
Cite this article as: Ormándi, T., Varga, B., Tettamanti, T. (2021) "Estimating Vehicle Suspension Characteristics for Digital Twin Creation with Genetic
Algorithm", Periodica Polytechnica Transportation Engineering, 49(3), pp. 231–241. https://doi.org/10.3311/PPtr.18576

https://doi.org/10.3311/PPtr.18576
Creative Commons Attribution b |231

Periodica Polytechnica Transportation Engineering, 49(3), pp. 231–241, 2021

Estimating Vehicle Suspension Characteristics for Digital Twin
Creation with Genetic Algorithm

Tamás Ormándi1*, Balázs Varga1, Tamás Tettamanti1

1 Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics, H-1111 Budapest, 2 Stoczek street, Hungary

* Corresponding author, e-mail: ormandi.tamas@edu.bme.hu

Received: 17 May 2021, Accepted: 15 June 2021, Published online: 30 July 2021

Abstract

Usage of simulation techniques like Vehicle-in-the-Loop, Scenario-in-the-Loop, and other mixed-reality systems are becoming

inevitable in autonomous vehicle development, particularly in testing and validation. These methods rely on using digital twins,

realistic representations of real vehicles, and traffic in a carefully rebuilt virtual world. Recreating them precisely in a virtual ecosystem

requires many parameters of real vehicles to follow their properties in a simulation. This is especially true for vehicle dynamics,

where these parameters have high impact on the simulation results. The paper's objective is to provide a method that can help

reverse engineering a real car's suspension characteristics with the help of a genetic algorithm. A detailed description of the method

is presented, guiding the reader through the whole process, including the meta-heuristic function's settings and how it interfaces

with IPG Carmaker. The paper also presents multiple measurements, which can be effortlessly recreated without expensive devices

or the need to disassemble any vehicle parts. Measurements are reproduced in two separate simulation tools with special scenarios

providing an efficient way to analyze and verify the results. The provided method creates vehicle suspension characteristics with

adequate quality, opening up the possibility to use them in the creation of digital twins or creating virtual traffic with realistic vehicle

dynamics for high-quality visualization. Results show satisfying accuracy when tested with OpenCRG.

Keywords

digital twin, genetic algorithm, mixed-reality, reverse engineering, Scenario-in-the-Loop, simulation, suspension, Vehicle-in-the-Loop,

traffic simulation

1 Introduction
Nowadays, engineers put much effort into creating sim-
ulation environments that can accurately represent real-
ity. Simulation eases the financial and temporal burdens of
complicated measurements, where several factors must be
present before tests can be executed. This is especially true
for autonomous vehicles and their functions, where safety,
security, and even legal aspects must be taken into account.
In addition, dangerous, rare, or even unrealistic scenarios
cannot be reliably presented to self-driving cars in real world
traffic conditions (Butenuth et al., 2017; Fehér et al., 2020a).

By creating new highly automated vehicle systems,
new issues arise. In order to evaluate real vehicles in sim-
ulation a further step has to be taken starting from conven-
tional Vehicle-in-the-Loop (VIL) simulations. To repro-
duce reality in a virtual environment, so-called digital
twins must be created (Madni et al., 2019). These virtual
copies of the physical objects should accurately represent

their appearance, physical properties, and every aspect,
affecting a test scenario's goals for example path plan-
ning (Fehér et al., 2020b). Implementing vehicle dynam-
ics with high accuracy for a digital twin is a tough nut
to crack, the desired accuracy depends on the goal of the
test. Although, suspension kinematics have well grounded
literature e.g., (Pacejka, 2005), the challenge lies in esti-
mating the parameters of the model (Herreros et al., 2002).

Detailed suspension characteristics are often not avail-
able: either it is not provided by car manufacturers or wear
and tear have taken its toll. The real suspension parame-
ters differ from factory defaults.

Without the suspension characteristics, it is impos-
sible to create a digital-twin for vehicle dynamics pur-
poses, so there must be a way to find the necessary param-
eters. Such parameters can be measured physically, but
in that case, the vehicle must be disassembled and costly

https://doi.org/10.3311/PPtr.18576
https://doi.org/10.3311/PPtr.18576
mailto:ormandi.tamas%40edu.bme.hu?subject=

232|Ormándi et al.
Period. Polytech. Transp. Eng., 49(3), pp. 231–241, 2021

measuring devices are required to gather the demanded
information. The idea behind this paper is to recreate
these parameters by reverse engineering them with the
help of easily executable measurements and the usage of
meta-heuristic optimization tools, e.g., Genetic Algorithm
(GA). The genetic algorithm is efficient in optimiza-
tion or parameter identification in the automotive indus-
try. Several papers are discussing this method to find the
optimal values related to suspension designs (Hemati and
Shooshtari, 2019; Mitra et al., 2016) or to find optimal
parameters for the Pacejka tire model (Vetturi et al., 1996)
and it is effective even in the case of Advanced Driver
Assistant Systems (ADAS) (Klück et al., 2019).

