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Abstract
The paper comprises the control design of a road-friendly sus-

pension system and the optimal choice of linear quadratic (LQ)
weighting. By designing the influence of the dynamic loads of
wheels it is possible to reduce the loads and stresses of roads
and increase their lifespan. In the vehicle model the dynamics
of the sprung and unsprung masses with their suspension system
is considered. For road-friendly control design it is necessary
to guarantee the reduction of the dynamic load of wheels. Be-
sides, it is also important to guarantee passenger comfort and
road stability of the vehicle. Considering these performances an
active suspension system based on the LQ control theory is de-
signed. Taking into consideration the effects of the variations in
the weighting values of quality performances the properties of
controlled system are analyzed in terms of road-friendliness and
traveling comfort. The used LQ theorem and optimal weighting
method are practicable for both active and semi-active suspen-
sion systems.
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1 Introduction
In the control design of active suspension systems it is nec-

essary to meet several quality performances. The movements of
the chassis and the wheels determine the road stability of the ve-
hicle, the traveling comfort and also the mechanical strengths of
vehicle structures and those of roads. In case of stability (road
holding) the dynamic tyre load and the compression of suspen-
sion are the most important physical parameters. For traveling
comfort the vertical acceleration and the velocity of the chassis
are significant. In every control problem it is necessary to min-
imize the actuator energy to save energy. In terms of roads the
tyre load is the most important parameter, which must be min-
imized. This list shows that the different quality performances
are not independent; the improvement of one influences the oth-
ers. Therefore in active suspension design it is necessary to cre-
ate a trade-off between these performance demands.

In this paper a road-friendly active suspension control design
is analyzed. Road-friendly quality means that in the design of
suspension the interaction between the road and vehicle is con-
sidered in terms of the road. In case of heavy vehicles the dy-
namic tyre load is high and it causes proportionally higher strain
on the road. The protection of roads is an important requirement
in every country because of the high costs of the road main-
tenance. Bad road conditions (e.g. potholes, wear of roads)
put additional strains on the vehicle and the dynamic tyre load;
the process is self-excited. The physical background of road-
friendliness is the minimization of tyre load. Static tyre load
can be decreased by using lightweight structures and material-
saving design. The minimization of dynamic tyre load is possi-
ble by using active suspension with suitable control.

The subject of road-friendly suspension design has been con-
sidered in several papers. Cebon analyzed the effect of suspen-
sion systems using several simulation examples and measured
signals (see [1, 2]). Valasek analyzed the semi-active suspen-
sion control theorems in the aspect of road-friendliness, see [12].
Gillespie and Pacejka also dealt with dynamic tyre forces [5, 8].
For the control design of active suspension system further meth-
ods and theorems are shown in [7, 13, 14].

This paper is organized as follows: Section 2 introduces the
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control oriented vehicle model for active suspension design.
Section 3 contains the method of LQ control design and the
choice of optimal weighting. Section 4 shows performances for
control design e.g. road-friendliness and traveling comfort. Sec-
tion 5 is on the extension of control design for semi-active sus-
pension systems. In Section 6 are the detailed the simulation
results of the controlled active suspension system. The conclu-
sion summarizes the most important achievements of this paper.

2 Control-oriented vehicle model
For a road-friendly control design it is necessary to formalize

a control-oriented vehicle model. Here a five-mass linear ve-
hicle model is used. The five masses are the unsprung masses
(the four wheels and suspension), and the sprung mass (vehicle
chassis).

The position of the chassis is defined by the vertical displace-
ment of the center of gravity (zs), the pitch angle (2), the roll
angle (ϕ) (Fig. 1). The elements in the suspension system are the
springs. Their characteristics are approximated by linear func-
tions. The active actuators can add energy to the system and also
dissipate it.

l f (lr ) are distances between the front (rear) axle and the car
chassis at the center of gravity, h f and hr are distances between
the left (right) wheel and the car chassis at the center of gravity
and hs is the arm of the roll moment. Furthermore, k1i j , k2i j are
stiffnesses of the suspension and the tyres, c1i j , c2i j are damping
coefficients of the suspension and the tyres.

