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Abstract
The results of new evaluation methods of the fatigue test per-

formed with a training glider aircraft (called Góbé) are pre-
sented. Nowadays significant additional information is avail-
able which was not taken into consideration during the origi-
nal evaluation in 1976. The manufactured aircrafts survived the
permitted service life without fatigue failures, and there are pub-
lished data about fatigue events in real airborne service circum-
stances. This additional information can be taken into consid-
eration using the Bayesian methods. In this paper the gathered
information is published, the theoretical basis of the methods
used will be introduced and some results will also be given. The
investigation leads to statements which are valid not only for this
case. On this basis it can be stated that the widely used three-
parameter Weibull distribution and its usual parameter-fitting
methods are dangerous.
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1 General introduction
The typical ways of damage of the vehicle structures are the

fatigue crack propagation and fracture. The fatigue fracture of
the important structural components during the service induces
high risk of severe accidents. This is why the distribution of
the service lives up to fracture should be known. In case of
many structural components, the permitted service life is de-
termined on the basis of the probability of fatigue fracture. In
some cases the permissible probability of fracture is only about
10−3 . . . 10−6. When investigating in this region of extremely
low probabilities, deep difficulties are arising:

• The probability region investigated is not accessible directly
by fatigue test. To reach this region ≈ 103 . . . 06 specimens
would be needed, depending on the probability level.

• The relatively small samples can be acceptably described by
many known distribution types (shapes), but the behaviour of
these distributions are significantly different in the region of
extremely low probabilities. The exact shape of the distribu-
tion describing the sample is unknown.

• The service load acting on the investigated structure is only
particularly known. Therefore the validity of the loads used in
fatigue test is always questionable. Because of the uncertainty
of loads, the distribution of real service lives is not identical
to the distribution of test fatigue lives.

Practically the task can not be solved: probability extrapola-
tion should be done based on small sample, knowing that the
questioned distribution is different from the distribution of the
sample, and the types of both distributions are unknown.

The most important properties of the task to be solved are the
uncertainty and the lack of information. We are in instant need
of usable information!

2 The sources of information about Góbé
2.1 Fatigue Tests
The Department of Mechanics of the Faculty of Transporta-

tion Engineering BME and the Steel-industrial Research Insti-
tute in the years 1975-76 performed fatigue tests using five Góbé
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Tab. 1. The results of the fatigue tests of Góbé

1 2 3 4 5

Fatigue life (equivalent flight hours) 3931.5 6368.3 6486.4 10166.7 12912.0

The region of the fracture H F H F B

airplane taken out from service [5]. The test load was deter-
mined based on theoretical and experimental results. A block
program was composed to represent the service circumstances
of this aircraft type. The fatigue lives measured in the experi-
ments were transformed to equivalent flight hours (the individ-
ual flight hours performed in real service were taken into con-
sideration also). Fractures arose in three regions of the wing
structure:

• in the joint of the main wing beam (the notation of this re-
gion: B)

• close to the joint of the main and the diagonal beam (the no-
tation of this region: F)

• in the rear joint of the wing (the notation of this region: H)

The airplane is almost perfectly symmetric, it contains all three
kinds of critical region duplicated. A fracture occurring in the
regions B and F makes the wing unable to bear the load... A
fracture occurring in the region H leaves chance to land safely
(and the rebuilding of this region is relatively easy).

2.2 Survived service lives
In 1976 2000 equivalent flight hours were permitted, later this

was increased to 2800 equivalent flight hours. Almost all Góbés
reached or approached these service lives. The planes fell out
from service of various reasons and the aircrafts being in use
performed also remarkable service times. Exact actual informa-
tion is not available about every aircraft, but Table 2 describes
the survived service lives with an acceptable accuracy.

Tab. 2. The survived service lives without fatigue fracture

Survived service life (equivalent flight hours) 1600 2000 2800

Number of survived aircrafts 55 6 75

3 The sources of information about the distribution of
lifetimes
There is prior information about the shape of the distribution

and about the standard deviation of the logarithms of the life
times.