With the help of GA, it is possible to reverse engineer
a unique car's suspension characteristics, which is accu-
rate enough to create suitable vehicle dynamics in a vir-
tual environment. This process can help to create virtual
traffic, which has realistic movements in a high-quality
visualization and can be used in digital twin creation.
Additionally, it can support creating a mixed-reality sys-
tem (Varga et al., 2020). Performing cumbersome disas-
sembling and precise measuring of multiple vehicles is
not needed. It is enough to reverse engineer some vehicles
of different size classes to create a diverse, dynamic vir-
tual traffic system. The paper presents multiple scenarios
for measurements and virtual simulations, which can val-
idate the genetic algorithm results and provide a sneak-
peek into a system that can be used as a digital twin and
can enhance traffic simulation with vehicle dynamics for
complex automotive test scenarios. The whole method and
validation are presented through real measurements and
they are virtually recreated in two simulation software
platforms/products:

1. high fidelity vehicle dynamics simulator IPG
Carmaker (IPG Automotive GmbH, 2020) and

2. Unity 3D game engine (Unity Technologies, 2020).

The purpose of IPG Carmaker is to provide an accurate
suspension model that can be calibrated with real-world
measurements. Unity 3D is then used to create realistic
visualization with the obtained vehicle parameters. For a
higher level of accuracy, an Open Curved Regular Grid
(CRG) based test scenario is also implemented, providing
a more complex way of testing and validation of the results
(Potó et al., 2018).

The paper is organized as follows. Section 1 provides
information about the real-life measurements' setup hard-
ware and software-wise. Section 2 gives information

about simulation software used for the realization of vir-
tual reality. Section 3 describes the first scenario, gives
information and introduces the real vehicle and its digi-
tal twin. It provides a detailed description of reverse engi-
neering suspension characteristics with the genetic algo-
rithm and presents the method’s results. Section 4 grants
a detailed description of a second, more complex scenario
with a CRG road profile for validation purposes, showcas-
ing the simulations' results and presenting a custom sus-
pension model implemented in Unity 3D. It also provides
a method to import CRG files in the game engine. Finally,
Section 5 concludes the findings of the paper and projects
further usages and developments of the method.

2 Reality – measurement setup
This section discusses the real-world data used for cali-
brating the simulated vehicle. This work focuses on sus-
pension characteristics and the vertical motion of the
car. To this end, the measured reference signal will be
the vertical acceleration of the chassis. For these mea-
surements, a device is needed to record this acceleration
and some other required data with a predefined quality
(Ma et al., 2013). Any industrial level sensor could be
used to fulfill these requirements, but they can be expen-
sive and further signal processing might be necessary.
Thus, an alternative way is chosen. Fortunately, nowa-
days, everybody has powerful computers in their pock-
ets with high-quality sensors and sufficient computational
capacity. The device used for measurements contains
a Bosch Sensortec BMI160 low power inertial measure-
ment unit designed for applications like indoor navigation,
3D scanning, and even for 9-axis motion detection (Bosch
Sensortec GmbH, 2020). This sensor provides a reliable
base for acceleration measurements with supreme qual-
ity at 100 Hz frequency. Using a smartphone for this pur-
pose is a perfect choice because the accelerometer signals
can be obtained easily. In addition, it can be conveniently
mounted on the vehicle. Accelerometer signals can be
straightforwardly read in real-time with the help of Matlab
Mobile application. As the digital twin is realized in IPG
Carmaker for Simulink, Matlab is a comfortable choice.

3 Virtuality – simulations
The virtual reality is realized in two software. First, IPG
Carmaker, an automotive simulation tool, is used for reverse
engineering suspension characteristics. Second, Unity 3D
game engine is used for real-time high definition visualiza-
tion in conjunction with a simplistic vehicle model.

Ormándi et al.
Period. Polytech. Transp. Eng. , 49(3), pp. 231–241, 2021|233

3.1 IPG Carmaker
For calibration purposes, IPG Carmaker was chosen,
which has many options to rebuild the measurement's
scenario virtually, and beyond that, it has a user-friendly
Matlab Simulink interface, that allows the user to access
any variables during simulations easily.

Carmaker is an industrial level virtual driving test
software, with a complete model environment that starts
from intelligent driver models to detailed vehicle mod-
els. Allowing users to modify or define their own mod-
els and proving many interfacing possibilities the software
gives a really high flexibility level. With the help of virtual
sensors, engineers can analyze every aspect of vehicles,
including vehicle dynamics and autonomous functions.
The software has its own tool environment for auto-
mated tests and a complete solution for data visualization.
These features make this software reliable and powerful
in case of validation and reverse engineering.

3.2 Unity 3D
Unity 3D is a real-time development platform for com-
puter games by default; however, it is more and more
often used for industrial purposes in the automotive sec-
tor. It provides wide range of opportunities for scenario
building. As computer games have many scenarios, just
like industrial simulations, it can be an adequate tool
to build an environment for vehicle testing and validation.
It is mainly used for visualization because it can provide
stunning graphics, but the possibilities provided by this
software go further. It has its own physics and it can be
programmed in C# language, which makes this engine
really flexible. If used wisely, its potential can be exploited
in autonomous vehicle functions, vehicle dynamics,
or artificial intelligence (Song et al., 2019). Unity 3D is
an excellent digital twin creation solution providing visu-
alization, virtual sensors, functions, and dynamics all
packed in one environment. For maximum efficiency, it is
easily interfaced with industrial level engineering soft-
ware like Matlab. Thus, it can fill a multifunctional role
in a mixed reality test system (Szalai et al., 2020).

4 Calibration
This section deals with the parameter identification of the
simulated vehicle model based on real measurements.

4.1 Test scenario
Identification of the vehicle suspension parameters of IPG
Carmaker's high fidelity vehicle model is carried out by a
genetic algorithm. In order to construct the digital twin

of the vehicle, the following signals were recorded during
measurements with Matlab Mobile:

• X, Y, Z accelerations
• Vehicle speed
• Angular velocities
• GPS coordinates.

