
292|https://doi.org/10.3311/PPtr.18581
Creative Commons Attribution b

Periodica Polytechnica Transportation Engineering, 49(3), pp. 292–300, 2021

Cite this article as: Orgován, L., Bécsi, T., Aradi, S. (2021) "Autonomous Drifting Using Reinforcement Learning", Periodica Polytechnica Transportation
Engineering, 49(3), pp. 292–300. https://doi.org/10.3311/PPtr.18581

Autonomous Drifting Using Reinforcement Learning

László Orgován1*, Tamás Bécsi1, Szilárd Aradi1

1 Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics, H-1111 Budapest, Műegyetem rkp. 3., Hungary

* Corresponding author, e-mail: orgovanlaszlo@edu.bme.hu

Received: 17 May 2021, Accepted: 15 June 2021, Published online: 19 August 2021

Abstract

Autonomous vehicles or self-driving cars are prevalent nowadays, many vehicle manufacturers, and other tech companies are trying

to develop autonomous vehicles. One major goal of the self-driving algorithms is to perform manoeuvres safely, even when some

anomaly arises. To solve these kinds of complex issues, Artificial Intelligence and Machine Learning methods are used. One of these

motion planning problems is when the tires lose their grip on the road, an autonomous vehicle should handle this situation. Thus

the paper provides an Autonomous Drifting algorithm using Reinforcement Learning. The algorithm is based on a model-free learning

algorithm, Twin Delayed Deep Deterministic Policy Gradients (TD3). The model is trained on six different tracks in a simulator, which

is developed specifically for autonomous driving systems; namely CARLA.

Keywords

machine learning, reinforcement learning, autonomous driving, drifting

1 Introduction
Drifting is a high side-slip cornering, just like in rally rac-
ing when with an RWD (Rear Wheel Drive) car, the driver
is counter-steering with a large side-slip angle at relatively
high speed. For this manoeuvre, the vehicle needs a large
rear drive-torque, which can cause significant rear wheel-
spin. This is a challenging manoeuvre even for an expe-
rienced driver and for an autonomous vehicle as well. To
solve this problem, the idea was to start with a trajectory
tracking algorithm. First, the agent should follow a pre-
defined path accurately, then it can learn to drift through
the corners with further training.

In (Cai et al. 2020), the authors created a drifting algo-
rithm in a simulator (CARLA). CARLA is an open-source
simulator for autonomous driving using Unreal Engine.
The authors published these maps and the trajectories,
which were useful for developing our algorithm because to
create a map in CARLA, a third-party application is needed,
like RoadRunner. Still, it requires a license to use it.

Using Deep Reinforcement Learning (DRL), which com-
bines classic reinforcement learning with deep neural net-
works, is a good solution for these kinds of motion planning
problems. It is possible to develop "end-to-end" solutions,
where the network inputs are the travel destination, vehi-
cle's parameters, e.g. velocity, acceleration, and the out-
puts are the direct vehicle control commands, like steering,

torque, brake (Aradi, 2020). In this project, different algo-
rithms are used for this continuous control problem (DDPG,
TD3, SAC), but the one with the best performance was the
TD3 (Twin Delayed Deep Deterministic Policy Gradients).
It was the best for trajectory-tracking and for drifting as well.

1.1 Motion planning
Motion planning for autonomous driving is essential and
there is much research on this topic. There are different
kind of approaches, like machine learning, classic con-
trol methods, or different optimization techniques. Based
on the survey from (Aradi, 2020), at the end of the last
decade (2019), the number of the research papers increased
significantly, in the case of DRL topic, there are almost
5 times more than in 2010. The motion planning is a com-
plex problem and that is where DRL comes into the pic-
ture. The drifting is approached from a trajectory tracking
point of view. There are different solutions for this prob-
lem, the controller method or the (continuous) DLR, when
the agent chooses the action, which is the throttle or steer-
ing actuation (or both).

