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Abstract

An increasing number of vehicles are equipped with cameras. As perception sensors, they scan the surrounding area and supply the 

Advanced Driver Assistance Systems (ADAS) for building up an environmental model through the use of computer vision techniques. 

While they perform well under good weather conditions their efficiency is reduced by adverse environmental influences such as 

rain, fog and occlusion through dirt. As a consequence, the vision based ADAS obtains poor quality information, and the model also 

becomes faulty. This paper deals with methods to estimate information quality of cameras in order to warn the assistance system of 

possible wrong working conditions. In particular, situations of contamination or occlusion of the windshield or camera lens, as well 

as foggy weather are taken into account in this paper. In the issue of occlusion total, fractional and transparent effectuations have 

to be recognized and distinguished. Therefore, this paper proposes an approach based on edge analysis of consecutive frames and 

presents initial experimental results of the implementation. In the field of Fog Detection a method based on the Logarithmic Image 

Processing Model is described and the results are shown.
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1 Introduction
Nowadays, electronic equipment of vehicles is becoming 
more complex and increasingly important. Recent vehicles 
are equipped with numerous cameras and radar sensors to 
assist driver assistance systems and other safety and com-
fort functions. Furthermore, with the emergence of autono-
mous vehicles, intelligent functions require proper and pre-
cise sensory input. Proper installation and verification of 
sensor systems are therefore mandatory in current vehicles.

In this article, a new automotive laboratory capable 
of carrying out sensor calibration processes is presented. 
The laboratory is under construction and shall be able to 
calibrate both conventional vehicles and autonomous vehi-
cles. This laboratory shall be equipped with the proper 
equipment for precise camera and radar calibration. Before 
describing the laboratory and its equipment, the technical 
background of sensor models is discussed, as calibration 
methods can perform tasks on camera and radar sensors. 
Additionally, LiDAR sensors are discussed, as they have 

a prominent presence on autonomous vehicles for localiza-
tion and object detection tasks.

In the discussion of calibration algorithms, we differen-
tiate between extrinsic and intrinsic calibration. Intrinsic 
calibration is sensor-specific, sometimes performed by 
the sensor manufacturers themselves. In some cases, it is 
performed mechanically and is well-researched area (e.g., 
cameras). On the other hand, extrinsic calibration esti-
mates the kinematic transformation between multiple sen-
sors. The process is formalized as an optimization pro-
cess. Therefore, numerous methods can be employed for 
precise results. Estimating the kinematic structure of sen-
sors is mandatory for intelligent algorithms to operate cor-
rectly (e.g., estimating the position of an obstacle). In this 
regard, this article reviews recent research performed in 
the extrinsic calibration of multiple sensors. This research 
also provides a way to setup a calibration plate for joint 
LiDAR, camera, and radar calibration.
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The proposed laboratory can perform camera and radar 
calibrations, suitable for routine sensor calibration of conven-
tional vehicles of numerous types (e.g., ones equipped with 
360° sensor systems). Additionally, this laboratory could be 
used to perform extrinsic calibration for autonomous vehi-
cles. In the laboratory introduction section, the steps to setup 
and perform the calibration is depicted in detail.

2 Sensor models
2.1 Overview of sensor models
This article discusses various approaches to exterocep-
tive automotive sensors (i.e., which perceive the surround-
ing environment of the vehicle) and a proposed real-world 
use-case. Very closely related to the calibration algo-
rithms, Section 2.1 primarily discusses the computational 
models of popular sensors. As the calibration identifies 
features detectable by these sensors, calibration processes 
depend indirectly on the mathematical model of the sen-
sors. In this article, mathematical models of the following 
sensors are further discussed, which are currently popular 
in autonomous vehicle applications:

• (Monocular) camera and stereo cameras: used to 
capture color video data. Cameras have relatively 
fast update frequency (even up to around 300 frames 
per second) but at a limited measurement range com-
pared to LiDARs and radars. Additionally, camera 
usage is problematic in limited light conditions (e.g., 
tunnels, nighttime).

• Light Detection and Ranging (LiDAR): used for pre-
cise distance information measurement, in the form 
of a point cloud data. LiDARs can measure in a rela-
tively large range and are not obscured by light con-
ditions. On the other hand, their update frequency is 
relatively slow compared to RADARs and cameras.

• RADAR: used to measure the distance of objects in 
a conical field range. This sensor can achieve a fast 
update rate. Additionally, RADARs can also mea-
sure the velocity of detected objects.