First, a test scenario shall be defined where a decent
excitation can be applied to the real vehicle in order to gen-
erate an adequate oscillation. The environment of the test
(road profile) shall be accurately recreated in the virtual
environment too. For measurement purposes, a straight
road was chosen at the edge of a city at an unfrequented
location with a speed bump (Fig. 1), serving as an engi-
neering sandbox for the measurements.

The car was driven over the speed bump multiple times
with a velocity of 15 km/h, which results in an excitation
of the vehicle's suspensions. The dimensions of the speed
bump were also measured because the generated exci-
tation is a crucial factor and it should be carefully recreated
in the virtual scenario to reproduce the same oscillation.

If the virtual version's dimensions were different,
it would produce a significantly different result.

As the main parameter of interest was the vehicle's ver-
tical acceleration, it was necessary to consider the mount-
ing position of the sensor. The measurement was done by a
smartphone fixed in position with a phone holder on the

Fig. 1 Speed bump (GPS coordinates: 47°24'09.0"N 19°17'02.5"E)

234|Ormándi et al.
Period. Polytech. Transp. Eng., 49(3), pp. 231–241, 2021

car's front windshield. The phone holder is rigid enough
and because of the sensor's basic noise, the oscillation
generated by the movements of the phone holder were fil-
tered out. Measurements were taken with a sampling rate
of 100 Hz. The measured vertical acceleration data was
noisy and was biased by the gravitational acceleration.
The gravitational acceleration was eliminated during the
data processing and the noise was reduced with the help of
a low pass filter. Processed data is shown in Fig. 2.

The results of multiple measurements were almost
identical, so one of them was chosen to be the reference
signal for the optimization.

4.2 Vehicle model
Aware of this information, the scenario can be rebuilt pre-
cisely in the virtual reality with the car's identical physi-
cal parameters and the environment having the same speed
bump. Table 1 summarizes the most important parameters
of the test car, which is a Ford Mondeo Mk-IV (2012) Estate
(facelift). It has a MacPherson type front suspension and
a multi-link rear suspension. The corresponding suspen-
sion characteristics are not provided by the manufacturer.

For better accuracy, driver and passenger weights
were also considered. Fig. 3 shows the virtual environ-
ment based on the real one. In the case of the tires, the
default tire size (205/60-16) and the tire model were set
for a medium-sized car.

4.3 Genetic algorithm
In this section, the steps are described towards reverse
engineering the suspension characteristics.

Thus, a detailed description of the genetic algorithm
connected with the prebuilt IPG Carmaker simulation
is given. During the evolutionary algorithm, one has to
access and manipulate the parameters of the vehicle
between each iteration.

Everything has to start somewhere and it is not differ-
ent in the case of a simulation loop, which requires an ini-
tialization with a starting parameter set of the suspension
variables and vehicle dimensions. For an optimal simula-
tion start, the car's suspension parameters should be close
to the measured car's values. The virtual vehicle's dimen-
sions were set identical to the real ones. As mentioned
before, the load of the driver's and passenger's weight
was set in Carmaker, too, with the load's position in the
car, recreating the real measurement's circumstances.
Initially, the preset linear suspension characteristics of
a medium-sized car in IPG Carmaker were set. It provided
a common starting point for the simulation loop and stable
vehicle dynamics for the first iteration.

It is expected to measure vertical acceleration in the
same position virtually as in reality. Otherwise, simula-
tion results would be biased and could mislead the genetic
algorithm. In Carmaker, a virtual inertial sensor was posi-
tioned at the virtual vehicle's front windshield.

In suspension settings, buffers (shock-absorbing gas-
kets installed between the turns of the suspension shock
absorbers) were disabled because the car used for the

15:09:00 15:09:01 15:09:02 15:09:03 15:09:04 15:09:05 15:09:06 15:09:07 15:09:08
Time Jul 18, 2020

-8

-6

-4

-2

0

2

4

6

ac
ce

le
ra

tio
n

[m
/s

2]

Acceleration Z

Fig. 2 Processed Z axis acceleration

Table 1 Physical parameters of the vehicle

Parameter Value

Length 4837 mm

Width 1886 mm

Wheelbase 2850 mm

Weight 1575 kg

Front track 1588 mm

Rear track 1605 mm

Driver's weight 80 kg

Passenger's weight 70 kg

Fig. 3 Simulation environment with a speed bump

Ormándi et al.
Period. Polytech. Transp. Eng. , 49(3), pp. 231–241, 2021|235

measurement does not have any spring buffers. Stabilizers
were also disabled because the scenario contains only
a straight movement and it would not have impact on the
results. The genetic algorithm is looking for the optimal
parameter setting for:

1. front and rear spring characteristics,
2. front and rear dampening characteristics in push

direction,
3. front and rear dampening characteristics in pull

direction.

The rest of the parameters were fixed.
Fig. 4 depicts the structure of the simulation setup,

which is responsible for reverse engineering parameters
related to the vehicle suspension characteristics.

A Matlab script as the core of the system was cre-
ated to fulfill the required steps. This script does the
following steps:

1. Loads the measurement data from the selected
.mat file.

2. Processes the Z axis acceleration data to filter
out noise and get rid of the sensor's gravitational
acceleration.

3. Trims the data to extract only the important part of
the signal, where the excitation was applied.

4. Sets up the genetic algorithm's options.
5. Runs the genetic algorithm function.
6. Plots the result and the measured data.

