each traveled kilometer incurred two to three 
different spectral characteristics, on average.

Here, � � �� � �� A
5 44 10

2
. ,  � � �� � �� B

5 29 10
2

. ,  and 
� � �� � �� C

5 11 10
2

.  [1/sec] for ({μ1, μ2, μ3, μ4}, 104, 0.05, 
1 sec, 1 Hz) are found.

Changepoints' temporal density is lower than spa-
tial density [1/km]. Still, vibration testing protocols are 
also extended, e.g., "the exposure duration for common 
carrier/truck is 60 minutes per 1609 kilometers (…) of 
road travel (per axis)" (US Army Test and Evaluation 
Command, 2019, p.514.8C-16). Results from Table 1. sig-
nified by (*), imply that the RA test did not yield test sta-
tistics extreme enough to reject H0. However, CPA found 
several changepoints considered significant. The three 
instances (*) are further discussed in Section 4.

4 Discussion
In principle, one could choose only the spectral mean 
for changepoint analysis since μ2 = f (μ1), μ3 = g (μ1), and 
μ4 = h (μ1). However, it is interesting that a change in 
μ1 does not imply changes in other descriptors and vice 
versa. Albeit the necessary number of spectral descriptors 
remains out of the scope, it is recommended to consider 
higher-order moments simultaneously. 

Slight inconsistencies are pointed out by (*) between 
the RA test and the CPA, namely, changepoints have 
been found in series deemed stationary in the RA test. 
Beck et al. (2006) showed that the runs test, RA test, and 
modified RA test showed false negative and false posi-
tive results and deduced that these tests are not always 
reliable for stationarity testing. The hypothesized rea-
son was that the above three trials had been primarily 
designed for checking randomness under H0 or deciding 
the existence of an underlying trend under H4. Therefore, 
it is also possible in the current experiment, that results 
marked by (*) are false negatives since changepoints 
are present. Furthermore, the autocorrelation of the 

Table 1 Statistics of the spectral moments and their coefficients of variation, 
reverse arrangements tests, changepoints, unique changepoints, and temporal 

density of changepoints of measurements A, B, C

Statistics A B C

(a)

83.06 ± 10.36 80.52 ± 12.30 105.77 ± 14.11

72.68 ± 4.62 72.31 ± 3.94 69.82 ± 3.77

0.85 ± 0.24 0.87 ± 0.28 −0.07 ± 0.34

2.51 ± 0.62 2.63 ± 0.62 1.79 ± 0.31

(b)

cv1 12.47 15.28 13.34

cv2 6.36 5.45 5.41

cv3 28.86 32.24 −461.32

cv4 24.77 23.44 17.63

(c)

z1 (p) [H] (*) 0.17 (0.87) [0] 16.85 (0.00) [1] −10.67 (0.00) [1]

z2 (p) [H] −11.37 (0.00) [1] 7.59 (0.00) [1] 3.75 (0.00) [1] 

z3 (p) [H] (*) 1.91 (0.06) [0] −17.21 (0.00) [1] 9.45 (0.00) [1]

z4 (p) [H] 3.20 (0.00) [1] −15.16 (0.00) [1] (*) −1.14 (0.25) [0]

(d)

γ1 38 35 49

γ2 29 35 49

γ3 35 42 51

γ4 33 41 38

(e) Γ 94 100 129

(f) ⸰Γ 5.44∙10−2 5.29∙10−2 5.11∙10−2

(a) mean ± standard deviation [m/s2];
(b) coefficient of variation cvi i i% / ;� � � � � �100 � �� ��
(c) z-value (two tails significance) [= 1 if HA; = 0 if H0 at α = 0.05];
(d) significant changepoints at α = 0.05;
(e) number of unique changepoints in {μ1, μ2, μ3, μ4};
(f) temporal density of changepoints [1/s];
(*) non-significant RA tests are further discussed in Fig. 3.

�� ��1 1� � ��

�� ��2 2� � ��

�� ��3 3� � ��

�� ��4 4� � ��
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corresponding spectral moments shows variation with 
respect to time, as presented in Fig. 3. 

Rouillard (2014) presented his approach by using runs 
tests on the moving RMS series from RVV measurements, 
which can detect only amplitude-type NS. However, the 
window width should be justified if one wishes to use 
moving statistics. In contrast, the current method ana-
lyzed the time-frequency domain of measurements, which 
can address amplitude- and frequency-type NS at the 
same time. Id. presented his solution based on the runs 

test. Stationary Gaussian vibrations were also subjected 
to the runs test as falsification trials, which produced true 
negative results in three of four cases of different moving 
RMS time histories of stationary signals. However, a sim-
ilar falsification trial by Beck et al. (2006) produced con-
secutively false positives in all their six stationary cases.