Sensors are typically connected via some sort of serial 
(e.g., USB, UART) or network connection (predominantly 
Ethernet). In the case of cameras, it is also possible to 
use a dedicated embedded physical interface (e.g., MIPI-
CSI 2 compatible) for camera feed. Automotive-certified 
sensors often offer the possibility to be powered from 
an external source. An important task is the precise time 
synchronization between the endpoints for time-synchro-
nized data acquisition. Many network-connected sensors 
provide the use of modern time synchronization protocols 
(e.g., IEEE 1588-2019, 2019).

2.2 LiDAR
LiDAR (light detection and ranging) measures distance 
information by emitting laser beams from a vertical block 
of lasers. The number of the vertical beams also defines 
the channel number of the sensor (i.e., the number of mea-
surable co-centric planes). The primary tasks of LiDARs 
in automotive systems are localization (e.g., by fusing 
additional IMU, RADAR, GPS sensors), obstacle detec-
tion, and ground segmentation. Also, mapping methods 
(SLAM) and some segmentation methods (like PointNet) 
utilize the LiDAR point cloud as input. Typical LiDARs 
are the Ouster OS-1 models and the Velodyne sensors. 
Some popular LiDARs and their respective properties 
are summarized in Table 1. Due to their extensive use in 
localization tasks, some sensors combine other sensors. 
A prominent example is the Ouster LiDARs which are 
combined with an inertial measurement unit (IMU).

LiDARs output a point cloud of distance information 
and intensity. The distance of a single point can be calcu-
lated simply by the light reflection formulae (similarly in 
the case of Sonar and RADAR technologies):

d
t ce=
⋅
2
,  (1)

where te is the emission time of the beam, c is the speed 
of light (c ≈ 3 ∙ 108 m/s). Based on the models defined in 

Table 1 Summary of popular LiDARs

Name Producer Operation method (FoV)° Range (m) Channels

OS1-32 Ouster Digital spinning 45° (± 22.5°) 120 m 32

OS1-64 Ouster Digital spinning 45° (± 22.5°) 120 m 64

OS1-128 Ouster Digital spinning 45° (± 22.5°) 120 m 128

OS2-128 Ouster Digital spinning 22.5° (± 11.25°) 240 m 128

VLP-16 Velodyne Analog spinning 30° (± 15°) 100 m 16

HDL-32E Velodyne Analog spinning 40° (−30°, 10°) 100 m 32

HDL-64E Velodyne Analog spinning 26.9° (−24.9°, 2°) 120 m 64

2020 Pioneer Raster Variable 170 m 76 × 76
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technical literature, the following sensor model can be 
defined (summarized in Fig. 1). The parameters associated 
with this model are the following:

• The step number of the side-block ( ne ) and the steps 
required for one revolution nmax. For example, in the 
case of OS-1, this value is set to 90112.

• Range r from the data block is typically defined in 
millimeters (mm). Most sensors can achieve this 
precision.

• The elevation angle of one laser beam (εa ).
• The side angle of a beam derived from internal 

parameters (αa ).

A point in the right-handed XYZ Cartesian coordinate 
is measured with the following formulae (based on cylin-
drical mapping):
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This mapping can be rewritten in a Matrix-based formal-
ism to define the forward sensor model and to derive the 
inverse sensor model. Given x, y, z coordinates the forward 
sensor model derives the range, side- and elevation angle:
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LiDARs measure with some degree of noise. In gen-
eral, it is modeled as an additive noise following normal 
Gaussian distribution. In the case of the forward sensor 
model (ν follows normal distribution ν ~ N (0, R)):
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With the inverse sensor model, the Cartesian coordi-
nates can be derived from any measured sample:

x
y
z

r
r
r
r

�

�

�
�
�

�

�

�
�
�
� � � �

�

�

�
�
�

�

�

�
�
�

�h 1
, ,

cos cos

sin cos

sin

� �
� �
� �
�

..  (6)

From a technical viewpoint, LiDARs are categorized 
into the following currently widespread types:

• Digital spinning LiDAR: emits electronically con-
trolled laser beams, which produce fully structured 
vertical and horizontal data.

• Analog spinning LiDAR: timed beaming, vertically 
structured, but horizontally unstructured data.

• Raster-scanned LiDAR: raster scanning of the view 
angle field (similarly to cameras), unstructured hor-
izontal and vertical data. Beam control is accom-
plished with MEMS mirror. The field of view can be 
varied in one axis.