1.2 Drifting
In Fig. 1, there is a typical cornering on the left, and the
drift is on the right. The β is the side-slip angle, which is

https://doi.org/10.3311/PPtr.18581
https://doi.org/10.3311/PPtr.18581
mailto:orgovanlaszlo@edu.bme.hu

Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021 |293

the angle between the direction of the heading (longitu-
dinal axis of the vehicle) and the direction of the velocity
vector at the centre of gravity (Cai et al. 2020), which is
much higher in case of drifting.

1.2.1 Reinforcement learning-based methods
Based on the (Cai et al. 2020) research, this was the first
to achieve transient drift with DRL. On the other hand,
they only used Front-Wheel Drive (FWD) vehicles like an
Audi A2 or TT, and one AllWheel Drive (AWD) vehicle,
the Cola Truck. These vehicles are not suitable for drifting
because of the drivetrain. In this case, it is not drifting, it
is just a high-speed cornering, and the whole car is sliding,
not only the rear part. So the goal was to use these maps
and DRL with an RWD car and achieve drifting.

2 Reinforcement learning
Machine Learning (ML) is one section of Artificial
Intelligence (AI). There are three ML approaches,
Supervised learning, Unsupervised learning and
Reinforcement learning (RL). RL's two most import-
ant features are the trial-and-error search and delayed
reward (Sutton and Barto, 2018). The trial-and-error
search means that the learning agent takes action, and
for this action gets a reward, and it tries to maximize
this reward. This is how the agent discovers the environ-
ment. There are some complicated tasks when the agent
doesn't get the reward at every action, just after a series of
actions (delayed reward), e.g. an autonomous vehicle gets
a reward when reaches the goal safely.

Reinforcement Learning is complex, but it can be
divided into two classes, model-based and model-free
methods. The model of the environment tries to pre-
dict the next state and reward, based on the current state
and action, so it tries to mimic the behaviour of the

environment (Sutton and Barto, 2018). The original idea
was to start from an unknown model (irreversible environ-
ment) and learn the dynamics model based on the observed
data. This model, by definition, is reversible, therefore,
can be used for planning. On the other hand, the mod-
el-free methods are the opposite of planning (explicitly tri-
al-and-error learners). For this task, only the DDPG and
TD3 are used, which are model-free methods.

2.1 Deep Deterministic Policy Gradient (DDPG)
DDPG was presented in (Lillicrap et al. 2019) and became
popular amongst the RL community quite fast. DDPG is
an algorithm that concurrently learns a Q-function and a
policy, uses off-policy data and the Bellman equation to
learn the Q-function, and the Q-function to learn the pol-
icy (Achiam, 2018). It is important to note that this algo-
rithm is only for those tasks when the action space is con-
tinuous, like in this case. The experience replay buffer is
essential for this kind of algorithm, basically a large set
of previous experiences (set Ɗ), but to choose the perfect
size, which is neither too big, nor too small, is necessary.
This is a hyperparameter, which needs fine-tuning based
on the specific environment.

2.1.1 Architecture
The DDPG has two pairs of neural networks, the Q-network
and the target Q network, the deterministic policy network
and the target policy network. The target network is the
copy of the main network with a time-delay. The architec-
ture is based on the Actor-Critic method. The Actor uses
the policy-based approach and tries to calculate the opti-
mal policy deterministically, trying to pick the best action.
On the opposite side, the Critic is a value-based approach.
The Critic calculates the optimal action-value function
based on the Actor's action.

From the replay buffer, we sample random mini-batches
when the Actor-Critic networks are updated. To update
those networks, similarly like in the Q-learning, the target
ones are used. The goal is to minimize this mean-squared
loss between the two Q values (original-updated). For the
update of the target networks, a so-called "soft updates" is
used. Another important note, for this kind of continuous
action spaces, additional noises to the action are neces-
sary (to maintain the exploration).

This is a brief summary of the DDPG, unfortunately,
it was not the best solution for this drifting problem, but
the TD3 algorithm is based on this, thus it was essential to
summarize this method.