3.1 Theoretical Considerations
The lognormal, the gamma, the Birnbaum-Saunders and the

Weibull distribution types can be justified theoretically using
more or less approximate assumptions. Taking into consider-
ation every known theoretical justifications it can be rendered
likely that the fatigue lives can be described as a sum of the

lifetimes of “chains” built from link of lognormal lifetime dis-
tribution (chain: sequential elements from aspect of failure; see
part 5). This composite distribution can be called lognorm-chain
sum distribution. This distribution contains all the lognormal,
the gamma, the Birnbaum-Saunders and the Weibull distribu-
tion types as extreme cases [6]. The fatigue fracture due to the
real service loading is a very complex process. It is not surpris-
ing, that the distribution of fatigue lives can not be described at
an acceptable accuracy by a simple distribution type with 2. . . 3
parameters.

It is likely that the failure rate of the fatigue failures is mono-
tonic increasing function of the service time performed [3]. This
assumption gives a condition for the shape of lifetime distribu-
tion (for its type and/or parameters).

The existence of a lifetime T0 of 0% fracture is a controver-
sial question. Gedeon refers to the researches of Gillemot, who
stated that the rupture of material bindings needs some work in
any case, and the accumulation of this work needs some load
cycle [4]. Therefore there should be a surely fracture free life-
time. This may be valid in laboratory. But it seems possible that
a structure manufactured in poor quality meets extreme rough
service loads and after a short service life fatigue fracture oc-
curs. Saunders is definitely against the use of parameter T0 [8].
However, if T0 exist its reliable statistical determination can be
considered impossible. Additionally, the parameter T0 is not
needed for the decision making: because of the numerous haz-
ards always being present we are forced to take risks anyway in
our every action.

3.2 Fatigue lives of different airplane structural components
Based on real service fatigue events occurring in the struc-

tures of airliners published [8] the approximate identification of
the shape for the distribution function of the aluminium com-
ponents is possible [6]. The shape rendered likely is plotted on
Fig. 1 (named empiric) using Weibull probability paper. On the
horizontal axis the logarithm of the lifetime is standardized to
zero mean and unit standard deviation (see part 4.2.). For com-
parison, the standardized two-parameter Weibull distribution is
also shown on Fig. 1 (W 2).

Fortunately there are published data about large number of
laboratory fatigue tests [2]. The specimens of the investigated
samples were real airplane structures, structural components or
similar to them. The standard deviation of the logarithm of
the fatigue lives let be indicated with σ and its estimated value
S(log t). The S(log t) value was computed for every sample.
The hypothesis of the constant σ seems not likely (but can not
be rejected on pure statistical basis). The σ value of a sample de-
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Tab. 3. The equally probable values of the standard deviation of samples of
logarithmic fatigue lives for modelling the distribution

(the expected value is σM=0.167).

0.060 0.070 0.077 0.083 0.088 0.093 0.098 0.102 0.107 0.111 0.115 0.119 0.123

0.127 0.131 0.135 0.139 0.143 0.148 0.152 0.157 0.161 0.166 0.171 0.177 0.183

0.189 0.195 0.202 0.209 0.217 0.226 0.237 0.248 0.262 0.279 0.300 0.331 0.834

 
Fig. 1. The shape rendered likely on the basis of the service fatigue fracture

events observed in commercial aviation compared with two-parameter Weibull
distribution.

pends on the properties of the component investigated and on the
load process applied. Without particular information about the
components in the individual samples, under the pressure of ne-
cessity, the differences of the samples σ values can be modelled
using a random variable. The expected value of the σ among the
samples of different components is M(σ) = σ M = 0.167. For
describing the distribution the lognormal type seems applicable
with deviation parameter Sσ ≈ 0.20. . .0.22. For computations
this distribution of σ can be replaced by a set of equally prob-
able values. The values used in our investigations are shown in
Table 3. In the practice, the expected value is σ M = 0.167 with-
out uncertainty. The characteristic measure of variation of the
logarithmic standard deviation of different samples is probable
near to the variation of the data of the Table 3. Unfortunately,
the applied distribution of the standard deviations is only a sub-
jective hypothesis (more exact orientation was not possible on
the basis of the data available).