The use of LiDARs in automotive settings imposes 
some harsh requirements for qualification, like water/dust/
vibration protection and relatively low power consumption 
(~20 W). LiDARs on vehicles should also use laser beams 
that are not visible and do not damage human vision in any 
way (Laser class I).

2.3 Cameras and Stereo cameras
Cameras measure color pixels in the environment. From 
a technical side, current widespread camera sensors are 
based on CMOS and CCD technology.

Mathematically speaking and based on the fundamen-
tal results of optics, a camera remaps 3D color informa-
tion into a 2D plane. Complex models take lens attributes 
into account. The simplest camera model (camera pin-
hole model, Fig. 2) does not use lens properties and can 
be used to describe basic image mapping. In this model, 
the measured point appears through a normalized plane Fig. 1 Graphical representation of LiDAR sensor model
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on the physical retina. In the internal frame of the camera, 
a slightly different coordinate system is used, with the ori-
gin point in the top-left corner of the retina plane. The x-y 
axes are defined on the retina plane, while the z-axis points 
outward the camera.

The main task is to map pixels from the world frame. 
A single pixel of the world can be mapped with the follow-
ing relations:
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As the pixels are not necessarily square but rectangular, 
linear scaling is required to get the final transformation for 
the p retinal point:
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In the case of CCD cameras, the origin is not the corner 
of the image plane. Therefore an offset must be added to 
the pixels (using α = kf, β = lf   ):

p x y
x x x
y y y

, .� � � � �
� �

�
�
�

�
�

0

0

 (9)

If there is a slight slip in the coordinate system of θ 
angle (e.g., due to manufacturing error), Eq. (9) is modi-
fied as Eq. (10):
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Besides the image mapping model, cameras are at- 
tributed with intrinsic (e.g., focal length) and extrinsic 
parameters (i.e., the transformation between the camera 
and world frame).

In automotive scenarios, stereo cameras and multi-cam-
era systems are increasingly popular. Multi-cameras per- 

form the synchronized fusion of multiple camera images. 
Therefore single-camera image mapping can be based on 
simple camera model superpositions. The advantage of 
stereo cameras is that they can produce a depth map (and 
a point cloud using this depth map) based on the synchro-
nized pictures. The most basic parameter is the baseline 
(distance between the two lenses). In computational mod-
els, it can be assumed that both cameras have precisely the 
same properties (e.g., f focal length). The stereo-camera 
conceptual model is depicted in Fig. 3.

Depth can be estimated using elementary geometry, 
using the measurement of the point from both cameras (xr 
and xl ). Based on the theorem of similar triangles, and the 
disparity d = xl − xr:
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This disparity can be used to generate depth informa-
tion, similarly to the measurement of LiDARs.

2.4 Radar
The radar (radio locator) perceives objects using radio waves 
and echolocation. Radars can be used perfectly in automo-
tive applications like adaptive cruise control or obstacle 
avoidance. Radars can operate in a wide range, typically 
between 2–300 meters. The following radars are wide-
spread in vehicles with distinct operational background:

• Pulse-Doppler radars are of a wide range (few 
kilometers). Such radars transmit radio waves for 
a short period and switch to receiving mode to pro-
cess echoed waves. Typical vehicular requirements 
demand fast computation, which requires high-
speed analog circuitry, high digital sampling time, 
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Fig. 2 Illustration of camera pinhole model

Fig. 3 Illustration of stereo camera model
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and signal processing capabilities. This cannot be 
afforded in conventional vehicles.

• In conventional vehicles, frequency-modulated 
continuous-wave (FMCW) radars are used. They 
require less complex electronics and radio frequency 
circuitry to satisfy automotive requirements. This 
can be achieved by using FPGAs, special micropro-
cessors, or special ASIC devices. Manufacturers like 
Continental AG produce this type in high volume at 
an affordable cost. This type of radar is described in 
more detail below.

FMCW radars use a continuous carrier frequency, 
which can be used to process information by analyzing 
its echolocation (Fig. 4). The frequency is cyclically vari-
able. To ensure that the transmitting signal does not inter-
fere with receiving side, separate transmitter and receiver 
antennae are used.

Range is estimated by measuring frequency difference. 
There is no amplitude modulation in this process. When 
the transmitter frequency increases, the receiver frequency 
will be slightly smaller, depending on time delay. When the 
receiver frequency decreases, this difference will be larger. 
The measured frequency differences will be proportional 
with the round-trip time (RTT), higher the measured dis-
tance, higher this delay is. Typical operational frequencies 
are 24 GHz and 77 GHz. These frequencies are typically 
used because of small antennae size, high availability of 
spectral range and attenuation of radio waves.

