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Abstract

The modern vehicles are getting equipped with more and more sensors, which allows the engineers to collect more information 

about the states of the vehicle and its environment during its operation. This information can be used to increase the capacity and 

the performances of the control systems. In this paper, a novel data-driven approach is presented to compute the reachability sets 

of the vehicles, which are equipped with a semi-active suspension system. The dataset, which is used in this paper, is provided by 

the high fidelity vehicle simulation software, CarSim. Firstly, the dataset is categorized using a stability criterion. Then, a machine-

learning algorithm (C4.5 decision tree) is trained, which can categorize a given instance using only the onboard signals of the vehicle. 

Finally, a possible application of the reachability sets is presented to show the use of the computed sets.
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1 Introduction and motivation
In recent years, the development of fully autonomous vehi-
cles has become the main challenge of the automotive 
industry. This task involves several problems, which must 
be solved before launching the first self-driven vehicle e.g. 
communication (V2X), decision making, and other control 
problems. In general, the control systems of autonomous 
vehicles have to deal with three types of motion: longitu-
dinal, lateral, and vertical. The longitudinal dynamics of 
the vehicle can be controlled through the engine and the 
braking system. The lateral motion of the vehicle can be 
influenced by the steering system. Whilst, the vertical 
motion of the vehicle is mainly characterized by its suspen-
sion system. There are three different suspension systems: 

• Regular, which has no actuator, therefore its dynamics 
cannot be changed during the operation of the vehicle.

• Semi-active suspension, which has the capability of 
changing its damping coefficient while driving the car.

• Active suspension, which is equipped with an actu-
ator that can be used to realize an additional vertical 
force. By this additional force, the whole dynamic 
response of the suspension can be modified. 

Obviously, the active suspension is the most benefi-
cial from the engineering perspective. However, this sus-
pension is more costly than the semi-active one. The gap 
between the capabilities of the suspensions can be reduced 
by an intelligent control system. Hence, in the last decades, 
numerous control strategies and systems have been devel-
oped for semi-active suspensions. 

One of the most widespread methods for controlling 
semi-active suspensions is the skyhook control strat-
egy (Liu et al., 2019; Shimoya and Katsuyama, 2019). 
The basic concept of this strategy is to link the chassis of 
the vehicle to the sky while simultaneously reducing the 
vertical acceleration of the vehicle and the axles. Another 
possibility is the Model Predictive Control (MPC) 
approach (Rathai et al., 2019a; Rathai et al., 2019b). MPC 
methods can provide good performances, however, the 
robustness of these algorithms may be questionable. The 
robustness of the closed-loop system can be guaranteed by 
using H∞-based approaches, see (Yu, et al., 2019). However, 
its performances, sometimes, limited due to their fixed 
structure. Besides the presented classical (model-based) 
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approaches, there are other methods, which can deal with 
this control problem: machine learning-based, data-driven 
solutions. The machine learning-based approaches have 
gained wide attention in the last few years. These methods 
can be a powerful tool for automotive control problems. 
For example, a machine learning-based control solution 
can be found in (Fenyes et al., 2020) for controlling the lat-
eral dynamics of the vehicle. An improved MPC algorithm 
is described in (Fenyes et al., 2019), whose performances 
are enhanced by a machine learning algorithm.The goal of 
the paper is to present a data-driven stability analysis for 
semi-active suspension systems, which can be used as a 
basis for future control design. The main steps of the algo-
rithm are illustrated in Fig. 1. 

As it can be seen, the first step is the data acquisition, 
which is presented in Section 2 The labeling of the dataset 
is also presented in that section, whose goal is to catego-
rize the measured instances according to their stability. 
In Section 3 a brief introduction is given to the applied 
decision tree algorithm, which is used to determine the 
category of a given instance during the operation of the 
vehicle. In Section 4 the results of the decision tree are 
illustrated through different examples. Then, a possi-
ble application of the presented reachability sets are pre-
sented, which can be found in Section 5 Finally, the contri-
bution of the paper is summarized in Section 6.