3.3 On the applicability of data collected among large air-
liners
Inside an airliner there are structural components of various

size and shape, and these all were treated together by Sam C.
Saunders. (This method can be questioned, but it was found
acceptable by the Boeing Scientific Research Laboratories.) At
the level of components, there is no significant difference be-
tween the Góbé and the airliners: the thicknesses, rivet sizes are
comparable.

The S(log t) values observed in laboratory tests using con-
stant amplitude loading are approximately equal to the value
σ M of the real service lives. This fact ensures the deduction
that the differences between the individual service loads do not
increase significantly the deviation of lifetimes, the random ef-
fects of the individual load processes are approximately equal-

ized during the whole lifetime. It is probable, that the shape of
the distribution is determined mostly by the properties of mate-
rial. Therefore, in spite of the different load spectrum, the appli-
cation of distribution shape and deviation properties of airliner
components seems acceptable even in the case of Góbé.

4 The elements of the estimation method applied
4.1 Distribution shape given in tabular form
For statistical estimations usually those distribution types are

used which are given in a closed form depending on several
(1 . . . 3) parameters. In our study the shape of the distribution is
described by a multi-parametric composite type (lognorm-chain
sum distribution, see part 3.1), the number of parameters inves-
tigated is 6. Estimation of all the parameters based on a small
sample is obviously meaningless, and the distribution function
can not be written in closed form. Therefore the shape of the
distribution is not given for the estimator method by parameters
but in a tabular form. (Due to the tabular handling, the direct use
of an empiric distribution based on an extremely large sample is
also possible.) The experiments show that the distributions of
fatigue lives more or less become approximately a straight line
on Weibull probability paper (the distributions are not far from
the two-parameter Weibull distribution, for example see Fig. 1.
The values of the tabular given distribution Ft can be determined
accurately enough even using a simple linear interpolation over
a wide range of argument log t .

4.2 The transformation of the given shape of distribution
The distribution given in tabular form is fixed, it has no pa-

rameter and there is nothing to estimate. For the fitting of the
given distribution shape to the sample investigated parameters
must be introduced. The logarithmic expected values and de-
viations of the individual samples can be different. A simple
two-parameter transformation of the argumentum log t answers
the purpose: shifting and stretching are used on the basis of the
following simple equation:

log t∗ = S∗
· log t + M∗ (1)

where S∗ and M∗ are the stretch and the shift parameters of the
transformation.

Using the parameterised transformation (1) a two-parameter
distribution can be introduced:

F(log t, S∗, M∗) = Ft (S∗
· log t + M∗)

After this, theoretically all fitting methods can be used which
are used for fitting of the distributions given by closed form.
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The question arises whether the transformation (1) deforms
the shape of the distribution. A distribution type is not de-
formed when the transformed distribution can be generated by
the proper selection of its natural parameters. In this case the
transformation (1) can be replaced with the proper transforma-
tion of the parameters. The lognormal and the two-parameter
Weibull types are non-deformable. The three-parameter Weibull
distribution (W 3) is a deformable type, but in our application its
deformation can be neglected, as our investigations show. In
strict sense the lognorm-chain sum distribution (section 3.1) is
also deformable, but its deformation is less than that of W3, and
can be considered practically non-deformable.

4.3 The likelihood function
The sample to be evaluated might have come from different

distributions. The probability is investigated that the sample
came from a distribution F . This probability can be rendered
to the distribution F or for its parameters, in the case of fixed
distribution type.

Let us assume that the information about the sample xi ele-
ment is only that it is in the interval (xai ,xbi ]. The probability
Pli of this event can be written:

Pli = F(xbi ) − F(xai )

If in the given interval contains not only l but mi independent
sample element then the probability of this event can be com-
puted by simple multiplying (do to the assumption of indepen-
dence):

Pmi = {F(xbi ) − F(xai )}
mi

If n intervals are known containing totally
∑

mi independent
sample element coming from the same distribution F then the
most general form of the likelihood function can be written:

L(F) =

n∏
i=1

(F(xbi ) − F(xai ))
mi

Because of all information associated to the given sample is
fixed the likelihood function is the function of F only. When
computing, the type of the distribution is fixed and the likeli-
hood function is considered as the function of the parameters of
the distribution.