3 Calibration methods
Each sensor configuration requires two calibration tasks, 
internal and external calibration. External calibration 
can be viewed as a task of finding a mapping between the 
kinematic frame of the sensor and the primary reference 
frame of the vehicle (e.g., the center of the rear/front axle). 
The result of this process is independent of the sensor type 
itself. More formally, the whole process can be written as 
finding an optimal 6-DOF T X,S the transformation between 
the main reference frame and the frame of the sensor:

T
R tX S
T

,
.�

�

�
�

�

�
�0 1

 (12)

In this matrix, R is a 3D rotation, t is a 3D translation 
vector. The transformation can be parameterized with vec-
tor θ 1,2 = (tx, ty, tz, vx ∙ α, vy ∙ α, vz ∙ α), α rotation angle, and 
rotation axis (vx, vy, vz ). Finding this parameterization vec-
tor can be formalized as input for an optimization problem.

Internal calibration is highly dependent on the sensor 
itself. The result of internal calibration is a parameter set 
to configure the target sensor. Sensor producers usually 
provide configuration sets resulting from internal calibra-
tion. Consequently, developers can usually omit this step, 
especially in the prototype phase of the development. 

On the other hand, external calibration depends heavily 
on the sensor placements, so it is performed on the target 
platform. In this article, we focus primarily on external 
calibration methods. In summary, the external calibration 
poses more challenges, and it can be done automatically 
in multi-sensor setups, where radar/LiDAR/camera are 
simultaneously operating.

3.1 Overview of feature matching
Feature matching algorithms are an essential building 
block of calibration methods. Feature matching is usually 
performed on point clouds natively produced by LiDARs 
(and in some cases multi-camera systems) and can be eas-
ily computed from stereo camera imagery.

The task is to find an optimal homogeneous transfor-
mation between the two (partial) point clouds during cal-
ibration. Popular approaches are iterative closest point 
(ICP) (Besl and McKay, 1992) or a more recent method 
called Normal Distribution Transform (NDT) (Biber and 
Straßer, 2003). Besides their use in sensor calibration, 
these approaches can be used in localization problems. 
Additional circumstances can be assumed during cali-
bration. The ground can be considered as a nearly perfect 
plane, facilitating the plane matching process. The opti-
mized version of all these algorithms are included in pop-
ular libraries like Point Cloud Library (PCL).

3.2 Optimization methods
As calibration outputs an optimal homogeneous transfor-
mation, various optimization methods are employed to find 
the best-matching transformation. The most convenient 
way is to use some variant of the gradient-based method. 
More complex methods use genetic-algorithms to perform 
this task. Both approaches are available in widespread 
developer environments. The calibration task is formulated 
as a graph optimization problem using other techniques 
(e.g., using G2O). This approach is useful in many-sensor 

Fig. 4 FMCW signal operation
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configurations, with different possibilities of transforma-
tion layouts. Due to the possible nonlinearity of the optimi-
zation problem, Levenberg-Marquadt (LM) or Semi-global 
Matching algorithm is used instead of Newton's method.

3.3 Camera calibration
The extrinsic and intrinsic calibration of cameras is well-
known and has been integrated into popular computer 
vision frameworks (e.g. OpenCV, Bradski (2000)). During 
intrinsic camera calibration, the focal length and the dis-
tortion parameters are derived, which are mostly contrib-
uted by the equipped lens and camera sensors. Intrinsic 
calibration is carried out with a target checkboard table 
with known width, height, and uniform size of each cell. 
An example of this process is depicted in Fig. 5.

The camera model can be formalized as matrices, which 
can be decomposed into the internal and extrinsic param-
eters. Intrinsic parameters describe the camera properties 
(e.g. field of view, focal length), which can be used to cal-
culate a point in the environment as an image plane pixel, 
by solving the matrix equation p = 1/z[K,0]pc. Assuming 
no distortion and slip, this matrix is given as:
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The matrix K can be rewritten with assuming θ slip 
angles as:
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External calibration provides the same extrinsic trans-
formation, in the same way as in the case of other sensors. 

As a reminder, this matrix is a homogeneous trans- 
formation:
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Matrix Pc can be used to transform a point from the 
world reference frame to the camera reference frame. This 
can be used to define mapping using both matrices:

p K R t� � �1

z
.  (16)

During calibration, the task is to find an optimal set 
of these matrices. In the case of cameras, there exists 
a matrix-decomposition based approach to find these 
matrices (e.g. using QR decomposition).