The execution of the system is quite straightforward.
The operation begins with loading and processing the mea-
sured data as an initialization. Then it loads the options

and calls the genetic algorithm function for the first time.
The objective function of the GA calls another function as a
function handler and passes the processed measurement
data and the investigated parameters. These parameters
are indirect because they are not present in the cost func-
tion. The inner function will first start the IPG Carmaker
Simulink model, which opens the Carmaker user interface
connected with Matlab. Carmaker has a dedicated folder
in its project containing the Simulink model and every
needed script for the interface. When Carmaker is initial-
ized, it starts the simulation for the first time with the pre-
set parameter set. Carmaker uses a .car file (Medium.car),
which contains every variable of the car model. Every line
from the .car file will be stored as a unique cell array ele-
ment. Carmaker handles every suspension characteristic
as a lookup table. The parameters generated by the genetic
algorithm are stored in an array, so the inner function will
overwrite the lines corresponding to the identical variables
line by line, and it will overwrite the .car file to make them
have their impact on the next simulation run. With this
method, passing the parameters generated by the genetic
algorithm to the Carmaker simulation is realized. With the
new parameters, Carmaker starts the next simulation.
The results are read through the Simulink interface, which
has a Simulink block developed for this purpose. After the
inner function gets back the simulation result, it trims this
signal to the same length as the measured and processed
signals containing only the most important part and syn-
chronizes the signals in time. After this, the function cal-
culates the result's objective function value, which tells the
genetic algorithm how good the result is with the currently
used parameters compared to the measured signal.

As Matlab's genetic algorithm function has many
options, only the settings will be mentioned, which were
changed from the default one. The first option is maximum
generations, that sets the maximum iterations. It was set
to 100. The second option is the population size, which is
closely related to the maximum generations. This number
represents how many iterations create a complete genera-
tion. By default, if the number of variables is less than or
equal to 5, then it is set to 50. Otherwise, it should be set
to 200. In our case it was set to 100 to save computational
time. The next option is the number of stall generations,
which is set to 50 by default. This value tells the function,
how many generations it should run, when the average rel-
ative change in the best fitness function value over max-
imum stall generations is less than or equal to function
tolerance. This number was set to 8 because after many

Fig. 4 Genetic algorithm system

236|Ormándi et al.
Period. Polytech. Transp. Eng., 49(3), pp. 231–241, 2021

experiments, the result did not show any further devel-
opment when running in stall generations for many iter-
ations and lowering this option's value can spare consid-
erable time. Another important setting is the elite count.
This option defines how many individuals are guaranteed
to survive from the current generation. The default setting
is 0.05 times the number of population size rounded in the
direction of positive infinity. The multiplier was changed
from 0.05 to 0.15 to save more good parameters for the next
iteration. The last modified option was the hybrid function,
which provides another optimization method to fine-tune
the result after the genetic algorithm stops. By default, it is
turned off. It was set to run a pattern search or also known
as a direct search, to achieve the system's maximum effec-
tiveness. Determining the optimal number of variables
to be searched by the genetic algorithm was a real chal-
lenge. If the variable number is too low, the genetic algo-
rithm will not achieve a close solution to the measurement.
If it is set to too many variables, it will significantly increase
the number of possibilities and the function run-time will
skyrocket. The optimal solution was found with 24 vari-
ables, which was produced with a reasonable run-time.
These 24 variables mean 4 points in every characteristic.

To achieve any results, it is vital to set up proper con-
straints for the variables searched by the algorithm. It is
essential because the genetic algorithm has to be guided to
avoid generating physically unacceptable parameters, like
negative values in a characteristic or simply enormously
high values. If Carmaker gets a parameter set that makes
the virtual car leave the road or produces unrealistic dynam-
ics, such as getting an extremely high value for angular rota-
tions, the software immediately aborts the simulation and
the genetic algorithm crashes. If the constraints are not cho-
sen correctly for every parameter, it can cause the simulation
to be aborted after thousands of iterations, meaning count-
less wasted time. Unfortunately, there is no way to turn off
the simulation abort. Constraints were chosen to grow with
the spring compression values or with the damper velocity
and the magnitude of forces was chosen related to the start-
ing characteristics. These values were redefined multiple
times before it ended in a satisfactory result. The constraints
can be defined by their lower and upper bounds for every
variable. The chosen bounds and the corresponding charac-
teristic points are summarized in Table 2.

By defining the range for every characteristic point,
the simulation abortion was avoided, the genetic algo-
rithm was successfully finishing its job, and even the pat-
tern search was run.

In the case of any meta-heuristic algorithm, the cost
function is an essential element of the whole system.
It guides the algorithm towards the optimal solution, so
this function has to be defined very well. The experiments
showed that in this case, the most successful cost function
was the Euclidean distance of the measured and the simu-
lation result signal, see Eq. (1):

d a ai i
i

n

= −()
=
∑

measured simulated

2

1

, (1)

where aimeasured is the ith measured vertical acceleration in m/s2
and aisimulated is the ith simulated vertical acceleration in m/s2.

4.4 Genetic algorithm results
As mentioned before, the genetic algorithm was run sev-
eral times with many settings before it produced a decent
result with optimal running time.

The best result was achieved with 10842 iterations.
The result was plotted along with the measured data to be
compared in Fig. 5.

