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Abstract
The trigonal Wankel engine is kinematically based on the mo-

tion where a circle pm of radius 3d , as the moving pole curve,
rolles on the circle ps of radius 2d, as the standing pole curve
in the interior. Then the regular trigonal rotor with circumcircle
of radius ρ > 3d , fixed concentrically to the moving pole circle,
describes its orbit curve cρ . This orbit curve cρ is crutial in
forming the engine space.

Answering a question of István Revutzky, we prove (and ani-
mate by computer) that cρ is a convex curve iff ρ bigger or equal
to 9d. The parallel curve cρ+r with distance r will be the solu-
tion to the engine space if the triangle rotor touches cρ+r with
small roller circles of radius r centred in the vertices of the tri-
angle.

All these concepts will be generalized – with animation – to a
k-gonal rotor (2 < k natural number) in a unified way.
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Introduction
We continue the abstract with a few of historical remarks, for

these we thank engineer professor colleagues István Emőd and
Liviu Finichiu, furthermore Professor Hellmuth Stachel (Vienna
Unyversity of Technology).

After studying the literature of the topic (e.g. [1, 8] and cited
references there) it turned out that Wankel himself thought of
this generalization and of other peculiar constructions. Although
Wankel engine is not effective enough, its mechanism is attrac-
tive still nowadays.

About 1970 the envelopes of trochoids under trochoidal mo-
tion were intensively studied by Austrian and German geome-
tricians. Here we cite only [3], [6], [9] and the references there.
The phenomenon of convex engine space seems to be new in
this paper, and may be the simple short derivation of different
possibilities by mathematical tools cause some enjoyments for
the interested reader.

Optimization of such type of Wankel engines seems to be an
open problem yet!

1 Formulation of the problem, results
Let a regular k-gon, with centre Q and circumcircle of radius

ρ, glide on an orbit curve cρ of centre O with similarity param-
eter O Q = d constant. Then any vertex Pi moves by time t as
follows:

−−−−→
O Pi (t) =

−−−−→
O Q(t) +

−−−−−−→
Q(t)Pi (t) = d e(kt) + ρ e(t). (1)

Here we assume unit angular velocity for unit vector e(t) of an-
gle t (with i = e(0)).

−−−−→
O Q(t) = d e(kt) is then a good choice

for the requirements that Pi describes the same curve cρ for
i = 1, 2, . . . , k. Indeed, the substitutions

t ′ 7→ t +
2π i

k
, i = 1, 2, . . . , k (2)

lead to the same geometric description in Eq. (1). In the or-
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Figure 1: The principles of 3-gonal Wankel engine.

Therefore the parallel curve cρ+r can be given by coordinates

X =
1

|ċρ(t)|{d [ |ċρ(t)|+ rk ] cos kt + ρ [| ċρ(t)|+ r ] cos t}, (1.5)

Y =
1

|ċρ(t)|{d [ |ċρ(t)|+ rk ] sin kt + ρ [| ċρ(t)|+ r ] sin t}.

This cρ+r and cρ as well will be of non-negative signed curvature, and both
will be convex by (1.3), iff

ρ ≥ k2d. (1.6)

Thus, for k = 3, d = 1, ρ = 9, e.g. r = 1, we shall have an ellipsis like
motor, called elliptor by István Revuczky (Fig. 2),

a := ρ + d + r = 11, b := ρ− d + r = 9 (1.7)

will be the half axes of the elliptor that contains the corresponding ellipsis.

This last fact does not fit Revuczky’s imagination, but convexity may
have advantages for constructing a new type of engine. The profile of rotor
can also be varied so that the ”explosion” from a fire point near F , e.g. in
Fig. 2, be optimal by its effect.

Fig. 1. The principles of 3-gonal Wankel engine.

thonormal coordinate system (O; i, j) the Eq. (1) will have the
form for the vectors cρ(t) pointing to the points of the so-called
trochoid curve cρ :

cρ(t) : x = d cos kt + ρ cos t,

y = d sin kt + ρ sin t, 0 ≤ t ≤ 2π;

and ċρ(t) : ẋ = −kd sin kt − ρ sin t,

ẏ = kd cos kt + ρ cos t;

c̈ρ(t) : ẍ = −k2d cos kt − ρ cos t,

ÿ = −k2d sin kt − ρ sin t (3)

express the velocity and acceleration vectors of cρ(t), respec-
tively. Thus the absolute value of the velocity is

|ċρ(t)| =

√
k2d2 + ρ2 + 2kρd cos (k − 1)t > 0,

for any t , if ρ > kd. (4)

Therefore the parallel curve cρ+r can be given by coordinates

X =
1

|ċρ(t)|
{d [ |ċρ(t)| + rk ] cos kt + ρ [| ċρ(t)| + r ] cos t},

(5)

Y =
1

|ċρ(t)|
{d [ |ċρ(t)| + rk ] sin kt + ρ [| ċρ(t)| + r ] sin t}.