3.4 Camera calibration
The earliest multi-sensor calibration methods used cam-
era and LiDAR for external calibration. In multi-sensor 
configurations, generally LiDAR is assumed as the main 
reference and other sensor output is matched to the LiDAR 
point cloud using an optimization method. This is due to 
the following properties of LiDAR data:

• In the case of LiDARs, internal calibration is almost 
always provided by the manufacturer, the internal 
parameters are usually set precisely enough.

• With the help of LiDARs, geometric properties can 
be easily measured, like in a static environment. 
This allows the easy registration of points measured 
by the camera in the LiDAR point cloud.

The different methods and the target sensors are sum-
marized in Table 2. The listed methods are capable to cal-
ibrate external methods.

Similarly to single camera calibration, multi-sensor cal-
ibration requires a calibration table. Features on this cali-
bration table are detectable both by a camera and LiDAR. 
An example of such table is depicted in Fig. 6. The four circu-
lar holes on Table 2 are easily detectable by both the LiDAR 
and camera. In other methods like in Rodriguez F. (2008), 
an ellipse is fitted on the measured point cloud.

Fig. 5 Example of camera calibration process with calibration table

Table 2 Comparison of multi-sensor calibration methods

Source LiDAR RADAR Stereo Mono

Guindel et al. (2017) Y N Y N

Sim et al. (2016) Y N Suboptimal Y

Dhall et al. (2017) Y N Y Y

Rodriguez F. et al. (2008) Y N N Y

Domhof et al. (2019) Y Y Y Y
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Guindel et al. (2017) introduces a calibration method, 
which can be used to calibrate LiDAR-camera sen-
sor configurations. The calibration table is the same as 
above (Fig. 6). An ROS-based implementation of this 
method is publicly available, with additional test data. 
Other calibration methods are inspired from this algo-
rithm. This algorithm registers the stereo-camera mea-
sured points on the LiDAR point cloud. Based on the 
monochromatic picture from the stereo camera the depth 
points estimated by the registration algorithm are associ-
ated with each LiDAR point. The similarity between each 
point cloud results from the transformation between both 
sensors. The transformation optimization is based on SGM 
method. The algorithm performs the following steps:

1. Generating a representation from camera and 
LiDAR.

2. Search for discontinuities (planes) to find the cali-
bration table in the point cloud. Exploiting the prop-
erties of the calibration table, the plane can be found 
with sampling consensus-based (SAC) method. 
RANSAC helps to separate walls and other envi-
ronmental elements from the table. The geometric 
features on the calibration table can be found with 
conventional algorithms, like Sobel-filtering (inter-
mediate process is illustrated in Fig. 7).

3. The calibration table contains four circles, which can 
be methodically detected in the point cloud. The pre-
cision can be further improved by filtering out out-
lier points.

4. In the final registration, a transformation parameter 
set is searched that minimizes the distance between 
the geometric centre of both point clouds. Rotation 
is not assumed in the initial step, which can be 

calculated by solving a system of 12 equations with 
least squares. This results in 3 final equations, which 
can be solved by QR decomposition. Finally, ICP 
finds a final transformation between the two point 
clouds.

Dhall et al. (2017) presents an alternative method to cal-
ibrate LiDAR and camera configurations. This uses mul-
tiple calibration tables, with Aruco markers as camera 
detectable features (Fig. 8).

The point clouds and the measured Aruco marker cen-
ters are minimized with the help of iterative closest point, 
formally the following problem is solved on the extrinsic 
transformation:

argmin
R SO t R∈ ( ) ∈

+( )−
3

2

3
,

.RP t Q  (17)

The iterative-closest point matches the closest point and 
finds an optimal [R|t] transformation between the point 
clouds minimizing the Euclidean distance between the point 
clouds. To avoid degenerate cases, the Aruco marker cor-
ners are exploited to find a closed solution. Kabsch algo-
rithm is used to find the rotation between the point clouds. 

Fig. 6 An example of calibration table used in LiDAR-Camera 
calibration (with a rectangle side ratio of 3:4)

Fig. 7 Intermediate calibration step, Sobel-filtering to find geometric 
features using calibration method based on Guindel et al. (2017) in 

a simulated setup (reproduced Gazebo simulation output by the authors)

Fig. 8 Calibration layout proposed by (based on Dhall et al., 2017)
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The motivation of this method is to calibrate multiple cam-
eras that are not entirely in the same field of view. For the 
whole 360° field of view a LiDAR can be used for precise 
calibration.