This paper is organized as follows: Section 2 intro-

duces the control oriented vehicle model for active sus-

pension design. Section 3 contains the method of LQ

control design and the choice of optimal weighting. Sec-

tion 4 shows performances for control design e.g. road-

friendliness and traveling comfort. Section 5 is on the

extension of control design for semi-active suspension

systems. In Section 6 are the detailed the simulation

results of the controlled active suspension system. The

conclusion summarizes the most important achievements

of this paper.

2 Control-oriented vehicle model

For a road-friendly control design it is necessary to for-

malize a control-oriented vehicle model. Here a five-mass

linear vehicle model is used. The five masses are the un-

sprung masses (the four wheels and suspension), and the

sprung mass (vehicle chassis).

The position of the chassis is defined by the vertical

displacement of the center of gravity (zs), the pitch angle

(Θ), the roll angle (ϕ) (Figure 1). The elements in the

suspension system are the springs. Their characteristics

are approximated by linear functions. The active actu-

ators can add energy to the system and also dissipate

it.

lf (lr) are distances between the front (rear) axle and

the car chassis at the center of gravity, hf and hr are dis-

tances between the left (right) wheel and the car chassis

at the center of gravity and hs is the arm of the roll

moment. Furthermore, k1ij , k2ij are stiffnesses of the

suspension and the tyres, c1ij , c2ij are damping coeffi-

cients of the suspension and the tyres.
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Figure 1: Suspension model

First the differential equations of vehicle dynamics are

formalized, such as the pitch torques, roll torques and

vertical forces.

IΘΘ̈− lf (F1fl + F1fr) + lr(F1rl + F1rr) = 0 (1)

Iϕϕ̈+ hf (F1fl − F1fr) + hr(F1rl − F1rr)−msghsϕ = 0
(2)

msz̈s +
∑
f1ij = 0 (3)

Then the vertical forces are formalized on wheels and

in the suspension systems:

m2ij ¨z2ij − F1ij + F2ij = 0, (4)

F1il = k1il(z1il − z2il) + c1il( ˙z1il − ˙z2il)− fil (5)

F1ir = k1ir(z1ir − z2ir) + c1ir( ˙z1ir − ˙z2ir)− fir (6)

Restoring forces on tyre:

F2ij = k2ij(z2ij − wij) + c2ij( ˙z2ij − ẇij) (7)

Suspension compressions depend on the vertical dis-

placement and its rate, and the roll and pitch of the

chassis.

3 Design of the optimal weighting

of LQ controller

In the suspension design several performance require-

ments must be met. In this section the harmoniza-

tion of the requirements of road-friendliness and trav-

eling comfort is analyzed. Road friendliness requires the

reduction of the dynamic tyre load and traveling com-

fort is achieved by reducing the vertical acceleration of

the chassis. The optimal controller which fulfills both

requirements in an active suspension system is designed

by using a linear quadratic control theorem. The LQ

controller can efficiently consider simultaneously the dif-

ferent quality criteria using appropriate weighting fac-

tors. In the LQ control theorem a cost function, which

contains quality performances and input powers, is de-

termined:

J = lim
T→∞

1

2

∫ T

0

(xTQcx+ u
TRcu+ 2x

TNcu)dt =

= lim
T→∞

1

2

∫ T

0

∑
qik
2
i dt (8)

During the minimizing the quality performances and

input powers are taken into consideration. By using

weights Qc, Nc and Rc a balance between the different

performance specifications is achieved.

For the evaluation of designed controllers the so-called

Dynamic road stress factor (see (12)) and the mean of
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Fig. 1. Suspension model

First the differential equations of vehicle dynamics are for-
malized, such as the pitch torques, roll torques and verti-
cal forces.

I22̈ − l f (F1 f l + F1 f r ) + lr (F1rl + F1rr ) = 0 (1)

Iϕ ϕ̈ + h f (F1 f l − F1 f r ) + hr (F1rl − F1rr ) − ms ghsϕ = 0
(2)

ms z̈s +

∑
f1i j = 0 (3)

Then the vertical forces are formalized on wheels and in the
suspension systems:

m2i j ¨z2i j − F1i j + F2i j = 0, (4)

F1il = k1il(z1il − z2il) + c1il( ˙z1il − ˙z2il) − fil (5)

F1ir = k1ir (z1ir − z2ir ) + c1ir ( ˙z1ir − ˙z2ir ) − fir (6)

Restoring forces on tyre:

F2i j = k2i j (z2i j − wi j ) + c2i j ( ˙z2i j − ẇi j ) (7)

Suspension compressions depend on the vertical displacement
and its rate, and the roll and pitch of the chassis.