Fig. 1 Typical cornering (left) and drift (right) (Hindiyeh, 2013)

294|Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021

2.2 Twin Delayed Deep Deterministic policy gradients
(TD3)
The common problem with the DDPG is the Q-values
overestimation, this is why the TD3 was developed. To
solve this problem, three major improvements were intro-
duced (Achiam, 2019):

• Instead of one, TD3 learns two Q-functions and uses
the smaller Q-value (of the two) to form the targets in
the Bellman error loss functions.

• The policy and target networks are updated less fre-
quently than the Q function.

• Noise to the target action, this way it is harder for the
policy to exploit the Q-function errors.

2.2.1 Network parameters
The TD3 algorithm is created in PyTorch, based on
Lillicrap et al. (2019), the author created a tutorial for DRL
algorithms with OpenAI gym environment. The drifting
environment is different, but the base is similar, so it was a
good starting point.

The network parameters are in Table 1, where X is the
state dimension, and Y is the action dimension.

Finally, one can see the important hyperparameters.
The replay buffer size was 100.000, and the batch size
is 256. For the discount factor (γ) 0.99 is used, 0.005 for tar-
get smoothing, and the optimizer is the default PyTorch's
ADAM optimizer, where the default learning rate is 0.001,
and the network is updated at every two steps. Different
combinations of these were tested, but the best result was
achieved by the above-mentioned parameters. The results
can be seen in the next sections.

3 Model structure
3.1 Simulator
The simulator is the CARLA 0.9.9, which was the latest
version when the project was started. CARLA has its own
maps, but they are for urban driving, there are cities, which
are great for traffic-related simulation with lots of vehicles
and pedestrian, but for drifting it is useless, and graphically

demanding because of the number of the objects (houses,
cars, roads etc.). The used maps only contain the road
itself some road fence/barriers and trees, and because of
the less number of objects, the computer, which is used for
the development, could handle very well, besides that, it is
not the most up-to-date, top of the line PC. The specifica-
tion of the PC is the following: an Intel i5-7500 CPU, 16 GB
of RAM and a GeForce GTX 970 video card.

3.1.1 The client
The Client and the World are two of CARLA fundamen-
tals, a necessary abstraction to operate the simulation and
its actors (CARLA, 2020a). The client is connected to the
server/world, and it can send commands and receive infor-
mation. Using the PythonAPI, we can control the simula-
tion via python scripts.

The communication between the server and the cli-
ent is crucial; the simulation is based on that. That is why
CARLA has two modes, asynchronous and synchronous.
By default, the communication between the client and the
server is asynchronous, thus the server runs the simulation
as fast as possible, without waiting for the client. On the
other hand, in synchronous mode, the server waits for a
client tick (which is basically a done/ready message) before
updating to the following simulation step (CARLA, 2020b).
Suppose the goal is to control the vehicle. In that case, the
synchronous mode is essential because if the control is the
steering, it must be sent at given time-steps, e.g. at every
0.1 seconds. Still, without the synchronous mode, at this
given time, the vehicle can travel, e.g. 1 meter or 2, depend-
ing on the speed of the simulation. Thus, the other import-
ant setting is the fixed time-step.

The simulation time and the real-time is fortunately differ-
ent, this means the simulation can run faster than real-time.
The simulated World has its own clock and time, conducted
by the server, and the server can take a few milliseconds to
compute two steps of a simulation. However, the time-step
between those two simulation moments can be configured
to be, for instance, always a second (CARLA, 2020b). This
time-step can be fixed or variable. The default is the vari-
able time-step, when the simulation time between the steps
depends on the time of the server's computation. To make
sure that the time between the steps is constant, the fixed
time-step mode should be used, and in this case, if the con-
stant value is 0.05 seconds, there will be 20 frames per sim-
ulated second. Because of the fixed time, this is the best way
to collect data. These are the settings for training, and this
way, it is much faster than real-time.