3.5 Graph-based external calibration
A novel approach is presented by Domhof et al. (2019), 
which is potentially capable of calibrating arbitrary sensor 
configurations, including LiDARs, cameras, radars. It uses 
a calibration table similar to Rodriguez F. et al. (2008), 
extended with a tetrahedron on the back of the table de- 
tectable by the radar and conic holes (Fig. 9).

The external calibration can be formalized as follows: 
organize the sensors in an ordered list {1 ... K}, and mea-
sure the calibration table from K sensor locations. In the 
case of camera and LiDAR, these are 3D coordinates of 
each detected circle. The minimizable squared error of 
the external calibration is the Euclidean distance of the 
detected circles form sensor k:

� �k
1,2 4� � � � �� � � ��� y T yk pk pp

2

1

21 2 2,
.  (18)

In the case of the radar, they are the planar coordinates 
of the tetrahedron on the back of the table. The minimiz-
able error is the distance of the tetrahedron using the posi-
tion of the detected circles:

ε θk
R

k
R

ky
1

1

1
2

, ,
.( ) − ( )( )⋅( )= y p T gR1  (19)

These metrics allow the formalization of the optimi-
zation problem to find an optimal transformation, which 
minimizes the f(θ1,2) cumulative error of all K calibration 
measurements ( �� ��k k

2 1�  indicators ensure that only those 
detected by both sensors are taken into account):

f kk

K
k k� 1 2 2

1

1, ,
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�� �� �� �� �� 1 2  (20)

The exotic many-sensor configurations are most natu-
rally depicted in a directed (acyclic) graph-based layout, 
with the main reference point as a special node in this 
graph. This algorithm offers three differently organized 
layout types (the layouts are depicted in Fig. 10).

In the case of minimally connected pose estimation 
(MCPE) layout, a sensor is selected as the primary ref-
erence sensor, and the other sensor transformations are 
relative to this special sensor. The edges are minimal in 
this layout. The optimization function, in this case, is the 
following:

f k
i

k
i
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K

i

N
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�
�
��� �� �� �� �� ��1 1
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,
.  

The fully connected pose estimation (FCPE) layout has 
been inspired by SLAM methods. All sensors are con-
sidered at once with a loop-closure constraint (formally 
T T Ts s sl l t, , ,

... ,
1 1 21� � �� � � � �� l l sl0  equals with the sen-

sor count in the cycle) to ensure all cycles are equal with 
the identity matrix. This method calculates all C(n, 2) 
transformation matrix combinations instead of the N − 1 
transformation matrices, by considering the following 
total error function:

f kk

K
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N
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Adding additional error factors possibly ensures robust-
ness to noise instead of using only one reference sensor. 
On the other hand, error factors increase in a quadratic 
proportion of the sensor count, and additional loop closure 
constraints must be added.

Pose and structure estimation (PSE) layout opti-
mizes the transformations based on an explicit estima-
tion. In this layout, the task is to estimate the structure of 
the poses M = (m1, ... , mk ) and the T M,i transformation in 
a fixed reference frame for all i sensors. The estimations 
are y hk p

M
km p� � � �,  samples that follow a standard Normal 

distribution with zero mean-value (each estimation can be 
derived as y T yk p

i M i
k p
M i iN� � � �� � � � �,

, ,� �  0 � ). Instead 

̂

̂

Fig. 9 Calibration table used by Domhof et al.© (2019), with the 
triangular component on the back of the frame for radar calibration

Fig. 10 Different graph-based layouts of sensor calibrations (left-to-
right): MCPE, FCPE, PSE
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of Euclidean distance, Mahalanobis-distance can be used. 
In the initial step, all Σi matrices are equal to the iden-
tity matrix, and the transformation is optimized per kine-
matic joint:

� k k p
i

p i�� M i M i
k p
MM y T yD, ,

, , ,� � � �� �� � � ��� �
2

1

4  (22)
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Intermediate results can be used to re-estimate the 
noise covariances and to re-evaluate f  (θ, M  ). This step 
can be repeated until the convergence of all variances. 
In this case, T M,i must be fixed to avoid non-unique solu-
tions. The downside of this layout that the error function 
is a homogeneous estimation which can be defined as neg-
ative log-likelihood. The combination of these squared 
functions leads to heterogeneous error (pixel vs. Euclidean 
error). The optimization is complex compared to other lay-
outs. Consequently, the loop closure is not explicitly con-
strained. On the other hand, the probabilistic formaliza-
tion allows easy injection of a priori data of the calibration 
table and the sensor poses.