3 Design of the optimal weighting of LQ controller
In the suspension design several performance requirements

must be met. In this section the harmonization of the require-
ments of road-friendliness and traveling comfort is analyzed.
Road friendliness requires the reduction of the dynamic tyre
load and traveling comfort is achieved by reducing the vertical
acceleration of the chassis. The optimal controller which fulfils
both requirements in an active suspension system is designed by
using a linear quadratic control theorem. The LQ controller can
efficiently consider simultaneously the different quality criteria
using appropriate weighting factors. In the LQ control theorem
a cost function, which contains quality performances and input
powers, is determined:

J = lim
T →∞

1
2

∫ T

0
(xT Qcx + uT Rcu + 2xT Ncu)dt =

= lim
T →∞

1
2

∫ T

0

∑
qi k2

i dt (8)

During the minimizing the quality performances and input pow-
ers are taken into consideration. By using weights Qc, Nc and
Rc a balance between the different performance specifications is
achieved.

For the evaluation of designed controllers the so-called Dy-
namic road stress factor (see (12)) and the mean of vertical ac-
celeration of the chassis are computed. By changing the LQ
weighting factors controllers with different properties according
to the variation of the poles of the controlled system are de-
signed.

By changing the weighting it is possible to design controllers
with different properties. By using high weight for a quality
performance it is possible to minimize them. However, in this
case other quality performances may affected. In Section 1 it
has been explained that an active suspension must meet differ-
ent quality performances. By using high weight at a predefined
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performance it can be minimized without changing the others.
It is not possible to minimize all performances at the same time,
but it is necessary to choose a controller with which it is possible
to achieve the best minimization of performances.

The properties of controller depend on the LQ cost
function weighting. Suppose the different weights are:
q1, q2, ..., qi , ...qn . If n −1 weights are fixed and the nth weight
is increased only one performance is focused on. In the sim-
ulations it is possible to compute the values of quality perfor-
mances; a vector can be assigned to each controller (and sim-
ulation case) which contains those values. The vectors of con-
trollers determine an n dimensional curve, which can be written
in parametric form [10]. Applying this method to all weights n
curves are yielded, on which it is possible to fit an n dimensional
surface. By using Gaussian parameters the points of the surface
are definitely determined by the weights of performances.

In the knowledge of the surface it is possible to find a con-
troller with the optimal weighting. This method is demonstrated
in Fig. 2.

A

B

C

Surface

q1 weight

q2 weight

x

z

y

Ideal point

1

Fig. 2. 3D example of weighting exercise

The exercise is to find the point of the surface which is nearest
to the vector of an ideal point (e.g. center of coordinate system).
The distance between the center and a point of the surface is:

R =

√
A2 + B2 + ... + I 2 + ...N 2 (9)

If the function of surface f (A, B, ..., I, ...N ) is known it is pos-
sible to compute the minimum of R by derivation. Then the
nearest point can be determined from the Gaussian form of sur-
face and it is possible to obtain the optimal weighting.

In engineering practice, fitting a surface on the curves and
computing the derivation of distance R is a hard exercise for
reasons of numerical problems and the too complex equation
of fitted surface. Instead of fitting and derivation changing the
value of weights and computing the distance from center point

in every simulation case is recommended. After the computa-
tions it is possible to select the smallest distance value, and the
weighting of the point. This solution is not the theoretical min-
imum (optimal weighting), but approximates it very well. This
method is similar to the finite element method.