This paragraph takes the occasion and offers future 
speculations on the usefulness of segments. If every 
changepoint is accepted as it is, segments can be defined 
in a series of μi since each CP indicates a border. After 
that, the distribution of spectrally homogenous segment 
lengths may be studied. In parallel, each segment can be 
described by an average DFT or PSD profile. Therefore, 
given a hypothetic database of many segments from sev-
eral journeys, the segment length distribution joint with 
typical spectral shapes can lead to spectral non-stationary 
vibration simulations.

Subsection 4.1 gives an outlook on several other spec-
tral descriptors, which may hopefully contribute to the 
measurement and analysis of SNS in RVV.

4.1 Further spectral descriptors
Spectral entropy, e, captures peaks (also called formants) 
of a spectrum (Misra et al., 2004), but each sk spectrum 
shall be normalized, such as:

s
s
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k
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2

,  (14)

then the entropy can be calculated as:

e s s
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 log .  (15)

The ratio of the spectrum's geometric mean to its arith-
metic mean is called spectral flatness (The MathWorks, 
Inc., 2021):
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Noise shows a higher spectral flatness, while a lower 
spectral flatness reflects upon tonality.

The flatness measure in Eq. (16) has a plain shortcom-
ing, namely f l = 0 if any of sk = 0. When sk includes zero, 
the transition from flat to non-flat determination is not 
gradual. Madhu (2009) proposed an alternative:

log
log

log ,
2 2

2 2 1

2
1

1

1

2f
b b

s sl k b

b
k k�� � � �

�� � ��    (17)

Fig. 3 Examples of changing autocorrelation function (ACF) (solid) 
showing confidence intervals estimated by ± three standard deviations 
(dashed): a) spectral centroid of short-time Fourier transform (STFT) 

from measurement A; b) spectral skewness of STFT from measurement 
A; and c) spectral kurtosis for measurement C. Note, how ACF changes 

at different intervals.
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where sk is normalized as of Eq. (14), yielding a scale-in-
variant, gradually increasing measure of flatness.

The ratio of the spectrum's peak to its arithmetic mean 
is called the spectral crest (The MathWorks, Inc., 2021):
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 (18)

reflect on the peakedness of the spectrum. More tonality 
suggests a higher spectral crest, while more noise yields a 
lower spectral crest.

Spectral flux is another measure of the spectrum's vari-
ability over time (ibid.):
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,  (19)

with p denoting the type of norm. Spectral flux can be 
used for onset detection or audio segmentation.

The slope is related to the resonant properties of the 
vocal folds (ibid.):
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with fk  denoting the mean frequency and sk  denoting 
the mean spectral value. The spectral slope is more pro-
nounced when the energy in the lower formants is greater 
than in the higher formants.

The spectral decrease, d, emphasizes the slopes of the 
lower frequencies (ibid.):
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Spectral slope and spectral decrease are often used in a 
complementary fashion.

The spectral roll-off point, r, determines the frequency 
bin, under which a к proportion of the overall energy 
occurs and thereby calculates a bandwidth (ibid.):

r i s s
k b

i
k k b

b
k� �

� �� �, .such that
1 1

2�  (22)

with к denoting an energy threshold (usually 85, 95%). 
The roll-off point is often implemented for audio scene 
analysis. Spectral descriptors {e, f l, f l2, c, fx, s, d, r} for 
measurement C are depicted in Fig. A1 in the Appendix.

5 Conclusion
The paper presented three experiments investigating the 
hypothesis of whether SNS exists in RVV. The RA tests 
showed confirmation of SNS corresponding to four spec-
tral moments from STFT. Autocorrelation functions fur-
ther discussed three cases of stationarity. The CPA found 
significant changepoints in the series of each investigated 
spectral descriptors of the measurements. Besides, an SNS 
metric was proposed for RVV analysis in the long term.

It was concluded that RVV undergoes changes in STFT 
thus changepoints are present in the spectral moments. 
Since PSD-based vibration simulations are stationary in 
time- and the frequency domain, the broad implication of 
current research leads to the need of spectral non-station-
ary simulations – whereby amplitude-type NS has been an 
active field of study in PVT. The findings supply a poten-
tial contribution to a mechanism for further non-station-
ary vibration simulations.
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Appendix

Measurement C: STFT and other spectral descriptors
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Fig. A1 Short-time Fourier transform of measurement C, beneath spectral descriptors as noted by axis labels: e spectral entropy,  fl spectral flatness (Eq. (16)), 
fl2 modified spectral flatness (Eq. (17)), c spectral crest, fx spectral flux at p = 2 norm, s spectral slope, d spectral decrease, r roll-off point at к = 0.95
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