Table 1 Network parameters

Style name: Actor network Critic network

Input layer FC1 X nodes in, 256 nodes
out

X + Y nodes in, 256
nodes out

Hidden Layer FC2 256 in, 256 out 256 in, 256 out

Hidden Layer FC3 256 in, 128 out 256 in, 128 out

Hidden Layer FC4 128 in, 32 out 128 in, 32 out

Output layer FC5 32 in, Y out 32 in, 1 out

Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021 |295

3.1.2 The World
The World is the major part of the simulation, this class
contains the general settings and most of the informa-
tion (CARLA, 2020b), such as the actors, the blueprint
library, weather and lightning settings, simulations set-
tings, the map, the snapshots. Another important thing to
note, there is only one World per simulation, but the World
can be changed anytime.

To change the world settings, there are functions which
can be used to turn on the above-mentioned synchronous
mode, define the tick function, spawn an actor (e.g. car),
change the weather. The weather can be changed at will,
e.g. how much cloud should be on the sky (0-100, zero
means clear sky, and 100 means completely cloudy), sim-
ilarly with the fog, the fog distance can be set or the rain
or even the altitude angle of the Sun. So, there are many
options, basically it is possible to simulate any kind of sit-
uations. Another useful setting is the no rendering mode,
which can be enabled, so the simulation is a "black screen",
the GPU does not render at all, thus it is much faster, it can
save a lot of time in a long training session.

3.1.3 The map
A map includes both the 3D model of a town and
its road definition, and every map is based on an
OpenDRIVE file describing the road layout fully anno-
tated (CARLA, 2020c). To change the map in the simula-
tion, the World must be changed too (load to change the
map or reload the World if the goal is to use the same map).
The default maps can be modified with Unreal Editor, or
new ones can be created using RoadRunner. The map has
many more features like the traffic signs, lanes, junctions.
However, in this project, these are irrelevant; drifting
should be done only on tracks, not in traffic.

3.2 Tracks
There are seven maps (Fig. 2), which are exported from
RoadRunner (OpenDRIVE standards). For training the
first 6 maps (Fig. 2 (a)–(f)) are used, and the 7th is for
testing. The tracks become more and more difficult, they
have sharper corners, and they are longer as well e.g.
the first track is 1.22 km long, the fifth one is 3.02 km, so
it is more than double.

3.3 Environment
A classic RL environment must contain two fundamental
functions, the step and reset functions. This drifting envi-
ronment is more complicated and needs more additional
functions. The first thing to do was to define the CARLA
environment. To do that, establishment of the connection
between the client and the server is the first step, followed
by the world creation i.e. loading the given map, defin-
ing the settings, e.g. turning on the no rendering mode,
the synchronous mode, and defining the time between the
steps, which is 0.05 seconds. So, the client-server con-
nection is established, and the world settings are correct.
The next one is the vehicle itself.

The vehicle is an actor, and the Blueprint library class
contains all of the actors (sensors, vehicles, pedestrians
etc.). Almost every vehicle was tested, which is suitable
for drifting (Mustang, Tesla Cybertruck, Tesla Model 3,
Dodge Charger); however, the Tesla Model 3 was the best
performing vehicle.

Using the ID of the vehicle, the spawn of the chosen vehi-
cle can be done, only one more parameter is needed, which
is the spawning point. The spawning point is defined by the
CARLA's Transformation class, which contains the location
and the rotation, so it needs six variables (x-y-z coordinates,
pitch, yaw, roll). The route of the trajectory defines the start-
ing point's coordinates, basically the first coordinates of this
route. These trajectories contain the x-y coordinates, and
they are stored in a file, but the distance between the points is
around 0.1–0.2 meters, which is a small value. A new trajec-
tory was created for every map, where the distance between
these points is 4–10 meters (these values came from experi-
ence, the best value was 5 meters).

In Fig. 3, there is a difference between the original tra-
jectory and the new one (this is the first map, (a) in Fig. 2).
For a better illustration, the distance between the points is
10 meters, but the 5 meters setup was the best.

