
Ŕ periodica polytechnica

Transportation Engineering
38/2 (2010) 113–118

doi: 10.3311/pp.tr.2010-2.09
web: http://www.pp.bme.hu/ tr

c© Periodica Polytechnica 2010

RESEARCH ARTICLE

The control of fleet management
systems’ server model
Szilárd Aradi / Tamás Bécsi

Received 2009-10-07

Abstract
Our article deals with the load controlling of server systems

which can be represented as M/M/1 queuing models. It intro-
duces the results of a service structure’s state space based con-
trol, which has also been realized in practice, the system model,
and the control which guarantees the availability of the system.

Keywords
server control · queuing model

Acknowledgement
This work is connected to the scientific program of the " De-

velopment of quality-oriented and harmonized R+D+I strategy
and functional model at BME" project. This project is supported
by the New Hungary Development Plan (Project ID: TÁMOP-
4.2.1/B-09/1/KMR-2010-0002).

Szilárd Aradi

Department of Control and Transport Automation, BME, H-1111 Budapest
Bertalan L. u. 2., Hungary
e-mail: szilard.aradi@auto.bme.hu

Tamás Bécsi

Department of Control and Transport Automation, BME, H-1111 Budapest
Bertalan L. u. 2., Hungary
e-mail: becsi.tamas@mail.bme.hu

1 Goals
The aim of the article is to examine the question of the avail-

ability of a communication server [3,4] which is part of the fleet
management system, and to answer questions regarding the con-
trol of the system. Systems of this kind are handled as the com-
bination of an M/M/1 queuing [2, 5] and a load model. The
queuing model operates by modelling the length of the queue
between the incoming internal and external requests, and their
service i.e. it determines how many unsolved tasks the software
realizing the system still has. The load model, on the other hand,
determines how large the amount of the system’s resources has
to be in order to be able to execute these tasks [1, 7]. In case of
a server application, the load means the utilization of hardware-
based resources, which can be processor load, memory usage,
I/O operations of the computer storage, and, in a given case, use
of network resources.

Thus, a system based on a theory of this kind has to satisfy
two basically opposite conditions:

1 It has to provide service to incoming requests as fast as pos-
sible;

2 No problem should occur while operating, which could mean
a real danger if the resources were overloaded.

So, the expected load has to be estimated during the construction
of the system, which means that during the realization, a classi-
cal measuring problem has to be realized in which the number
of the server’s clients, the cardinality of messages sent and to
be received by them, and the resource need of these “services”
has to be determined as accurately as possible. This planning re-
sults, like in the case of every other technological problem, in an
oversize, which also takes costs (investment and maintenance)
into consideration. As a result of which as well as by proper
operation but also in case of small demand growths with the ap-
plication of sufficient reserve resources, the system can operate
successfully. Which means that it can serve every demand in a
minimal amount of time.

After this planning, it can be a logical presupposition that the
system should serve every request as fast as possible. However,
should any incident of vis major nature occur e.g. an intended

The control of fleet management systems’ server model 1132010 38 2

http://www.pp.bme.hu/tr

shutdown, the system had to face such a large number of re-
quests that their execution could result in an overload, or even
the breakdown of the system.

A system, which operates without control, cannot respond to
a challenge of this sort, so the installation of a service model is
necessary which can take control of the load of the resources.
This can result in a longer service time but it also improves the
availability and ensures the stabile operation of the system.

2 Model build-up
To make the design of the system’s service model possible,

the internal dynamics of the system have to be mapped first.
It seems to be effective to suppose that the system is dynamic,
time-invariant, deterministic and discrete time.

It is dynamic, as the queuing model does not contain only
present-time information but past-time as well. It is time-
invariant i.e. it can be supposed that the answers of the sys-
tem are independent of time. Discrete time i.e. the examination
of the system’s states are not done continuously but according
to operating cycles. It is deterministic i.e. it can be supposed
that the operation of the system is not influenced by any random
variable.

The system can of course lose some features while being con-
structed but it is definitely practical to formulate these presup-
positions.