When evaluating fatigue lives, it is possible that some speci-
mens do not brake. In this case xbi = ∞ and F(xbi ) = F(∞) =

1. It is usual that every fatigue life is known accurately:

xai ≈ xi ≈ xbi

In this case the finite difference of distribution F can be approx-
imated using the probability density function f :

F(xbi ) − F(xai ≈ f (xi )(xbi − xai )

Using the approximations

L( f ) ≈

n∏
i=1

f (xi )·

n∏
i=1

(xbi − xai )

the second product does not depend on the distribution. It in-
fluences the function L with a constant multiplying factor only
which is indifferent for us. Therefore the second product can be
omitted. In the task investigated some lifetime are known ac-
curately and there are survived lifetimes also. The most useful
form likelihood function in this case is the following:

L(F) =

n∏
i=1

d F(xi )

dx
·

na∏
j=1

(
1 − F(xaj )

)m j (2)

where n stands for the number of lifetimes up to fracture,
nastands for the number of survived lifetimes and m j is the num-
ber of specimens survived the time xai .

The likelihood function may appear in different forms. The
likelihood function is proportional to the probability of the dis-
tribution F (or its parameter). The reciprocal factor of the pro-
portionality is the integral of the likelihood function over the
region of the distributions (or parameters) coming into question.
(In case of different distribution types or discrete parameters in-
stead of integration a finite summation can be used.) If a contin-
uous real parameter is investigated, then the likelihood function
is its probability density function multiplied by a constant. After
integration this function determines the probability distribution
function also.

4.4 The Bayesian approach
The method of taking into account the prior additional infor-

mation is the Bayesian method. For the lifetime distributions F
coming into question a probability is ordered which gives the
prior probability of the event that the sample investigated came
from the distribution F . This prior information can be described
by a function Pprior(F). The occurrence of every data in the sam-
ple gives a condition which modifies the prior expectation of F .
Using the knowledge of the sample the probability Ppost(F) of
the distribution F can be computed as follows:

Ppost(F) ∼ Pprior(F) · L(F) (3)

The Bayes method is known since the 18th century but it is the
subject of intensive mathematical researches in the last decades.
Using the so-called “noninformative” prior distributions the
“objective Bayesianism” was defined which is applicable when
there is no prior information. Against the traditional “frequen-
tist” approach the Bayesian approach offers a new paradigm in
statistics which has numerous advantages. The publication [1]
gives an inspiring insight into this new topic and into the classi-
cal Bayesian approach.

4.5 The direct estimation of the probabilities of fracture
In the task to be solved the probabilities of the fracture are

needed therefore it is obvious that directly these probabilities
should be estimated. Even so, traditionally the estimation of
parameters is done at first and after that the estimated param-
eter values are applied in the formula of the distribution. The
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danger of this traditional method will be presented in this pa-
per. The estimated values of the parameters of a hypothesised
distribution type are perfectly uninteresting. In the practical re-
alization of the Bayesian approach the parameters are used for
the selection of the distribution F to be evaluated using Eq. (3).
The computed probability Ppost can be interpreted as the prob-
ability of the probabilities of fracture given by distribution F at
every lifetime investigated. Therefore the expected value of the
probabilities of fracture can be determined by evaluation of all
distribution (types and parameter values) coming into question.
(In the practice the probability of fracture is estimated in a finite
number of the lifetime values only, but theoretically there exists
a continuous estimated distribution function.)

4.6 The estimation of the expected value instead of the
most likely value
The likelihood function or Eq. (3) gives the probability den-

sity and distribution functions of the parameter to be estimated
(distribution parameter or probability of fracture). With the
knowledge of the functions mentioned three possible choices of-
fer themselves for the selection of the estimated value:

• the most likely value

• the median

• the expected value.