The next step is to control the car, CARLA has its own
Vehicle Control class, which is managing the basic move-
ment of a vehicle using typical driving controls (throttle,
steer, brake) (CARLA, 2020d) using the PythonAPI to
control the vehicle via a python script. The first idea was to
control the speed (throttle, brake) and the steering, but the
vehicle is decelerating if the throttle is not 1 (full throttle),

Fig. 2 (a)–(f) Maps for training; (g) and testing (Cai et al. 2020)

296|Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021

so to use the brake and the hand brake variable is unneces-
sary. Thus the agent's actions are the throttle and steering.

3.4 Vehicle model
CARLA's vehicle model is based on the Nvidia
PhysX. To control the model's parameters/physics, the
VehiclePhysicsControl and WheelPhysicsControl classes
are used. With the first one, the vehicle's engine perfor-
mance (engine's torque, maximum RPM, the transmis-
sion's properties), the vehicle's mass, and some coefficient/
ratios (drag coefficient, damping ratio) can be defined.
The second one defines the tire friction value, the maxi-
mum steering angle of the wheel, the radius of the wheel
and the braking torque. To find the proper values for these
variables was crucial for proper training (not all, only some
of them has to be modified). Unfortunately, the informa-
tion about the tire's longitudinal and lateral slip angles are
not available, and these are missing from CARLA. Maybe
the future version will have these kinds of information.

The first problem with the cars was the acceleration.
They were not fast enough, especially at lower speed
e.g. after a corner, even at full throttle, the acceleration
was not good enough, so the engine's power had to be
increased. The original and the modified torque curve can
be seen in Fig. 4. The modified value came from experi-
ence, the engine's RPM had to be limited as well; this way
the desired constant acceleration can be achieved at lower
and higher speed as well.

4 Drifting
The starting point was the trajectory tracking algorithm.
More details about it later.

For the drifting, the first thing was to introduce the
side-slip variable. This value needs to be calculated at
every step because CARLA doesn't have a function for it.

β =








arctan

_

_

v
v
local y

local x

 (1)

The tire friction default value at all four wheels is 3.5,
so to help to the car to slide, this value was decreased at
the rear wheels, but the coefficient at the front wheels were
decreased as well, the front the tire friction's value is 2.8
and that of the rear is 2.0. These value combinations came
from experience, almost every reasonable combination
was tested. Besides these, the modification of the vehicle's
weight was tested, as well as the different combinations,
with all of these values, heavier car, lighter/smaller car,
with different kind of engine power, and tire friction coef-
ficients. There is an almost infinite combination of these,
thus it is hard to find the best combination when the vehicle
has enough power and the ability to control at side-slipping.

The map is changed after every five episodes because
it will reduce the time of the training. Loading a new map
takes few seconds, and there should be a one or two sec-
onds waiting time after the map loading because if there
is no waiting time, the simulator crashes randomly from
time to time, but with these few seconds, the problem is
solved. However, waiting for every episode even just two
seconds takes a lot of time, considering thousands of epi-
sodes, not to mention that the agent did thousands of steps
in one episode. So, in total, it takes a lot of time, that is
why the map is changed only after every five episodes.
However, in theory, it would be better if there were a new
map in every episode. But if the agent reaches the goal,
the next map is different from the current one.

4.1 State
In the case of trajectory tracking, the state contains the
vehicle's parameters (velocity, acceleration), the distances

Fig. 3 Original (red) and the created (black) trajectory points

Fig. 4 Original (black) and the modified (red) torque curve

Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021 |297

between the next 8 trajectory points and the angle differ-
ences (between the vehicle and the given point).