2 Data-driven stability analysis
2.1 Data acquisition
Since each and every machine learning algorithm requires 
a lot of data to create appropriate and reliable models, 
the first step is data acquisition. In this paper, the dataset 
is provided by the high-fidelity vehicle dynamics simula-
tion software, CarSim. In the simulation software, several 
scenarios have been performed in order to cover a wide 
range of the operation of the vehicle. During the simula-
tions, several parameters of the vehicle and its environ-
ment have been changed, such as:

•	 Longitudinal velocity of the vehicle
vx ∈ −{ }30 90 km/h,

•	 Adhesion coefficient μ∈ −{ }0 4 1. ,

•	 Damping coefficient bx ∈ −{ }1000 5000 Ns/m,  
(independently on both sides)

•	 Path of the vehicle (Michigan Waterford hill track, 
Melbourne Formula 1 track)

During the simulations, the following signals have been 
measured and collected:

• Longitudinal velocity (vx),
• Steering angle (δ ),
• Angular velocities (yaw-rate ψ, roll-rate ϕ, pitch-rate 
ω),

• Accelerations (ax, ay, az ),
• Lateral acceleration (ay  ),
• Vertical acceleration (az ),
• Side-slip angle of the vehicle (  β ),
• Side-slip angles of the axles (α1, α2),
• Damping coefficients of the suspensions (b1, b2).

In this way, more than 10 million distinct instances 
have been collected.

2.2 Labeling of the acquired data
Since the main goal of the stability analysis is to separate 
the stable and the unstable instances from the dataset, a 
separation criterion must be found. In this paper, a stability 
criterion will be used, which is based on the two wheeled 
bicycle model (Rajamani, 2005).The basic idea behind 
this criterion is to quantify the difference between the lin-
ear vehicle model and the measurements. This difference 
reflects on the nonlinear behavior of the vehicle, which 
means this difference becomes large when the vehicle 
enters the highly nonlinear region of its operating range. 
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where α1 is the averaged side-slip angle of the front wheels, 
δ is the steering angle, β denotes the side-slip angle of the 
vehicle, l1 is the distance between the CoG and the front 
axle, ψ represents the yaw-rate angle, vx is the longitudinal 
velocity of the car. Finally,   is an experimentally defined 
parameter.

This inequality is used to divide the dataset into two 
subsets: acceptable (stable) Racc and unacceptable (unsta-
ble) Runa.

3 C4.5 Decision tree algorithm
The presented separation criterion requires the measure-
ments of signals (  β, α1, α2 ), which is expensive or cannot be 
done accurately. Therefore, a machine learning algorithm, 
more specifically, a decision tree algorithm is used to 

Fig. 1 Steps of the analysis process and the application of its results
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determine the stability of an instance during the operation 
of the vehicle using only those signals, which are available 
from the onboard system (accelerations, angular velocities, 
longitudinal velocity). In the following, a brief introduction 
is given to the applied decision tree algorithm.

As a first step, the algorithm divides the dataset into 
two subsets: 

• Training set, which is used to produce the decision 
tree;

• Test set, which is used to validate the resulted tree. 

Both subsets consist of instances, which are built up 
by k attributes (A = A1, A2, ... , Ak ). An attribute represents 
a specific measurement (signal) or class (stable or unsta-
ble instance). A class attribute has predefined discrete val-
ues: C = C1, C2, ... , Cn. Note that in this case, there is only 
one class attribute (the stability), which only has two out-
comes: acceptable (stable) Racc and unacceptable (unsta-
ble) Runa. The main goal of the algorithm is to find a func-
tion, which can accurately map (classify) the instances by 
the selected class:

DOM A DOM A DOM A DOM Ck1 2( )× ( )×…× ( )→ ( ).  (2)

The resulted function is ordered into a tree structure, 
as shown in Fig. 2. A tree consists of nodes and leaves. A 
node contains a condition (whether the value of an attri-
bute is greater or smaller than a given value). A node has 
two outcomes (depending on the condition). The outcomes 
can lead to another node or to a leaf. The leaves contain 
the approximated class of an instance. A more detailed 
description can be found in (Witten and Frank, 2005).

In this paper, the presented decision tree algorithm is 
used to determine the stability of an instance during the 
operation of the vehicle with regards to the damping coef-
ficient of the semi-active suspension.

4 Example: illustration of the stable regions
In this section, an illustration of the resulted stability sets 
of the semi-active suspension system is presented. As men-
tioned in Section 2, the dataset is provided by the CarSim 
simulation software. In the simulations, a passenger car 

has been used, whose mass was set to m = 1530 kg. The 
damping coefficients of the left and right suspensions have 
been modified between bx = −{ }500 4500 Ns/m.