During the construction of the model, every parameter has to
be set which together can influence the operation of the system.
It is important to know from the point of view of the resources
how many clients the system serves at the same time. The client
number (xklsz) is a simple integrating state variable whose value
in step (n+1) depends on the client number of the previous cy-
cle (n), and on the number of incoming and outgoing clients
(dklbincoming clients; dklkoutgoing clients) during the cycle:

xklsz(n + 1) = xklsz(n) − dklk(n) + dklb(n) (1)

The incoming requests, be they requests from the side of the
client or from that of the server depend on the actual client num-
ber but it is practical to define these as external inputs as the
density of occurrence of these requests can vary in time. The
queuing model of the requests waiting for service in the given
cycle can be written up from this (xsh), which can be written
up from the value taken up by it in the previous cycle, and the
incoming (dib) and outgoing (xksz) requests:

xsh(n + 1) = xsh(n) − xksz(n) + dib(n) (2)

The number of requests which are to be served in the next cycle
are interpreted in the given cycle as the system’s input i.e. the
state variable depends on the number of requests which are to be
served (uksz):

xksz(n + 1) = uksz(n) (3)

In order for all the information to be available, the state vari-
able of the resource load has to be determined as well. What

the resources regards, the demand for system memory can be
regarded as an insignificant variable because this resource, as
it is also shown by the examination of the sample system pro-
vided with the suitable data structure, becomes practically inex-
haustible. The network and the computer storage I/O operations,
as the CPU is waiting for the realization of these, can be con-
verted unambiguously into CPU load values. Every universal
built-in algorithm i.e. searches, maintenance of lists, control of
state machines, etc. occupy the CPU’s time as well. According
to these considerations, it is suitable to model the resource need
with CPU time or with CPU load [%]. This value depends on
more parameters:

• the load independent from other variables (tsb Stand by [%]);

• the universal functions applied to certain clients, which is a
function of the client number (xklsz multiplying cekp passive
clients [%/client]);

• the CPU load created during the login and logout of the clients
((dklk+dklb) multiplying cklkb clients in/out load [%/client]);

• the load of the manifestation of requests (dib multiplying cib

request receiving load [%/client]);

• and the load of requests served in the given cycle (xksz [db]
multiplying cksz service load [%/client]) :

x pt (n + 1) = tsb + cekpxklsz(n) + cksz xksz(n)+

cklkb(dklk(n) + dklb(n)) + cibdib(n) (4)

This last state variable is taken for the model’s output i.e.:

y(n) = x pt (n) (5)

The Eqs. (1)-(5) define a linear system with the state space rep-
resentation of these Linear equations as follows:

x =

x proc

xksz

xsh

xklsz

 , u =

uksz

dib

dklk

dklb

 ,

A =

0 cksz 0 cekp

0 0 0 0
0 −1 1 0
0 0 0 1

B =

0 cib cklkb cklkb

1 0 0 0
0 1 0 0
0 0 −1 1

D =

(
0 0 0 0

)
C =

(
1 0 0 0

)

(6)

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n)
(7)

Per. Pol. Transp. Eng.114 Szilárd Aradi / Tamás Bécsi

2.1 Linear model with certain restrictions
2.1.1 Restrictions
The value which is represented in the linear system as client

number can under the effect of appropriate inputs take up nega-
tive values as well. This is not possible in a real system on the
one hand, while on the other it would lead to negative CPU load
in the dynamics, which is also not very realistic. Thus, client
number has a minimum:

xreal
klsz = max

(
x theoretical

klsz ; 0
)

(8)

The same goes for queue length, which also cannot take up neg-
ative values:

xreal
sh = max

(
x theoretical

sh ; 0
)

(9)

Besides, the request number which is actually to be served in the
given cycle does not only equal the theoretical service number
i.e. that which is defined as input, but it is also limited by the
number of servable entities in the queue:

xreal
ksz = min

(
x theoretical

ksz ; xreal
sh

)
(10)

2.1.2 Stochastic variables
The discrete time linear system which is taken up according

to Eq. (6) has four inputs, dklk , dklb,dib and uksz . However, it
is only the last one of these, the service number, which can be
used for controlling purposes, as the system has no impact upon
the login or logout of the clients. Therefore, the effect of these
inputs has to be interpreted as disturbance.

The CPU load, if we leave some other features out of consid-
eration, is mostly made up of the load of served requests. The
service time of one request (cksz) however depends on many
external factors e.g. response time of the database and the oc-
cupation of other hardware resources. However, this system pa-
rameter thus cannot be considered to be constant, it is only its
theoretical minimum that can be defined.

3 Controllability analysis
3.1 Control goals
The planning of the system’s control has to be performed

mainly by taking the above mentioned two basic aspects into
consideration, so that the condition of keeping the positive value
of input uksz has to be continuously satisfied.