In the case of drifting, the state is extended with the side-
slip value and the state dimension is reduced to 23 (from 30),
now the state has the vehicle's principles such as the velocity
and acceleration component (vx, vy , ax, ay ), like in trajectory
tracking and the side-slip angle (  β ), the distance from the
closest point (εd ) and the angle between the heading and the
point (εα ), and the rest is the information about the next 8
points. In this case, only the distances d dx yn n

,() are used,
where n is the number of the given points), not the angles,
because they are irrelevant in the case of drifting. The dis-
tances are enough for the basic path following.

state = …ε ε βαd x y x y x y x yv v a a d d d d, , , , , , , , ,
, 1 1 8 8

 (2)

4.2 Reward system
The partial reward system of the trajectory tracking can be
seen in Fig. 5. It is based on the distance between the vehi-
cle's centre point and the closest trajectory point, the head-
ing angle error, and the velocity. If the vehicle's speed
is higher, then the reward is higher as well, on the other
hand, if the distance and the angle difference is smaller,
then the reward is higher. The final partial reward value is
the average of these three.

The agent gets a large positive reward, when it reaches
the goal, and a large negative reward, when it collides,
slows down, turns over or goes farther from the trajectory
point. With this reward system the path following was suc-
cessful, in more than 60 % of the cases the agent reaches
the goal, this is considered as a proper base for drifting.

In the case of drifting, the first idea was to extend
the state with the side-slip angle, and update the reward

system with the rslip reward, similarly to the velocity, a
higher value means higher reward, and everything else
remained the same as it was in trajectory tracking.

As expected, this did not work, more modification was
needed, the car acceleration was not good enough, so at
this point, the previously mentioned torque curve modifi-
cation (Fig. 4) was introduced. Other vehicle-based mod-
ifications were needed as well, e.g. the maximum steer-
ing angle. By default, in the case of the Tesla Model 3,
the maximum steering angle of the wheels is 69.9°, this
value was increased to 79.9°.

The partial reward system needed a complete re-design.
The idea came from a video game, namely Need For Speed
Underground 2. To get the biggest drift reward, a long drift-
ing session must be performed, and the reward (points)
comes after the drift is finished. In the game, when the drift
is performed through multiple corners, the reward is larger
and larger, so the idea was similar in this project as well.

The first step was to define what is drifting, the defini-
tion is the following: if the side-slip angle is bigger than a
specific value and the velocity is higher than a given thresh-
old, then the given step considered as a drift step. In the
first place, the side-slip angle limit was 10°, and the veloc-
ity limit was 10 m/s, then that step was a drift. The next
question was how many steps count as a drift? This value
was 15 at first, so if the vehicle takes 15 steps when the
side-slip angle and the velocity are at least 10, then it is a
drift. And the reward, in this case, is the following:

r drift r r rtemp length v dis slip= + +()* , (3)

where the reward is based on the distance and the velocity is
calculated as before, which can be seen in Fig. 5. The reward,
based on the slip angle, is one, if the slip angle is around 70.

r
eslip x= −
−

1
1

0 01. *
 (4)

This is the temporary/partial reward, and when one of
the conditions is not fulfilled then the drift is over, the
agent gets the cumulative reward, during the drifting the
reward is zero. So at the beginning of the step, the slip
angle is checked, if it is larger than the given threshold,
an array is extended with it, for the sake of simplicity let's
call it drift_array, and if it is below the threshold, then this
array is empty. After the state and reward calculation, this
array equals the prev_drift_array, in this case they can be
compared at the next step. If the current array is empty,
and the previous one is not, then at this step the drift is
over. For example, if the vehicle does 50 steps of drifting, Fig. 5 Distributions of the rewards

298|Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021

from the second step the temporary reward adds up, and at
the 51st step, the agent gets the whole reward:

r R R Rep51
1 2 50

2 3 51
= + +…+* * * , (5)

where Rx is the reward based on the previous action, e.g. R2
is the reward based on the first action, and the multiplier is
the length of the drift (the first action is always full throt-
tle, and 0 steering angle).