4 Formalization of quality performances of LQ con-
troller
In order to analyze the road-friendly properties of the vehicle

several factors are used. While tyre load is randomly distributed
in space, statistical methods, e.g. Root Mean Square value of
the dynamic tyre force, are used to measure the dynamic tire
force. This value alone does not provide sufficient information
about road friendliness, therefore the so-called Dynamic Load
Coefficient is formalized [1]:

DLC =
RM S(Fdyn)

Fstat
(10)

where Fdyn is the dynamic tyre force and Fstat is the static tire
force. Under normal operating conditions DLC is between 0.1
and 0.3 [11].

In 1975, Eisenmann derived a quantity, the road stress factor,
see [4]:

8 = E[F(t)4] = (1 + 6s2
+ 3s4)F4

stat (11)

where F(t) is the instantaneous tyre load at the time, s is the coef-
ficient of the variation of dynamic tyre load (essentially DLC),
E[ ] means expectation operator. This assumption means that
road damage depends on the fourth power of dynamic tyre load.
The dynamic road stress factor comes from Eq. (11):

ν = 1 + 6DLC2
+ 3DLC4 (12)

For typical highway conditions of roughness and speed, the dy-
namic road stress factor is between 1.11 and 1.46 [11].

Eisenmann also proposed a modified version of Eq. (11)
which accounted for the effects of wheel configuration and tire
pressures using constants, see [3]: ηI accounts for tire config-
uration (single or dual tires), and ηI I accounts for tire contact
pressures:

8′
= ν(ηI ηI I Fstat )

4 (13)

To consider the traveling comfort and the road friendliness of
the vehicle it is necessary to describe them using a cost function
in the LQ design. Traveling comfort is formalized in regulation
ISO 2630, which computes a value using the vertical accelera-
tion of the vehicle:

Dz̈e =

√∑
a2

i D2
z̈i

(14)

In Eq. (14) ai constant depends on the mean frequency of a fre-
quency range, D2

z̈i
is the variance of vertical acceleration of the

chassis in the frequency range.

Control design for road-friendly suspension systems using an optimal weighting of LQ theorem 632010 38 2



In this paper frequency-dependence is ignored, and for char-
acterization of traveling comfort the mean of the absolute value
of vertical acceleration is used:

E[|az |] (15)

In order to improve traveling comfort it is necessary to minimize
vertical acceleration.

To decrease the dynamic road stress factor it is necessary to
minimize dynamic tyre load. Using the notation of Fig. 1 it is
described by the following equation:

Fdyn = k2 · (z2 − w) (16)

At LQ weighting q1 means the weight of vertical acceleration
and q2 is the weight of dynamic tyre load.

5 Road-friendly design of semi-active suspension
In the previous sections a road-friendly active suspension has

been designed. Nowadays the significant majority of automo-
biles have passive suspension for financial reasons. In this case
there is not any actuator in the suspension system, the properties
of suspension are determined by spring and damper. In semi-
active suspension system the damping coefficient of suspension
is changeable electrically: the damper have different characteris-
tics and it is possible to switch between them (Fig. 3). The most
common physical systems are magneto-rheological and solenoid
valve dampers [6].

Eisenmann also proposed a modified version of Equa-

tion (11) which accounted for the effects of wheel con-

figuration and tire pressures using constants, see [3]: ηI
accounts for tire configuration (single or dual tires), and

ηII accounts for tire contact pressures:

Φ′ = ν(ηIηIIFstat)
4 (13)

To consider the traveling comfort and the road friend-

liness of the vehicle it is necessary to describe them us-

ing a cost function in the LQ design. Traveling comfort

is formalized in regulation ISO 2630, which computes a

value using the vertical acceleration of the vehicle:

Dz̈e =
√∑

a2iD
2
z̈i

(14)

In Equation (14) ai constant depends on the mean

frequency of a frequency range, D2z̈i is the variance of

vertical acceleration of the chassis in the frequency range.

In this paper frequency-dependence is ignored, and for

characterization of traveling comfort the mean of the ab-

solute value of vertical acceleration is used:

E[|az|] (15)

In order to improve traveling comfort it is necessary to

minimize vertical acceleration.

To decrease the dynamic road stress factor it is neces-

sary to minimize dynamic tyre load. Using the notation

of Figure 1 it is described by the following equation:

Fdyn = k2 ∙ (z2 − w) (16)

At LQ weighting q1 means the weight of vertical accel-

eration and q2 is the weight of dynamic tyre load.