Table 2 Variables and corresponding force constraints

Variable Value Lower
Bound

Upper
Bound

1 Front spring compression 0.1 m 500 N 5000 N

2 Front spring compression 0.3 m 5000 N 9000 N

3 Front spring compression 0.5 m 9000 N 15000 N

4 Front spring compression 1.0 m 15000 N 50000 N

5 Rear spring compression 0.1 m 500 N 5000 N

6 Rear spring compression 0.3 m 5000 N 9000 N

7 Rear spring compression 0.5 m 9000 N 15000 N

8 Rear spring compression 1.0 m 15000 N 50000 N

9 Front damper velocity push 0.125 m/s 40 N 1000 N

10 Front damper velocity push 0.25 m/s 1000 N 3000 N

11 Front damper velocity push 0.35 m/s 3000 N 5000 N

12 Front damper velocity push 0.4 m/s 5000 N 8000 N

13 Front damper velocity pull 0.125 m/s 500 N 2000 N

14 Front damper velocity pull 0.25 m/s 2000 N 3000 N

15 Front damper velocity pull 0.35 m/s 3000 N 5000 N

16 Front damper velocity pull 0.4 m/s 5000 N 6000 N

17 Rear damper velocity push 0.125 m/s 40 N 1000 N

18 Rear damper velocity push 0.25 m/s 1000 N 3000 N

19 Rear damper velocity push 0.35 m/s 3000 N 5000 N

20 Rear damper velocity push 0.4 m/s 5000 N 8000 N

21 Rear damper velocity pull 0.125 m/s 500 N 2000 N

22 Rear damper velocity pull 0.25 m/s 2000 N 3000 N

23 Rear damper velocity pull 0.35 m/s 3000 N 5000 N

24 Rear damper velocity pull 0.4 m/s 5000 N 6000 N

Ormándi et al.
Period. Polytech. Transp. Eng. , 49(3), pp. 231–241, 2021|237

The result is quite accurate in terms of the magni-
tude of accelerations and the frequency of the oscilla-
tion matches. There are some sharp spikes on the result-
ing signal, which can be a model-specific result of the
default suspension model. The tire model was also not
changed from the default, although it can impact the
result. Considering the vehicle body as flexible instead of
the rigid body could also affect the result. Obviously, the
genetic algorithm settings could be fine-tuned further and
further, but it would not significantly impact the results
even if the used settings were not optimal. Nonetheless,
the result is quite satisfying if we consider the goals.
The resulting spring characteristics are shown in Fig. 6
and the damper characteristics in Fig. 7.

As there are no public suspension characteristics avail-
able, it is tough to compare the characteristics of the sim-
ulation and the real vehicle. The results show that the
front spring produces forces with greater magnitude,

which is logical considering the car has its engine in the
front. The situation is reversed in terms of damper forces.
These results may not be perfect for a real car suspension,
but they are perfectly fine for the digital twin to be used
while producing similar results to the measurements.

5 Validation
For validation purposes, the calibrated suspension was
tested again in another scenario incorporating a road
surface available in OpenCRG format too. OpenCRG
is an open-source project for the creation, modification,
and evaluation of road surfaces. It has its own file format
specification. It is an ideal solution for driving simula-
tions related to vehicle dynamics where the road's smallest
excitations can be simulated. The data in a CRG file can
be easily processed with Matlab and many industrial soft-
ware support this format. Such data can be recorded with
the help of a terrestrial laser scanner (Barsi et al., 2018).
Although CRG can be a really accurate solution for road
modeling, it has its own drawbacks. It is not a widespread
method right now and it is hard to find any laser-scanned
roads with decent quality. The laser point clouds are
noisy and processing them into a quality CRG is hard.
Every disturbance of the laser point cloud must be elim-
inated; otherwise, it will create spikes on the road sur-
face, resulting in an unreal simulation. This is especially
true if only a single point models the tire's contact and
the ground in the dynamics model. To create a clean,
noise-free CRG surface, a Gaussian filter was used to
smoothen the surface.

5.1 Test scenario
The second measurement was performed at the campus
of Budapest University of Technology and Economics,
which was already scanned and had a processed CRG
file. The road section for the test has potholes and it is
connected to a parking lot with a relatively large ramp.

3.5 4 4.5 5 5.5 6 6.5 7
Time [s]

-8

-6

-4

-2

0

2

4

6

Ac
ce

le
ra

tio
n

[m
/s

2]

Acceleration Z

Measured Data
IPG Data

Fig. 5 Comparison of vertical accelerations between measured (green)
and simulated (purple) data

0 0.5 1 1.5

Compression [m]

0

2

4

6

8

10

F
o
rc

e
[N

]

10
4 Spring Characteristics

Front Spring
Rear Spring

Fig. 6 Spring characteristics generated by the genetic algorithm

0 0.5 1 1.5

Velocity [m/s]

0

5

10

15

F
o
rc

e
[N

]

10
4 Damper Characteristics

Front damper push
Front damper pull
Rear damper push
Rear damper pull

Fig. 7 Damper characteristics generated by the genetic algorithm

238|Ormándi et al.
Period. Polytech. Transp. Eng., 49(3), pp. 231–241, 2021

The laser-scanned CRG file contains a section of this road
with a length of about 90 meters. The measurement was
executed on a shorter section of this road. This scenario
provides insight into a more regular excitation of the vehi-
cle suspension and it can provide a more complex possi-
bility for data validation. The section of road in question
can be seen in Fig. 8

5.2 IPG Carmaker
This software has a built-in function to support CRG files,
so it is an effortless task to set up the second scenario.
After importing the CRG file, it can be placed anywhere
on the road, and it can be even scaled if needed. A high-qual-
ity visualization is also available. The software's only
drawback is the lack of opportunity to move the virtual
car parallel with the real vehicle in real-time because it is
not supporting setting vehicle positions exactly.