If there is no drifting at all, then the reward is the same
as in trajectory tracking:

r r r rv dis heading= + +() / .3 (6)

There were some problems with this reward system, as
the agent tried to drift all the time, even at a straight line,
it just slided one side to the other (Fig. 6). So, the rear
is sliding, and the agent does this behaviour to maximize
the reward. In this way, it is considered as a drift, when
the vehicle slides to one side, and as one more drift when
it slides to the other, and so on. This must be eliminated
because it is clearly not the way it supposed to work, the
agent should drift only at the corners.

At this point, the drifting needed to be redefined, so the
10° side-slip angle was increased to 20°, and the steps were
doubled, which are required for drifting (30), but the veloc-
ity limit was decreased from 10 m/s to 7 m/s. The goal was
to reward only the longer drifting which should take place
only in the corners. In this case, the agent should slide for
a longer period of time, but due to the drifting it will slow
down more, so that is why the velocity limit is smaller.

4.3 Results
Every training result was a little bit different, if the car
drifts more, then more likely collides with the wall or

turns over, if it drifts less, then it is more stable, it reaches
the goal with a higher percentage. In this project, it is bet-
ter if the car takes only 4–5 corners, but at high speed and
it is really drifting, then it can be called drifting, even if it
crashes sometimes. Obviously, the ultimate goal is when
the car reaches the goal every episode and drifting every
corner, but it is a challenging task.

The easiest way to demonstrate drifting is the video, to
show how the agent performs at different corners, but it
is impossible to present, so instead of this, 1000 episodes
were performed on the test map (Fig. 2 (g)).

The average step was 847 (which is small compared to
trajectory tracking, where it was around 3800), and the
agent drifts 2.5 times in one episode on average. The aver-
age velocity was 61.6 km/h, and the maximum drifts in one
episode were 19 (in almost every corner). Unfortunately,
in most of the episodes, there were only a few drifts (1–3)
and less than 1000 steps (3 corners), which is not impres-
sive, but in some cases, the agent drifted really well. On
the other hand, it is better if the agent drifts really well
in some cases and crashes more than doing a mediocre
job. For a better illustration, only those episodes matter,
when the agent did at least five drifts, the result can be
seen in Fig. 7. In this case, this is 106 episodes of 1000.
The average step was 3070, which is 3.6 times higher than
the average of the 1000 episodes, and the average velocity
was almost identical: 61.75 km/h. To mention, the average
reward, in this case, was 17145, which is 4.2 times higher
than the average of the all (4082). The maximum step in
case of one drift was 60.

In Fig. 8 there is one test episode, these are the first few cor-
ners. The black dashed line is the trajectory, which the agent
should follow, the blue line is the position of the vehicle at

Fig. 6 Vehicle position (red) and the trajectory (black) Fig. 7 Number of the steps and drifts when the drift counts higher than 5

Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021 |299

a given step. The red dashed line is drifting when the slip
angle and the velocity is higher than the threshold.

The corresponding velocity value (blue line) and slip
value (red line) can be seen in Fig. 9.

You can see at the first corner, that the slip values are
really high, and the agent slides to the left first, then to

the right, and finally, at the left corner, it slides to the left.
These are the biggest spikes on the slip values. This is
the limit, which the agent can control. Before the second
left corner, the car keeps to the left while accelerating to
almost 100 km/h and slides to the right. After this, it fol-
lows the path while accelerating in the same manner and
takes a hard-left corner.

5 Conclusion
In this paper, an autonomous drifting algorithm was created.
It is trained on six different maps, with various difficulties.
The agent achieved a good drifting performance. However,
there are plenty of possibilities to improve the drifting capa-
bility, to implement in a new CARLA version, the CARLA
team improves the simulator regularly. The final goal is to
create a general solution for drifting, an agent that can drift
with different kinds of vehicles and maybe a real-life test.
Finally, an illustration of the drifting in CARLA in Fig. 10,
shows how a drift looks like step-by-step.