The graph-based layout allows the result to be stored 
in a graph-based format. Such format is the unified robot 
description format (URDF), which is widespread in 
robotic applications. This algorithm is publicly available 
at a GitHub repository maintained by the author of the 
article (EaiPool, 2021).

4 ADAS Sensor calibration and diagnostics laboratory
The calibration and preferably automatic calibration of 
automotive sensors has became a priority nowadays. This 
demand is contributed to the increasing appearance of 
autonomous vehicles and the growing sensory capabil-
ities of conventional vehicles. While the extensive use 
of sensors in autonomous vehicles is obvious, conven-
tional vehicles are also equipped with intelligent driver 
assistant features like adaptive cruise control and night 
vision. Fine-tuning, even mathematical investigation of 
these systems is reasonable, like in the work described by 
Derbel et al. (2012). To satisfy the increasing requirements 
both from academia and industry, numerous institutions 
started to install a (semi-)automatic calibration laboratory, 
like demonstrated by Varga et al. (2020).

The Department of Road and Rail Vehicles Diagnostics 
laboratory of Széchenyi István University at ZalaZone 
automotive proving ground is planning to install an ADAS 
calibration system for R&D and demonstrative purposes. 

The calibration setup has been purchased from Texa 
ADAS systems offering a calibration system (Radar and 
Camera Calibration System 2 - RCCS 2) suitable for most 
automotive sensor calibration tasks. Additionally, an ACS 
(All Around Calibration System) was / is planned to be 
purchased to perform a 360° camera system and rear & 
side sensor calibration. Both systems are also bundled 
with its calibration software, IDC5. The planned place-
ment of the device and the proposed layout of the labora-
tory are depicted in Fig. 11.

On this designed layout, the placement of the vehicle is 
marked within specially designed areas for different types 
of measurements. The laboratory shall be equipped with 
the RCCS 2 and ACS systems that use the same frame 
holder for both sensor calibration processes, enabling both 
camera and radar sensor calibration. Furthermore, with 
the usage of one of the methods described in Section 3, 
joint extrinsic calibration of multiple sensors equipped on 
the vehicle could be likely carried out.

4.1 Calibration and diagnostic operations
In Section 4.1.1, the required preparations, and operations 
for sensor calibration with RCCS 2 are further discussed. 
As previously mentioned, RCCS 2 uses the same frame 
holder stand to carry out the camera and radar calibration. 

̂

Fig. 11 Texa ADAS calibration placement (ZalaZone planned layout) 
(equiiped with devices from Texa Group)
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The calibration process can be carried out without chang-
ing the vehicle position relative to the frame stand. RCCS 2 
provides a laser telemeter to measure the vehicle's position 
for the precise positioning. RCCS 2 also provides the nec-
essary tools to fix the vehicle into a stationary position 
(i.e., wheel lock). The exact requirements for the correct 
positioning are the following:

• The vehicle and the calibration unit must be coplanar 
(at 0° degrees to each other)

• The vehicle must be empty (boot and passenger com-
partment), meaning no person can be inside the vehicle.

• The steering wheel must be in a central position, and 
the wheels must be straight.

• The specific manufacturer recommendations must 
be satisfied on the target vehicle. Such requirements 
include proper oil level, tire pressure, coolant level, 
vehicle's wheel alignment. Also, the vehicle's front and 
the surroundings of the front radar sensor must be free.

RCCS 2 systems are also capable of integrated ground 
clearance measurement for more automatization of the 
overall calibration process.

4.1.1 Camera calibration
Using RCCS 2, the camera system can be calibrated using 
different camera calibration panels designed to operate 
on other electronic driver assistance systems (e.g., Night 
Vision System, Adaptive Cruise Control). The bundled 
software provides meaningful help to set the vehicle into 
the correct position for calibration. The following techno-
logical criteria must be met for proper calibration of the 
camera system:

• During camera calibration, the light reflexive objects 
and devices should not be placed on the grey lane.

• The wall color should be matte white with no 
reflection.

• In the grey lane, all objects of black color should be 
avoided.

• The wall should not contain any kind of texture, fig-
ure, or poster.

• If there is a window in front of the target camera, 
a white strip curtain should be used.

• There should be no person in the field of view of the 
target camera (except when human movement sim-
ulation is part of the calibration process like in the 
case of BMW vehicles).