5 Road-friendly design of semi-

active suspension

In the previous sections a road-friendly active suspension

has been designed. Nowadays the significant majority

of automobiles have passive suspension for financial rea-

sons. In this case there is not any actuator in the suspen-

sion system, the properties of suspension are determined

by spring and damper. In semi-active suspension system

the damping coefficient of suspension is changeable elec-

trically: the damper have different characteristics and it

is possible to switch between them (Figure 3). The most

common physical systems are magneto-rheological and

solenoid valve dampers [6].

The most significant difference between active and

semi-active suspensions is their energy actuation. While

active suspension can both add to and take energy out

of the system, semi-active can only do the latter; this

makes the control design more difficult.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−2000

−1000

0

1000

2000

3000

(v,f) Table

v [m/sec]

F
 [

N
]

Figure 3: Velocity-damping force table

In the realization the semi-active suspension controller

can compute some actuator forces, which are not possible

to realize, because the damper can only dissipate energy,

and it can be done between some limits (see Figure 3). A

possible way to solve this problem is to add force when

it is possible and to rely on the passive solution when no

force can be added [9]. There are several control design

methods, see e.g. [12].

In case of a LQ controller the previous model can be

used (see Section 2). In the semi-active case the required

active force is necessary to convert the damping coeffi-

cient such that the damping force is closest to the de-

sired one. The damping coefficient has minimum and

maximum limits and the number of achievable damping

characteristics is finite. The method of finding an opti-

mal weighting of a semi-active LQ controller is the same

as in Section 3. The optimal weighting of an active sus-

pension LQ controller can be different from semi-active,

because of the constrains of the damping coefficient.

6 Simulation results

In the simulation examples according to the stochastic

road surface the road excitations under each wheel differ.

The simulations are run with several active and semi-

active suspension controllers. In all cases the dynamic

road stress factor of the front left wheel (Eq. (12)) and

the mean of absolute value of vertical acceleration (Eq.

(15)) are computed. Considering that the minimal dy-

namic road stress value is 1 and for vertical acceleration

this is 0, these values determine the ideal point. The

coherent ν−az values with the ideal point are plotted in
one diagram for both active and semi-active suspensions

(see in Figure 4).

It can be seen that the curve for active and semi-active

suspension differ from each other: the values of the ac-

4

Fig. 3. Velocity-damping force table

The most significant difference between active and semi-
active suspensions is their energy actuation. While active sus-
pension can both add to and take energy out of the system, semi-
active can only do the latter; this makes the control design more
difficult.

In the realization the semi-active suspension controller can
compute some actuator forces, which are not possible to real-
ize, because the damper can only dissipate energy, and it can be

done between some limits (see Fig. 3). A possible way to solve
this problem is to add force when it is possible and to rely on
the passive solution when no force can be added [9]. There are
several control design methods, see e.g. [12].

In case of a LQ controller the previous model can be used (see
Section 2). In the semi-active case the required active force is
necessary to convert the damping coefficient such that the damp-
ing force is closest to the desired one. The damping coefficient
has minimum and maximum limits and the number of achiev-
able damping characteristics is finite. The method of finding an
optimal weighting of a semi-active LQ controller is the same
as in Section 3. The optimal weighting of an active suspension
LQ controller can be different from semi-active, because of the
constrains of the damping coefficient.

6 Simulation results
In the simulation examples according to the stochastic road

surface the road excitations under each wheel differ. The sim-
ulations are run with several active and semi-active suspension
controllers. In all cases the dynamic road stress factor of the
front left wheel (Eq. (12)) and the mean of absolute value of
vertical acceleration (Eq. (15)) are computed. Considering that
the minimal dynamic road stress value is 1 and for vertical ac-
celeration this is 0, these values determine the ideal point. The
coherent ν−az values with the ideal point are plotted in one dia-
gram for both active and semi-active suspensions (see in Fig. 4).