The results of the second scenario in IPG Carmaker can
be seen in Fig. 9.

The results show that the CRG based excitation causes
very similar vertical accelerations in the simulation com-
pared to the real measurement. Some particular parts of the
signal's shape are almost identical. However, some addi-
tional oscillations are present with a higher frequency.
The Mean Squared Error of the simulated vertical accelera-
tion to the real measurement is MSEIPG = 2.4188 m/s2.

5.3 Unity 3D
In Unity 3D, a custom vehicle dynamics model was imple-
mented. In this case, a simple Mass-Spring-Damper sys-
tem was used to represent the vehicle's suspension with
the supplement of the vehicle's weight transfer dynamics.
Eq. (2) shows the equation of the Mass-Spring-Damper
system (MSD), and Eq. (3) shows the equations used
for the weight transfer considering front and rear axles
(Jiang et al., 2014).

F m x d x x c x y x xi i i i i i i i i i= = − + () + −()()
4

0

,
, (2)

where i = 1, ..., 4 corresponds to the front right, front left,
rear right, and rear left suspensions. m is the weight of the
vehicle in kg, xi is the acceleration of the mass in verti-
cal direction in m/s2, xi is the velocity of the mass in m/s,
xi is the actual position of the mass, x0,i is the length of the
unloaded spring in m, ci is the spring coefficient of the cor-
responding axle, di is the damper coefficient of the corre-
sponding axle and yi is the excitation of the road surface.

The equation of MSD is divided into damper and spring
forces. The suspension's compression and velocity are cal-
culated in the game engine and forces are evaluated by the
characteristics.

F m L
L

a g h
x g L

x g

m L
L

a g h
x

z
x

x

rear
= −

+()
+()

 +()

− −
+()
+

2

2

2

 gg L
a g h
E

y

()

+()

1

,

 (3)

where m is the vehicle mass in kg, L is the wheelbase in m,
L2 is the distance of the Center of Gravity (CoG) and the
rear axle in m, ax , ay are the X and Y direction accelerations
in m/s2, g is the gravitational acceleration in m/s2, E1 is the
front track width in m, and h is the height of the CoG in m.

F m L
L

a g h
g L

g

m L
L

a g h

x
x

x

z
x

x

front
= −

+()
+()

 +()

− −
+()

2

1

1

++()

+()

g L

a g h
E

y

2

,

 (4)

0 1 2 3 4 5

Time [s]

-5

0

5

A
cc

el
er

at
io

n
 [

m
/s

�]

Acceleration Z

Measured Data
IPG Data

Fig. 9 Carmaker with CRG excitation

Fig. 8 The road of the second measurement highlighted with red
(GPS coordinates: 47°28'43.2"N 19°03'24.4"E)

Ormándi et al.
Period. Polytech. Transp. Eng. , 49(3), pp. 231–241, 2021|239

where m is the vehicle mass in kg, L is the wheelbase
in m, L1 is the distance of the CoG and the front axle in m,
ax , ay are the X and Y direction accelerations in m/s2, g is
the gravitational acceleration in m/s2, E2 is the rear track
width in m, and h is the height of the CoG in m.

Equation (5) summarizes forces acting on the vehicle
chassis:

mx F F Fi z z
i

 = + +
=
∑

rear front

1

4

. (5)

Unity 3D does not support CRG files, so they must be
processed before importing. OpenCRG has a C-Application
Programming Interface (C-API) for Matlab, which can
load the CRG file 3D data and create the surface contained
in it. With the help of an addon called surf2stl, we can cre-
ate a stereolithography (STL) file from the chosen surface.
The last step to import the road surface to Unity is to con-
vert the STL file into another 3D format called OBJ. It can
be done with any CAD software, which supports OBJ files
or directly using an online converter.

Unity 3D can provide a gorgeous visualization and
a platform to implement any custom model for vehicle
dynamics.

It is possible to inject the ego vehicle into the simula-
tion in real-time with the help of its localization sensors
(e.g., differential GPS), creating a digital-twin in real-time
(Varga et al., 2020). Offline trajectory logs can be used to
recreate the test scenario too.

With the recorded parameters, it is easy to calculate
every necessary vehicle state like accelerations to support
the implemented vehicle dynamics functionality of Unity
3D. Moving the digital twin by GPS positions means lock-
ing some degrees of freedom like X and Y coordinates
and the Z-axis angle, which provides the vehicle's head-
ing. This obviously affects the virtual vehicle dynamics
and limits it to vertical dynamics, roll, and pitch. The big-
gest impact is on the pitch and roll dynamics because their
magnitude will be corrupted. Nonetheless, with Unity's
help and the genetic algorithm's characteristics, virtual
cars' realistic motion can be rendered and can provide
valid vertical dynamics.

The second scenario was run in Unity 3D with the cus-
tom dynamics model and its results are provided in Fig. 10.