The CPU load clearly determines the length of the server’s
processing cycle. Should the system serve too many requests in
a cycle, the time of the given cycle becomes too long, and, be-
cause of the service, the system cannot take care of other tasks
e.g. login or communication of the clients, or the processing of
requests. Thus, it is practical to determine a cycle time in which
in the given cycle every task can be executed in the case of every
parameter and input corresponding to regular operation. This is
a simple measuring task, and the hardware need of the system
should be determined according to this parameter. If the system
is overladen, the amount of requests that are to be served in one

cycle needs to be determined so, that the CPU load should not
be higher than the value of the determined cycle time. The same
goes for the reverse case, should the CPU load be much lower
than the cycle time, the system load is not optimal, the queue
of pending requests does not decrease in the highest possible
degree. However, exceedance of the cycle time is to a small ex-
tent and on a single occasion is allowed. Different surveys touch
upon various fields of control theory while controlling systems
of this kind, so both solutions of PI-type [6] and LPV-based ones
can be found [8],[9].

3.2 Controllability, observability
The states and inputs of the system are measurable, as it is an

information technological application, so the application of an
observer is not necessary. As the system can only be controlled
with input uksz , controllability analysis has to be performed on
this input. The rank of the controllability matrix that is pro-
jected to the system’s input uksz is three, which is less than the
dimension of the system. As the system is not complete state
controllable, the stability of the system cannot be ensured with
input uksz under the present modelling paradigm. The unreach-
able state is the client number (xklsz), and therefore, the CPU
load is not completely controllable either.

3.3 Planning controllability
It is practical to leave the client number, as unreachable state,

and thus its effect on CPU load out of the system that is to
be taken into consideration during the construction of the con-
troller, or to take it for a disturbance which appears at the out-
put of the system. This can be easily kept in hand if we know
the nature of the disturbance. In the present case, there is even
something more that can be achieved, as we can determine this
disturbing sign, which has an effect on the CPU load, with ap-
proximate estimating.

So, the state space of the system is defined by the following
matrices:

x̃ =

 x proc

xksz

xsh

 , ũ = (uksz) ,

Ã =

 0 cksz 0
0 0 0
0 −1 1

 B̃ =

 0
1
0

C̃ =

(
1 0 0

)
D̃ = (0)

(11)

3.3.1 Control planning
The rank of the (11) system’s controllability matrix is 3,

which is equal to the system’s dimension, so, the system be-
comes controllable. The system’s poles, the own values of ma-
trix Ã, (12) are not stable, so it is necessary to use state feedback
in order to stabilize them.

P(Ã) =

(
0 0 1

)
(12)

The control of fleet management systems’ server model 1152010 38 2

A solution to the pole-replacing task is given by Ackermann’s
formula:

K =

(
0 0 1

)
M−1

c (Ã, B̃)φc(Ã) (13)

K =

(
α1α2α3

cksz
, 1 − α1 − α3 − α2,

−1 + α1 + α3 + α2 − α1α3 − α1α2 − α2α3 + α1α2α3) (14)

If we leave the feedback of xksz out of consideration, the second
element of vector K can be 0. In this case, the following rule has
to be observed while setting the poles:

α2 = 1 − (α1 + α3) (15)

In this case, K’s value changes as follows:

K =

(
−

α1 (−1 + α1 + α3) α3

cksz
,0,

2α1α3 − α1 + α2
1 − α3 + α2

3 − α2
1α3 − α1α

2
3

)
(16)

By choosing an appropriate pole triplet:

α1 = α3 = 0.2; α2 = 0.6 (17)

The vector of the state feedback will be as a function of service
response time (cksz) as follows:

K =

(
0.024

cksz
0 -0.256

)
(18)

3.3.2 Tracking control
The controlling mentioned in section 3.3.1 can adequately

control the system into a stabile state if it functions properly
when, according to system scaling, less requests appear than the
system constantly can serve. However, should queue length be-
come too high because of a rapid growth of request density or
that of specific service time, the controller would “push” the
queue length state variable over the 0 value, besides, the cycle
time of the system would grow as well. The reason why the
first problem significant is, is because the system – because of
its positive feature – would get out of the linear domain this
way and, therefore, stabile controlling cannot be ensured with
it. The second problem, the lengthening of the cycle time can
hinder the execution of the system’s other tasks and by doing
this, it blocks proper functioning. To prevent an overload of this
sort, it is practical to use an alternative controlling loop, which
puts emphasis other aspects. As it can be supposed that because
of the measuring the above mentioned anomalies are only tem-
porary i.e. the service gradually catches up with the appearance
of requests, so the queue of pending requests decreases after the
solution of the problem to normal value, it is practical to design
a control which can ensure the availability of the system in the
period of overload. In this second control, the cycle time of the
system has to be kept in hand. As the product of queue length
and service time is in this case higher than the expected cycle

time, it is necessary to construct a fixed value control which can
ensure this. This can be done by installing an integral term and
by using output feedback. A further benefit of integral control is
that as the output disturbance appears on the output, it can also
take care of its suppression.