Figure 4: Ideal point (center of coordinate system) and

ν − az values

tive are better than those of the semi-active. This result

clearly shows that both energy addition and dissipation

meets quality performance requirements better. Here-

after the results of active suspension controller are de-

tailed. According to Section 3 a curve can be fitted to

the points:

ν =− 3859.2a5z + 1676.9a
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Figure 5: Road excitation

Based on computations the nearest point to the ideal

point corresponds to q1 = 2 ∙ 105 weighting value. It
means that a controller using this q1 weighting value

guarantees the best balance between passenger comfort

and road-friendliness. Using q1 = 2 ∙ 105 and q2 = 1

weights the active suspension model is simulated. The

dynamic road damage factor is ν = 1.0814.

The road excitation is different on the wheels and they

are stochastic signals with 5 mmmaximal amplitude, see

Figure 5. In the simulation the vehicle moves straight at

a constant velocity, which results in the dynamic tyre

loads. The dynamic tyre load of the front-left wheel is

in Figure 6. In order to increase road-friendliness it is

necessary to decrease this value.
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Figure 7: Suspension compression

Figure 7 shows the compression of the front-left sus-

pension. This value gives information about the roll

of the vehicle: in the simulation its maximal value is

10 mm.

A purpose of finding optimal weighting is to minimize

vertical acceleration while maintaining road-friendliness.

Figure 8 shows the vertical acceleration of the chassis,

the minimization is realized well and the maximal ac-

celeration is 0.2 m/s2. It means 2 % of gravitation

acceleration.

5

Fig. 4. Ideal point (center of coordinate system) and ν − az values

It can be seen that the curve for active and semi-active sus-
pension differ from each other: the values of the active are bet-
ter than those of the semi-active. This result clearly shows that
both energy addition and dissipation meets quality performance
requirements better. Hereafter the results of active suspension
controller are detailed. According to Section 3 a curve can be
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fitted to the points:
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Based on computations the nearest point to the ideal point
corresponds to q1 = 2 · 105 weighting value. It means that a
controller using this q1 weighting value guarantees the best bal-
ance between passenger comfort and road-friendliness. Using
q1 = 2 · 105 and q2 = 1 weights the active suspension model is
simulated. The dynamic road damage factor is ν = 1.0814.

The road excitation is different on the wheels and they are
stochastic signals with 5 mm maximal amplitude, see Fig. 5. In
the simulation the vehicle moves straight at a constant velocity,
which results in the dynamic tyre loads. The dynamic tyre load
of the front-left wheel is in Fig. 6. In order to increase road-
friendliness it is necessary to decrease this value.
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Based on computations the nearest point to the ideal

point corresponds to q1 = 2 ∙ 105 weighting value. It
means that a controller using this q1 weighting value

guarantees the best balance between passenger comfort

and road-friendliness. Using q1 = 2 ∙ 105 and q2 = 1

weights the active suspension model is simulated. The

dynamic road damage factor is ν = 1.0814.

The road excitation is different on the wheels and they

are stochastic signals with 5 mmmaximal amplitude, see

Figure 5. In the simulation the vehicle moves straight at

a constant velocity, which results in the dynamic tyre

loads. The dynamic tyre load of the front-left wheel is

in Figure 6. In order to increase road-friendliness it is

necessary to decrease this value.
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Figure 7 shows the compression of the front-left sus-

pension. This value gives information about the roll

of the vehicle: in the simulation its maximal value is

10 mm.

A purpose of finding optimal weighting is to minimize

vertical acceleration while maintaining road-friendliness.

Figure 8 shows the vertical acceleration of the chassis,

the minimization is realized well and the maximal ac-

celeration is 0.2 m/s2. It means 2 % of gravitation

acceleration.
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the points:

ν =− 3859.2a5z + 1676.9a
4
z − 302.49a

3
z + 31.378a

2
z

− 2.0679az + 1.122 (17)
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10 mm.
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7 Conclusion

In this paper a road-friendly control design of an active

suspension using LQ control theorem is presented. The

control design is based on a linear model of the full vehi-

cle and the controller actuates at each wheel. In order to

meet the different performance requirements for vehicle

suspension it is necessary to choose appropriate weight-

ing factors. To find the optimum a special strategy us-

ing several simulations is used. By assigning an ideal

point the optimal weighting between traveling comfort

and road-friendliness is achieved. The method of finding

the optimal weighting is also practicable for semi-active

suspension control design.
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