The selection of the most likely value is widespread for parame-
ter estimation (maximum likelihood method). A significant rea-
son for doing this is the computational convenience: in many
cases closed forms are known for computing the maximum like-
lihood estimation without a lot of computations. But the nu-
merical integration needed for computing the other two values
can be performed quickly using a computer. Nowadays none of
the choices causes practical problem. In the task to be solved
the probabilities of the fracture are parameter to be estimated.
When using the expected values of the probabilities, the esti-
mated distribution appearing differs from the distribution type
used in the estimation method. The distribution estimated in
this way, the distributions appointed by the expected or the most
likely parameter values are all different. In the decision making
under uncertainty the expected value of the loss of the fatigue
fracture has role. This expected value is determined by the ex-
pected value of the fracture. Therefore in the task to be solved
the proper method is the estimation of the expected values of the
probability of fatigue fracture.

5 On the chain property
5.1 The chain model
If load bearing elements are connected to each other like a

chain then the lifetime of this chain structure is determined by
the element (link) of smallest lifetime. If the chain contains r
number of nominally identical, in probability sense independent

elements of lifetime distribution F1(x) then the resultant prob-
ability distribution function of the lifetime of the chain Fr (x)

can be computed. The relation between Fl(x) and Fr (x) deter-
mines the relation between the related probability density func-
tions fr (x) and f1(x) also. The relations mentioned are as fol-
lows:

Fr (x) = 1 − (1 − Fl(x))r

fr (x) = r · f1(x) · (1 − Fl(x))(r−1) (4)

It is proved that in case of r → ∞ the distribution Fr (x) became
Weibull distribution, independently from the shape of Fl(x). The
distribution of a chain built from arbitrary number of elements of
identical Weibull distribution remains a Weibull distribution with
the same location- and shape parameters, the scale parameter
changes only.

5.2 The invariance of the likelihood function in the chain
property
Let be investigated a sample of nominally identical chains

each containing r elements. After a series of fatigue tests xi

lifetimes up to fracture and xaj are known (the latter with occur-
rence frequencies m j ). When estimating the lifetime distribu-
tion of chainFr (x)two trains of thought are possible:

1 The object investigated is regarded as a simple specimen, and
its chain property is neglected. The distribution Fr (x) is esti-
mated directly from data.

2 The chain property is taken into consideration. As first step
the distribution of chain element F1(x) is estimated. As sec-
ond step the distribution Fr (x)is computed using the relation
(4).

It is important that when applying method number 2 a fracture
lifetime of a chain element xi is a survived lifetime for the other
r − 1 elements. And a survived lifetime xaj for the whole chain
with multiplicity m j means at element level a survived lifetime
with multiplicity r · m j . The likelihood function can be formu-
lated on the basis of both train of thought, whether as a func-
tion of distribution Fl or Fr . Some computation proves that the
likelihood functions L1 and L2 determined by the two trains of
thought are identical in both forms:

L1(F1 ≡ L2(F1) L1(Fr ≡ L2(Fr )

The invariance of the likelihood function means that every esti-
mation which is based on the likelihood function gives the same
result using both of the 1st and 2nd trains of thought in every
case. The validity of this invariance does not depend on the
shape of the distribution or the value of the parameter r . In the
engineering practice the chain property of the objects investi-
gated is not obvious, the value of chain parameter r is uncertain
or unknown.

If an estimation method is not invariant then the result de-
pends on our thoughts about the object. Every estimation
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method is subjective in this sense which is not invariant. There-
fore every estimation method is subjective which can not use
the survived lifetimes. The method of moments, the probability
plotting methods (using median ranks) and the linear estima-
tions are subjective. It is strongly recommended to avoid these
methods.

5.3 The dependence of the shape of the distribution on the
chain property
The Weibull distribution type is invariant in the chain prop-

erty. In case of other types the distribution of the chain has
more or less different shape than the distribution of the elements.
Therefore the distribution shape plotted on Fig. 1 may be applied
for the components similar to the aircraft components investi-
gated. For example, the mentioned shape may not be applied
directly for a whole structure containing numerous components.
Before using fatigue data of an other object the chain property of
the objects must be investigated and compared. (The estimation
of a relative chain parameter is easier than an absolute measure.)