As there is no task in this model for the stabilization of the
queue length variable and it can be excluded from the point of
view of control, there are only two state variables in the new
model: xproc, and xksz . The integral term, however, has to be
integrated into the system model:

xi (n + 1) = xi (n) + yi (n) = xi (n) + Cx(n) (19)

The state matrices take up after the introduction of expanded
state variable x̂ = (x proc xksz xi)T the following form:

x̂ =

 x proc

xksz

xi

 , û = (uksz) ,

Â =

 0 cksz 0
0 0 0
1 0 1

 B̂ =

 0
1
0

Ĉ =

(
1 0 0

)
D̂ = (0)

(20)

The poles of this new system are also not stabile, so construction
of control is necessary.

The new system’s state feedback vector can be derived again
from Ackermann’s formula (13), the new feedback vector is:

K̂ =

1−α1−α3−α2+α1α3+α1α2+α2α3

cksz

1 − α1 − α3 − α2
1−α1−α3−α2+α1α3+α1α2+α2α3−α1α2α3

cksz

T

(21)

Here, the feedback of xksz can again be excluded by the obser-
vation of the following equation.

α2 = 1 − (α1 + α3) (22)

So, the simplified vector K is the following:

K̂ =

(
−

α1α3 − α1 + α2
1 − α3 + α2

3
cksz

0

−2α1α3 + α1 − α2
1 + α3 − α2

3 + α2
1α3 + α1α

2
3

cksz

)
(23)

By choosing an appropriate stabile pole triplet:

α1 = α3 = 0.8; α2 = −0.6 (24)

Vector K of the integral control becomes the following:

K̂ =

(
−

0.32
cksz

0
0.064
cksz

)
(25)

Per. Pol. Transp. Eng.116 Szilárd Aradi / Tamás Bécsi

Fig. 1. Control synthesis

Fig. 2. The controlled system

 Fig. 3. Simulation Results

3.3.3 Installing the controls
In the two previous sections, two controls of different philo-

sophical background have been elaborated for two different op-
eration conditions. If the system operates properly, stabilization
is easy, while, in the case of overload, a fixed value control has
been constructed in order to limit cycle time.

The situation becomes even more complicated because an in-
constant parameter, which by its nature has an influence on cy-
cle time, can be found in the system, whose development has to
be taken into consideration. Thus, in order to achieve the full

synthesis of control, the following two basic tasks have to be
performed: a subsystem is needed which is able to provide an
adequate estimation or measuring about service time parameter
cksz , and a block which realizes a shift between control archi-
tectures.

Determining parameter cksz – as it will be shown later – does
not demand full precision but it is also not negligible. For this,
the measurable actual CPU load and the xksz number of the ser-
vices can be used. Moving window regression would seem to
be the simplest solution but would occur too frequently during

The control of fleet management systems’ server model 1172010 38 2

the operation of the system that parameter xksz , which is used to
determine CPU load, does not occur deviated enough, so putting
a curve on it would lead to an inaccurate result. The other possi-
bility is model-based the estimation of CPU load. By using the
original system’s state Eqs. (6) the – from service independent –
CPU load becomes the following:

dproc(n + 1) = cklkb(dklk(n)+

dklb(n)) + cibdib(n) + cekpxklsz(n) (26)

The parameters in the equation (cklkb, cib, cekp) can be consid-
ered to be nearly constant. According to the system’s character-
istics, it is true that:

x proc(n + 1) = dproc(n + 1) + creal
ksz xksz(n) (27)

So, the subsystem has to be built up so, that it has to be true for
parameter cksz , which is a variable in it, that:

x proc(n + 1) − dproc(n + 1) − cksz xksz(n) → 0 (28)

For the minimization of difference, it is suitable to use approach-
ing of cksz with slow integrator, and creating the difference func-
tion by feeding back the output. Although, this is not the most
exact solution possible yet it approaches parameter cksz , which
changes not too frequently or with a slope of relatively small
value, adequately.