Acknowledgement
The project was supported by the EFOP-3.6.3-
VEKOP-16-2017-00001: Talent Management in Autono-
mous Vehicle Control Technologies – The Project is sup-
ported by the Hungarian Government and co-financed by
the European Social Fund.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

Fig. 8 Drifting on the test map

Fig. 9 Velocity and slip values during drifting

Fig. 10 Drifting

References
Achiam, J. (2018) "Deep Deterministic Policy Gradient", [online]

Available at: https://spinningup.openai.com/en/latest/algorithms/
ddpg.html [Accessed: 08 March 2021]

Achiam, J. (2019) "Twin Delayed DDPG", [online] Available at:
https://spinningup.openai.com/en/latest/algorithms/td3.html
[Accessed: 08 March 2021]

https://spinningup.op﻿enai.com/en/latest/algorithms/ddpg.html
https://spinningup.op﻿enai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/td3.html

300|Orgován et al.
Period. Polytech. Transp. Eng., 49(3), pp. 292–300, 2021

Aradi, S. (2020) "Survey of Deep Reinforcement Learning for Motion
Planning of Autonomous Vehicles", [cs.LG], arXiv:2001.11231,
Cornell University, Ithaca, NY, USA. [online] Available at: https://
arxiv.org/abs/2001.11231 [Accessed: 16 May 2021]

Cai, P., Mei, X., Tai, L., Sun, Y., Liu, M. (2020) "High-SpeedAutonomous
Drifting With Deep Reinforcement Learning", IEEE Robotics and
Automation Letters, 5(2), pp. 1247–1254.

 https://doi.org/10.1109/LRA.2020.2967299
CARLA (2020a) "1st. World and client", [online] Available at: https://carla.

readthedocs.io/en/latest/core_world/ [Accessed: 08 March 2021]
CARLA (2020b) "Synchrony and time-step", [online] Available at:

https://carla.readthedocs.io/en/latest/adv_synchrony_timestep/
[Accessed: 08 March 2021]

CARLA (2020c) "3rd. Maps and navigation", [online] Available at: https://
carla.readthedocs.io/en/latest/core_map/ [Accessed: 08 March 2021]

CARLA (2020d) "Python API reference", [online] Available at: https://carla.
readthedocs.io/en/latest/python_api/ [Accessed: 08 March 2021]

Hindiyeh, R. Y. (2013) "Dynamics and control of drifting in automo-
biles", PhD Thesis, Stanford University.

Lillicrap, P. T., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., Wierstra, D. (2019) "Continuous control with deep
reinforcement learning", [cs.LG], arXiv:1509.02971, Cornell
University, Ithaca, NY, USA. [online] Available at: https://arxiv.
org/abs/1509.02971 [Accessed: 16 May 2021]

Sutton, S. R., Barto. G. A. (2018) "Reinforcement learning: An introduc-
tion", The MIT Press, Cambridge, MA, USA.

https://arxiv.org/abs/2001.11231
https://arxiv.org/abs/2001.11231
https://doi.org/10.1109/LRA.2020.2967299
https://carla.readthedocs.io/en/latest/core_world/
https://carla.readthedocs.io/en/latest/core_world/
https://carla.readthedocs.io/en/latest/adv_synchrony_timestep/
https://carla.readthedocs.io/en/latest/core_map/
https://carla.readthedocs.io/en/latest/core_map/
https://carla.readthedocs.io/en/latest/python_api/
https://carla.readthedocs.io/en/latest/python_api/
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971

	1 Introduction
	1.1 Motion planning
	1.2 Drifting
	1.2.1 Reinforcement learning-based methods

	2 Reinforcement learning
	2.1 Deep Deterministic Policy Gradient (DDPG)
	2.1.1 Architecture

	2.2 Twin Delayed Deep Deterministic policy gradients (TD3)
	2.2.1 Network parameters

	3 Model structure
	3.1 Simulator
	3.1.1 The client
	3.1.2 The World
	3.1.3 The map

	3.2 Tracks
	3.3 Environment
	3.4 Vehicle model

	4 Drifting
	4.1 State
	4.2 Reward system
	4.3 Results

	5 Conclusion
	Acknowledgement
	References