• The grey area must be illuminated adequately; the 
stand should not cast a shadow on the wall behind it.

• A lighting system of adjustable brightness or a lay-
out divided into switchable segments should be used. 
In general, in most vehicle types, an adequately illu-
minated area is required, but medium brightness 
is more appropriate in some vehicles.

The camera calibration process of the vehicular camera 
in the case of the Texa ADAS RCCS Calibration System 2 
device and the installed frame is depicted in Fig. 12.

4.1.2 Radar calibration
The radar system can be calibrated with the RCCS frame 
holder stand (the process is illustrated in Fig. 13). Here 
are some preliminary technical notes regarding the cali-
bration process:

• Using the RCCS stand, there is no special lighting 
requirement of radar calibration so that the calibra-
tion can be executed in inadequate lighting condi-
tions (i.e., in the dark).

Fig. 12 Camera calibration with the Texa ADAS RCCS Calibration 
System 2

Fig. 13 Radar calibration with RCCS 2 (no personnel, metal objects, 
antennas or radio transmitters of any kind are allowed in the grey area)
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• Between the radar calibration plate and the vehicle, 
all metallic objects should be avoided.

• Japanese vehicles (e.g., Honda, Toyota, Mazda) can 
be calibrated using a radar-wave reflection cone.

4.1.3 360° sensory system calibration
It is also possible with the proposed laboratory setup and 
equipment to calibrate 360° camera and radar systems. 
In the case of 360° (full surround) systems, the required 
space for the proper placement of the calibration device is 
depicted in Fig. 14. This calibration is performed with ACS 
system instances installed around the car (inside the check-
erboard pattern lanes of the laboratory layout). The calibra-
tion frames are of similar composition as in single-sensor 
setups but are slightly different. As automotive sensors on 
the side and the rear have a deeper placement with a differ-
ent field of view than the front sensors, ACS frame stands 
are constructed differently. Calibration frames are placed on 
the side points of the aluminum stand. This enables the cali-
bration of sensors placed in different positions of the vehicle. 
The perpendicular placement of the calibration stand can be 
maintained with the markings of the laboratory layout.

Calibration of side and rear sensors
Using the ACS calibration frame, the rear and side sen-
sors can be calibrated with the calibration frame (Fig. 15). 
In the case of rear sensor calibration, a calibration mat is 
additionally placed for precise measurements and for the 
estimation of the dead angle of the rear sensors.

5 Further work
After the installation of calibration devices and the equip-
ment of the laboratories, numerous research directions are 
planned. A particular research field is related to traffic safety 
connections, where different themes can be designated:

1. Repairing of vehicles damaged in accidents.
2. Calibration operations after windshield replacement.
3. Evaluation of traffic safety effects posed by incor-

rectly calibrated sensors.

An important area during the calibration process is the val-
idation of models based on measurement data. Once the the 
laboratory is equipped, the collection of empirical data and 
measurements of academic purpose will be of high focus.

6 Conclusions
This paper presented a laboratory for the automotive calibra-
tion processes. The laboratory equipment has been presented, 

capable of the sensory calibration of both conventional vehi-
cles and autonomous vehicles. The calibration focuses on 
radar and camera calibration, as conventional vehicles are 
more frequently equipped with these sensor types. The pur-
chased equipment can carry out frontal sensor (camera and 
radar), 360° system, and side-rear calibration. The equipment 
includes calibration frames (for different use-cases, e.g., 
night vision, ACC), digital equipment, and stands. The labo-
ratory and its capabilities will be available shortly.

The recent relevant literature has been reviewed to 
enable the external calibration of autonomous vehi-
cles. The internal calibration of individual sensors must 
be done precisely to ensure correct operation, just as in 
conventional vehicles. External calibration is addition-
ally required to construct a kinematic tree of the sen-
sory structure of the target vehicle. This kinematic tree 
is mandatory to operate algorithms used in motion plan-
ning, perception, and localization. The reviewed papers 
provide methods capable of the joint external calibration 
of multiple sensors.

In summary, the algorithms based on the reviewed mate-
rial and the proposed laboratory equipment will provide 
a way to carry out all tasks required to perform precise and 
reliable calibration of the modern vehicle sensory systems.

Fig. 14 Calibration area in the case of 360° sensor systems (B = 2000–
2500 mm), and the respective reference marks

Fig. 15 Placement of the calibration mat, dead-angle and rear-side radar 
calibration
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