In order for us to be able to choose between the two control
theory, the queue length parameter has to be examined. It is
important that the shift between the controls should not be bound
to a concrete value (barrier of overload) but it is necessary to
introduce hysteresis to a certain degree. Fig. 1 shows the schema
of built-in control.

Fig. 2 shows the block schema of the realized system. The
three main blocks are well separated. The first one shows the
system which has to be controlled and which has been taken up
restrictedly, the second one the control that has been outlined
above, and the third one the measuring of the output noise.

3.4 Results
The article outlines the construction of a “switching control”

structure that performs the control of a server architecture rep-
resented by a queue growing and a service model according to
the following aspects: The primary aspect of construction is to
ensure the system’s availability by controlling cycle time with
service number per cycles, the second aspect is the shortening
of the queue, the serving of incoming requests.

For the examination of control, a theoretical load model has
been used that includes more situations. The model’s operation
results can be seen on Fig. 3. The development of cksz intro-
duces two suddenly rising loads into the system. The density of
the requests’ arrival at the starting of the system presupposes that
the clients waiting for connection have collected more requests
that, as a result of this, arrive in a large quantity at the same
time. It can be seen clearly that at the lengthening of the queue,

when the product of the number of servable requests and of the
service time exceeds the requested cycle time, the control shifts
to value-reserving control, which is able to ensure appropriate
cycle time, and when the system gets load from proper func-
tioning, and the queue length has shortened, it uses the “normal”
stabilizing control.

The figure shows clearly that because of the constant change
of parameter cksz , and other state characteristics, service is not
constant in the particular service stages but it ensures appropri-
ate CPU load by adapting itself to the new conditions.

Finally, it is worth taking a look at CPU load, and so ex-
amining cycle time. It can be seen clearly that, under proper
functioning, the system does not reach the required 1s cycle
time, which corresponds to the measuring. The system responds
well to overload caused by incoming requests but, logically, the
growth of service time in the given cycle is still very rapid but
then we get a quickly descending CPU load.

References
1 Abdelzaher T, Stankovic J. A, Chenyang Lu, Zhang R, Ying Lu, Feed-

back Performance Control in Software Services, IEEE Control Systems Mag-
azine 23 (2003), 74-90, DOI 10.1109/MCS.2003.1200252.

2 Abdelzaher T, Ying Lu, Ronghua Zhang, Henriksson D, Practical ap-

plication of control theory to Web services, American Control Conference,
2004. Proceedings of the 2004, 2004, pp. 1992-1997.

3 Aradi Sz, Bécsi T, Flottamenedzsment rendszerek adatátviteli módszerei, A
jövő járműve 3 (2008), no. (3-4), 39-43.

4 Bécsi T, Aradi Sz, Reliability of Data Transfer and Handling in Rail-

way Telemonitoring Systems, Proc. of Symposium FORMS/FORMAT 2008,
2008, pp. 185-192.

5 Hellerstein J L, Yixin Diao, Parekh S, A first-principles approach to con-

structing transfer functions for admission control in computing systems, De-
cision and Control, 2002, Proceedings of the 41st IEEE Conference, 2002,
pp. 2906-2912, DOI 10.1109/CDC.2002.1184291.

6 Lui S, Xue L, Ying L, Abdelzaher T, Queueing model based network server

performance control, Real-Time Systems Symposium, 2002. RTSS 2002.
23rd IEEE, 2002, pp. 81-90, DOI 10.1109/REAL.2002.1181564, (to appear
in print).

7 Robertsson A, Wittenmark B, Kihl M, Andersson M, Design and evalu-

ation of load control in Web server systems, American Control Conference,
2004. Proceedings of the 2004, 2004, pp. 1980-1985.

8 Wubi Qin, Qian Wang, Modeling and Control Design for Performance

Management of Web Servers Via an LPV Approach, Control Systems Tech-
nology, IEEE Transactions on 15 (2007), no. 2, 259-275.

9 Wubi Q, Qian W, Sivasubramiam A, An α-Stable Model-Based Linear-

Parameter-Varying Control for Managing Server Performance Under Self-

Similar Workloads, Control Systems Technology, IEEE Transactions on 17
(2009), no. 1, 123-134.

Per. Pol. Transp. Eng.118 Szilárd Aradi / Tamás Bécsi

	Goals
	Model build-up
	Linear model with certain restrictions
	Restrictions
	Stochastic variables

	Controllability analysis
	Control goals
	Controllability, observability
	Planning controllability
	Control planning
	Tracking control
	Installing the controls

	Results