This model produced a higher frequency oscillation than
the measurement and the results from Carmaker. The mag-
nitude of the accelerations is quite similar to both other
measurements. The mean squared error of the result in
contrast to the real measurement is MSEU3D = 2.1165 m/s2.

5.4 Spectral density
Another way to analyze the results is to compare real
measurements and simulations in the frequency domain
with spectral density. Fig. 11 depicts the real measure-
ment's spectral density and the simulations, which were
executed on the CRG road surface. The range of fre-
quency is between −10 and 10 Hz. The most conspicuous
difference in the results is between the maximum ampli-
tudes. The real measurement shows the highest ampli-
tudes, while the lowest one belongs to the simulation in
Unity 3D. The results are realistic because the road exci-
tation belongs to this frequency range and simulations
show quite accurate results.

6 Conclusions
The acquired results show that the method provided
by this paper has its raison d’être. It is an optimal way
to gather the required information in any use case and the
results demonstrated the accuracy of the method. It pro-
vides parameters about a real vehicle without the need
for expensive and time-consuming measurements, which
can be used to recreate a real vehicle’s suspension virtu-
ally, and it opens up the opportunity to use it in cases like
VIL, SCIL, and systems using mixed-reality or even in
the creation of a digital twin. With the help of this method,
adequate vehicle dynamics visualization can be created,

0 1 2 3 4 5 6

Time [s]

-4

-2

0

2

4

6

A
cc

el
er

at
io

n
 [

m
/s

�]

Acceleration Z

Unity 3D
Measured Data

Fig. 10 Unity 3D with CRG excitation

-50 0 50
Frequency (Hz)

0

50

100

150

200

250

Am
pl

itu
de

Frequency Power Spectrum
Unity 3D
IPG CarMaker
Measured

Fig. 11 Power Spectrum

240|Ormándi et al.
Period. Polytech. Transp. Eng., 49(3), pp. 231–241, 2021

References
Barsi, A., Potó, V., Tihanyi, V. (2018) "Creating OpenCRG Road Surface

Model from Terrestrial Laser Scanning Data for Autonomous
Vehicles", In: Jármai, K., Bolló, B. (eds.) Vehicle and Automotive
Engineering 2, Springer, Cham, Switzerland, pp. 361–369,

 https://doi.org/10.1007/978-3-319-75677-6_30
Bosch Sensortec GmbH "BMI160 Small, low power inertial

measurement unit", [online] Available at: https://www.bosch-
sensortec.com/media/boschsensortec/downloads/datasheets/bst-
bmi160-ds000.pdf [Accessed: 24 October 2020]

Butenuth, M., Kallweit, R., Prescher, P. (2017) "Vehicle-in-the-Loop
Real-world Vehicle Tests Combined with Virtual Scenarios", ATZ
Worldwide, 119(9), pp. 52–55.

 https://doi.org/10.1007/s38311-017-0082-4
Fehér, Á., Aradi, S., Bécsi, T. (2020a) "Fast Prototype Framework for

Deep Reinforcement Learning-based Trajectory Planner", Periodica
Polytechnica Transportation Engineering, 48(4), pp. 307–312.

 https://doi.org/10.3311/PPtr.15837
Fehér, Á., Aradi, S., Bécsi, T. (2020b) "Hierarchical Evasive Path

Planning Using Reinforcement Learning and Model Predictive
Control", IEEE Access, 8, pp. 187470–187482.

 https://doi.org/10.1109/ACCESS.2020.3031037
Hemati, A., Shooshtari, A. (2019) "Suspension damping optimization

using genetic algorithms", International Journal of Automotive
Engineering and Technologies, 8(4), pp. 178–185.

 https://doi.org/10.18245/ijaet.531810
Herreros, A., Baeyens, E., Perán, J. R., Melgar, A. (2002) "Parameter

Identification of a Car Suspension System Using Non-intrusive
Signals", IFAC Proceedings Volumes, 35(1), pp. 427–432.

 https://doi.org/10.3182/20020721-6-es-1901.01539
IPG Automotive GmbH "CarMaker: Virtual testing of automobiles and

light-duty vehicles", [online] Available at: https://ipg-automotive.
com /product s - se r v ices /s imulat ion-sof t wa re /ca r maker/
[Accessed: 13 October 2020]

Jiang, K., Pavelescu, A., Victorino, A., Charara, A. (2014) "Estimation
of vehicle's vertical and lateral tire forces considering road angle
and road irregularity", In: 17th International IEEE Conference
on Intelligent Transportation Systems (ITSC), Qingdao, China,
pp. 342–347.

 https://doi.org/10.1109/ITSC.2014.6957714

Klück, F., Zimmermann, F., Wotawa, F., Nica, M. (2019) "Genetic
Algorithm-Based Test Parameter Optimization for ADAS
System Testing", In: 2019 IEEE 19th International Conference on
Software Quality, Reliability and Security (QRS), Sofia, Bulgaria,
pp. 418–425.

 https://doi.org/10.1109/QRS.2019.00058
Ma, Z., Qiao, Y., Lee, B., Fallon, E. (2013) "Experimental evaluation

of mobile phone sensors", In: 24th IET Irish Signals and Systems
Conference (ISSC 2013), Letterkenny, Ireland, Article number: 49.

 https://doi.org/10.1049/ic.2013.0047
Madni, A. M., Madni, C. C., Lucero, S. D. (2019) "Leveraging Digital

Twin Technology in Model-Based Systems Engineering", Systems,
7(1), Article number: 7.