This cρ+r and cρ as well will be of non-negative signed curva-
ture, and both will be convex by Eq. (3), iff

ρ ≥ k2d. (6)

Thus, for k = 3, d = 1, ρ = 9, e.g. r = 1, we shall have an
ellipsis like motor, called elliptor by István Revuczky (Fig. 2),

a := ρ + d + r = 11, b := ρ − d + r = 9 (7)

will be the half axes of the elliptor that contains the correspond-
ing ellipsis.
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Figure 2: The convex ”elliptor” engine space with a hypothetic rotor profile
and fire point F .

The equation of the engine profile in (1.5) is very general by its parameters
k, d, ρ, r. The exact computations for the time variable t are hopeless without
computer. Animation of the movements is still timely problem, [4] is a first
step, only.

2 The pole curves

To describe the motion of any point X of the moving regular k-gonal rotor
(in Fig. 3, k = 3), we introduce the fixed coordinate system (O; e1, e2) and
the moving coordinate system (Q; a1, a2) in the sense of Section 1:

−→
OQ =

(
e1 e2

) (
d cos kt
d sin kt

)
,

(
a1 a2

)
=

(
e1 e2

) (
cos t − sin t
sin t cos t

)
,
−−→
QX = x =

(
a1 a2

) (
x1

x2

)
,

−−→
OX = y =

(
e1 e2

) (
y1

y2

)
= (2.1)

=
−→
OQ +

−−→
QX =

(
e1 e2

) (
d cos kt
d sin kt

)
+

(
e1 e2

) (
cos t − sin t
sin t cos t

)(
x1

x2

)
,

Fig. 2. The convex "elliptor" engine space with a hypothetic rotor profile
and fire point F .

This last fact does not fit Revuczky’s imagination, but convex-
ity may have advantages for constructing a new type of engine.
The profile of rotor can also be varied so that the "explosion"
from a fire point near F , e.g. in Fig. 2, be optimal by its effect.

The equation of the engine profile in Eq. (??) is very gen-
eral by its parameters k, d, ρ, r . The exact computations for the
time variable t are hopeless without computer. Animation of the
movements is still timely problem, [4] is a first step, only.

2 The pole curves
To describe the motion of any point X of the moving regu-

lar k-gonal rotor (in Fig. 3, k = 3), we introduce the fixed co-
ordinate system (O; e1, e2) and the moving coordinate system
(Q; a1, a2) in the sense of Section 1:

−−→
O Q =

(
e1 e2

)(d cos kt
d sin kt

)
,

(
a1 a2

)
=

(
e1 e2

)(cos t − sin t
sin t cos t

)
,

−→
Q X = x =

(
a1 a2

)(x1

x2

)
,

−→
O X = y =

(
e1 e2

)(y1

y2

)
= (8)

=
−−→
O Q +

−→
Q X =

(
e1 e2

)(d cos kt
d sin kt

)
+

(
e1 e2

)(cos t − sin t
sin t cos t

)(
x1

x2

)
,

(
y1(t)
y2(t)

)
=

(
d cos kt
d sin kt

)
+

(
cos t − sin t
sin t cos t

)(
x1

x2

)
.

Here (x1, x2)T is fixed, but (y1(t), y2(t))T depends on the time,
because

−−→
O Q and (a1, a2) move. We use row-column multipli-

cation, lower-upper index convention and transpose (by upper
T ) for saving place.
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(
y1(t)
y2(t)

)
=

(
d cos kt
d sin kt

)
+

(
cos t − sin t
sin t cos t

)(
x1

x2

)
.

Here (x1, x2)T is fixed, but (y1(t), y2(t))T depends on the time, because
−→
OQ

and (a1, a2) move. We use row-column multiplication, lower-upper index
convention and transpose (by upper T ) for saving place.
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Figure 3: Derivation of pole curves and orbits.

For an instantaneous pole X(x1, x2)T , its velocity in the fixed frame is

zero, ẏ := d
dt

−−→
OX = 0 yields from the last equation of (2.1):

(
0
0

)
=

(
ẏ1(t)
ẏ2(t)

)
=

(−kd sin kt
kd cos kt

)
+

(− sin t − cos t
cos t − sin t

)(
x1

x2

)
. (2.2)

In a fixed moment t = τ this serves us the pole (x1(τ), x2(τ))T as a solution
of (2.2). Finally we get

(
x1(τ)
x2(τ)

)
= −kd

(
cos (k − 1)τ
sin (k − 1)τ

)
the moving pole curve pm (2.3)

in the moving frame (Q, a1, a2). Formula (2.3) describes pm as a moving
circle of radius kd with centre Q. Substituting (2.3) into the last equation of
(2.1), we obtain

(
y1(τ)
y2(τ)

)
= −(k − 1)d

(
cos kτ
sin kτ

)
the fixed pole curve ps (2.4)

Fig. 3. Derivation of pole curves and orbits.