After the data acquisition and labeling of the data, the 
machine learning software WEKA is applied to produce 
the decision tree. 

In the following, the stable regions of the semi-ac-
tive suspension system are presented using the produced 
decision tree. The dataset has been divided into subsets 
using the damping coefficients (bl, br ) and equidistant 
resolution Δb = 1500 Nm/s. For each subset, a decision 
tree has been produced. Each tree has high performance, 
which means their percentage of the correctly classified 
instances is above 90 %. 

In the first case, the longitudinal velocity of the vehi-
cle is set to vx = 30 km/h, while the damping coefficients 
of the suspensions are changed simultaneously between 
500–4500 Ns/m. The stable regions of this case are 
illustrated in the plane of ψ and β in Fig. 3. As the fig-
ure demonstrates, the stable sets shrink along with the 
increasing damping coefficient. It means that the perfor-
mance of the vehicles decreases at increased damping 
coefficients.

In the next case, the longitudinal velocity of the vehicle 
is set to vx = 60 km/h shown in Fig. 4. The same tendency 
can be observed as in the previous case. However, the sizes 
of the sets are smaller at all damping coefficients. This 
phenomenon can be explained by the increased velocity, 
which also degrades the stability of the vehicle.

In the next cases, the left damping coefficients are fixed 
at bl = 500 Ns/m, while the right ones are changed between 
br =∈ −{ }500 4500 Ns/m.

Fig. 5 shows the cases when the longitudinal velocity is 
set to vx = 30 km/h. The same tendency can be observed 
as in Fig. 5. However, the sizes of the sets become much 
smaller along with the increasing right damping coefficient.

In case of Fig. 6, the longitudinal velocity of the vehi-
cle is fixed at vx = 60 km/h. This figure shows similar ten-
dency as presented in the previous cases.

5 Application example and future plans
In this section, a possible application example of the pre-
sented reachability sets is presented. The presented sets 
can be used in the control design of the semi-active sus-
pension system. In general, the goal of the control design 
is to find the balance between the stability of the vehicle 
and the comfort requirements. It means that the control 
system must minimize the vertical acceleration:Fig. 2 Example of decision tree
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z az1 = →min!,  (3)

and, in parallel, the displacement of the suspension:

z x xv s2 = − →min!,  (4)

where xv denotes the vertical position of the vehicle body 
and xs is the vertical position of the suspension.

However, both minimization tasks cannot be satisfied 
at once. Therefore, the primary goal is to ensure the stabil-
ity of the vehicle, then to stratify the comfort requirement. 

The presented decision trees can be used to compute the 
bounds of damping coefficients, within which the stability 
of the vehicle can be guaranteed. It means that the bounds 
can be computed as:

Fig. 3 Stable sets at vx = 30 km/h

Fig. 4 Stable sets at vx = 60 km/h
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b T m mx u i i n,
,..., ,= ( )( )max
1

 (5)

b T m mx l i i n,
,..., ,= ( )( )min
1

 (6)

where Ti denotes the produced trees, m1, ... , mn are the 
measurements from the onboard sensors, bx,u is the upper 
bound, while bx,l is the lower bound of the damping coef-
ficients x r l∈{ }( ), .

For example, these bounds can be used in a Model 
Predictive Control (MPC) formulation, which can be 
used to control semi-active suspension system, see 
in Rathai et al. (2019a). The whole control structure is 
illustrated in Fig. 7.

The authors' future plan includes the implementa-
tion of the proposed control strategy and its validation in 
MATLAB/CarSim environment.

Fig. 5 Stable sets at vx = 30 km/h, fixed at bl = 500 Ns/m

Fig. 6 Stable sets at vx =60 km/h, fixed bl = 500 Ns/m
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6 Conclusion
In this paper, a data-driven stability set analysis has been 
presented for semi-active suspension systems. The first 
step of the algorithm was the data acquisition, which was 
performed by using the high-fidelity vehicle dynamics 
simulation software, CarSim. The labeled dataset has been 
used to produce a decision tree, which was able to categorize 
the current measurements using only the onboard signals.
Finally, a possible application of the presented decision 
trees has been shown, in which the decision trees were used 
to compute the bounds of the damping coefficients.
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Fig. 7 Structure of the control system
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