 https://doi.org/10.3390/systems7010007
Mitra, A. C., Desai, G. J., Patwardhan, S. R., Shirke, P. H.,

Kurne, W. M. H., Banerjee, N. (2016) "Optimization of pas-
sive vehicle suspension system by genetic algorithm", Procedia
Engineering, 144, pp. 1158–1166.

 https://doi.org/10.1016/j.proeng.2016.05.087
Németh, H., Háry, A., Szalay, Z., Tihanyi, V., Tóth, B. (2019) "Proving

Ground Test Scenarios in Mixed Virtual and Real Environment
for Highly Automated Driving", In: Proff, H. (ed.) Mobilität in
Zeiten der Veränderung, Springer Gabler, Wiesbaden, Germany,
pp. 199–210.

 https://doi.org/10.1007/978-3-658-26107-8_15
Pacejka, H. (2005) "Tire and vehicle dynamics", Butterworth-

Heinemann, Warrendale, PA, USA.
Potó, V., Csepinszky, A., Barsi, Á. (2018) "Representing Road Related

Laserscanned Data in Curved Regular Grid: A Support to
Autonomous Vehicles", The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42(2), pp. 917–921.

 https://doi.org/10.5194/isprs-archives-xlii-2-917-2018
Song, R., Horridge, P., Pemberton, S., Wetherall, J., Maskell, S., Ralph, J.

(2019) "A Multi-Sensor Simulation Environment for Autonomous
Cars", In: 2019 22th International Conference on Information
Fusion (FUSION), Ottawa, ON, Canada, pp. 1–7.

and the parameters can be used for vehicle dynamics sim-
ulations. Besides, it can contribute to perception sensor
tests where roll and pitch motions are significant. It can
be concluded that a simplistic suspension model can suffi-
ciently reproduce vertical vehicle dynamics, that are ade-
quate for simple test scenarios and visualization purposes.

It can also be a useful tool even at vehicle test tracks
(e.g., ZalaZone in Hungary, (Németh et al., 2019)) where
mixed-reality testing is expected and engineers need a lot
of accurate data to recreate their scenarios in the virtual
versions of the test track and test scenarios. In the future,
complex virtual suspension models like MacPherson can
be implemented in both software to simulate oscillations

more precisely and provide a more accurate validation
method. If more precision is needed, the genetic algo-
rithm's settings can be fine-tuned more as a future job.

Acknowledgement
The research reported in this paper and carried out at
BME has been supported by the NRDI Fund (TKP2020
IES, Grant No. BME-IE-MIFM) based on the charter of
bolster issued by the NRDI Office under the auspices of
the Ministry for Innovation and Technology. Supported by
the ÚNKP-20-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of
the National Research, Development and Innovation fund.

https://doi.org/10.1007/978-3-319-75677-6_30
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi160-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi160-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi160-ds000.pdf
https://doi.org/10.1007/s38311-017-0082-4
https://doi.org/10.3311/PPtr.15837
https://doi.org/10.1109/ACCESS.2020.3031037
https://doi.org/10.18245/ijaet.531810
https://doi.org/10.3182/20020721-6-es-1901.01539
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://ipg-automotive.com/products-services/simulation-software/carmaker/
https://doi.org/10.1109/ITSC.2014.6957714
https://doi.org/10.1109/QRS.2019.00058
https://doi.org/10.1049/ic.2013.0047
https://doi.org/10.3390/systems7010007
https://doi.org/10.1016/j.proeng.2016.05.087
https://doi.org/10.1007/978-3-658-26107-8_15
https://doi.org/10.5194/isprs-archives-xlii-2-917-2018

Ormándi et al.
Period. Polytech. Transp. Eng. , 49(3), pp. 231–241, 2021|241

Szalai, M., Varga, B., Tettamanti, T., Tihanyi, V. (2020) "Mixed real-
ity test environment for autonomous cars using unity 3D and
SUMO", In: 2020 IEEE 18th World Symposium on Applied
Machine Intelligence and Informatics (SAMI), Herlany, Slovakia,
pp. 73–78.

 https://doi.org/10.1109/sami48414.2020.9108745
Unity Technologies "Unity Real-Time 3D Development Platform", [online]

Available at: https://unity.com/ [Accessed: 01 November 2020]

Varga, B., Szalai, M., Fehér, Á., Aradi, S., Tettamanti, T. (2020)
"Mixed-reality Automotive Testing with SENSORIS", Periodica
Polytechnica Transportation Engineering, 48(4), pp. 357–362.

 https://doi.org/10.3311/pptr.15851
Vetturi, D., Gadola, M., Manzo, L., Faglia, R. (1996) "Genetic Algorithm

for Tyre Model Identification in Automotive Dynamics Studies",
In: The 29th ISATA2 International Symposium on Automotive
Technology and Automation, Florence, Italy, 1996, pp. 24–31.

https://doi.org/10.1109/sami48414.2020.9108745
https://unity.com/
https://doi.org/10.3311/pptr.15851

	1 Introduction
	2 Reality - measurement setup
	3 Virtuality - simulations
	3.1 IPG Carmaker
	3.2 Unity 3D

	4 Calibration
	4.1 Test scenario
	4.2 Vehicle model
	4.3 Genetic algorithm
	4.4 Genetic algorithm results

	5 Validation
	5.1 Test scenario
	5.2 IPG Carmaker
	5.3 Unity 3D
	5.4 Spectral density

	6 Conclusions
	Acknowledgement
	References