For an instantaneous pole X (x1, x2)T , its velocity in the fixed
frame is zero, ẏ := d

dt
−→
O X = 0 yields from the last Eq. (9):(

0
0

)
=

(
ẏ1(t)
ẏ2(t)

)
=

(
−kd sin kt
kd cos kt

)
+

(
− sin t − cos t
cos t − sin t

)(
x1

x2

)
.

(9)
In a fixed moment t = τ this serves us the pole (x1(τ ), x2(τ ))T

as a solution of Eq. 9 (). Finally we get(
x1(τ )

x2(τ )

)
= −kd

(
cos (k − 1)τ

sin (k − 1)τ

)
the moving pole curve pm

(10)
in the moving frame (Q, a1, a2). Formula (10) describes pm as
a moving circle of radius kd with centre Q. Substituting (10)
into the last equation of (9), we obtain(

y1(τ )

y2(τ )

)
= −(k−1)d

(
cos kτ

sin kτ

)
the fixed pole curve ps (11)

in the standing frame (O, e1, e2). This is a circle of radius
(k − 1)d with centre O .

Indeed, the moving pole curve pm rolles on the standing pole
curve ps . Meanwhile, the rotor, fixed to the moving pole curve
pm , can be studied (Fig. 1), animated (Home pages [?4]-[?5]),
etc.

Thus the profile of the engine space, the rotor and fire point F
can be formed optimally by experiments or by other theoretical
tools (?), as we sketched it for k = 3, e.g. in Fig. 2.

3 Concluding remarks for k-gonal rotors, k > 3
Our Fig. 4 (see also Fig. 5) indicates the situation for k =

4, d = 1 = r, ρ = kd = 4. The moving pole curve pm is a
circle of the critical radius kd = 4, with centre Q. The fixed pole
curve ps is of radius (k − 1)d = 3. The regular k(= 4)-gonal
rotor is fixed to the moving pole curve pm . The k − 1(= 3)-
fold rotatory symmetry of any orbit is obvious. For ρ ≥ k2d
(= 16) we shall have convex orbit cρ , so convex motor space
(Fig. 5). The parallel curve cρ+r of distance r will be formed

for a k (= 4)-gonal rotor with rolling circles of radius r (= 1)

in the vertices. Our animation [4] shows the motion.
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in the standing frame (O, e1, e2). This is a circle of radius (k − 1)d with
centre O.

Indeed, the moving pole curve pm rolles on the standing pole curve ps.
Meanwhile, the rotor, fixed to the moving pole curve pm, can be studied
(Fig. 1), animated [Home pages 4-5], etc.

Thus the profile of the engine space, the rotor and fire point F can be
formed optimally by experiments or by other theoretical tools (?), as we
sketched it for k = 3, e.g. in Fig. 2.

3 Concluding remarks

for k-gonal rotors, k > 3

Our Fig. 4 (see also Fig. 5) indicates the situation for k = 4, d = 1 = r, ρ =
kd = 4. The moving pole curve pm is a circle of the critical radius kd = 4,
with centre Q. The fixed pole curve ps is of radius (k− 1)d = 3. The regular
k(= 4)-gonal rotor is fixed to the moving pole curve pm. The k− 1(= 3)-fold
rotatory symmetry of any orbit is obvious. For ρ ≥ k2d (= 16) we shall have
convex orbit cρ, so convex motor space (Fig. 5). The parallel curve cρ+r of
distance r will be formed for a k (= 4)-gonal rotor with rolling circles of
radius r (= 1) in the vertices. Our animation [4] shows the motion.
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Figure 5: The convex engine space for k (= 4)-gonal rotor.

k = 3 is logically the simplest solution for the engine with k = 3 areas
of periodic functions, as ”explosion”, expansion - emission and suction com-
pression of fuel. One can imagine that k (> 3)-times explosions in a period
and more functions with fuel can also be advantageous for an engine.

It is time to experiment with it! Nowadays, this experiment may happen
by computer animations as well. We know that Mazda’s work with Wankel
engines. May be for small engines, 4-gonal convex engine has chance in the
future (Fig. 4. 5).

The autors thank Colleagues István Emõd and Liviu Finichiu for the
fruitful conversations and Professor Hellmuth Stachel for kind hints to
kinematical references.
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k = 3 is logically the simplest solution for the engine with
k = 3 areas of periodic functions, as "explosion", expansion –
emission and suction compression of fuel. One can imagine that
k (> 3)-times explosions in a period and more functions with
fuel can also be advantageous for an engine.

It is time to experiment with it! Nowadays, this experiment
may happen by computer animations as well. We know Mazda’s
work with Wankel engines. May be for small engines, 4-gonal
convex engine has chance in the future (Figs. 4, 5).
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http://www.math.bme.hu/~geom
http://www.der-wankelmotor.de

	Formulation of the problem, results
	The pole curves
	Concluding remarks for k-gonal rotors, k>3