5.4 The appearance of the chain property in the case of
Góbé
The wing structure of the Góbé is symmetrical at the structure

level. The main beams and the joint components are symmetri-
cal at the component level also. Therefore there is 4 regions of
type “F”, and 2 regions of type “B”. If these two types of re-
gions are considered equivalent in the resistance against fatigue
then the total number of the equivalent regions are r = 6. In
sense of reliability these regions can be considered as the links
of a chain.

5.5 The uncertainties related to the chain property
The independence of the components of a given aircraft is a

question. The components may be manufactured from the same
material portion at same circumstances. The environmental cir-
cumstances and the main load process are the same for them.
They share a similar “destiny” in the aircraft. In extreme case, if
the correlation between the components of a given aircraft were
very strong then the chain model would not be needed. It would
be the ideally friendly case. The clear chain model is the other
extreme case, the worst. The reality is between these extreme
cases, probably not far from the worst. Other question is that
the distribution plotted on Fig. 1 is valid for symmetrical com-
ponents or not (Saunders gives no information about this ques-
tion). If yes then only the half of the number of links should be
used in the computations. Fortunately our investigations show
that a factor 2 in the parameter r practically does not influence
the results. The uncertainties related to the chain property have
small significance.

6 On the three-parameter Weibull distribution
6.1 Problem with the location parameter
Due to the location parameter T0 introduced the domain of

the three-parameter Weibull (W 3) distribution is parameter de-
pendent. As a consequence the Cramér-Rao relation can not
be applied to the W 3 distribution [9]. A more important prob-
lem arises also: in the practical cases the maximum likelihood
estimation (MLE) often gives an obviously wrong result. The
estimated value of T0 is often the smallest element of the sam-
ple while the estimated shape parameter A < 1. In this case
f (T0) = ∞ and the value of likelihood function is also infin-
ity. In the case of Weibull distribution the monotonic property
of the fatigue failure rate (mentioned in section 3) gives the con-
dition A ≥1. (The exponential type, with its “ageless” property,
is a special case of the Weibull distribution when A = 1.) The
Fig. 2 shows an unreal, degenerated W3 distribution given by
MLE (curve notation is W3 Fmax).

The MLE method of great theoretical significance has a clear
background. The above problem can be considered an imperfec-
tion of the W3 distribution not that of the MLE method. Addi-
tionally, the theoretical and experimental arguments behind W3
are not persuasive [6]. The data published by Saunders and by
Butler and W3 seems incongruent [6]. For description of the
samples of size n<100 the W3 distribution is usable but this can
confirm the reliability of W3 in the probability region 1%...99%
only.

6.2 The application of the expected value principle
An estimator method for the W3 distribution is outlined in

this part, which method is based on the likelihood function and
is near to the MLE method. If the value of parameter T0 is fixed,
then the MLE method determines the other two parameters with-
out problems. The value of the likelihood function L(T0 ,A,B)=
L(T0) can be determined, which is yet the function of T0 only.
On the basis of function L(T0) the expected value of T0 can be
computed. As the part 4.5 shows, the expected value principle
can be applied to the probabilities of fracture. Every distribu-
tion related to the T0 investigated is weighted with the value of
L(T0)when computing the estimated distribution. The result of
this estimation is not a W 3 distribution yet.

7 Results
In this paper the contracted evaluation of fracture regions “F”

and “B” is presented. In this case the Table 1 gives 3 fractures
and 2 survived lifetimes. The survived lifetimes of Table 2 are
taken into consideration also, and the chain parameter used is
r = 6. The Bayesian estimation is performed using the distri-
bution plotted on Fig. 1 and the σ values of the Table 3. The
estimator software used is implemented on the basis of princi-
ples outlined in part 4. The results of the W3 based estima-
tions (see part 6.2) are also given. In case of both distribution
shapes (Fig. 1 and W3) three estimated distribution are plotted
on Fig. 2: the distributions appointed by the expected parameter
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likelihood estimation of W2 distribution is also shown (W2). 

 
 Fig. 2. The estimated fracture probabilities using various estimation meth-

ods, plotted on two coordinate systems. The horizontal straight line indicates
the 5% probability of fracture on both coordinate systems.

values (Fxpp), by the most likely parameter values (Fmax) and
the distribution based on the expected values of fracture proba-
bilities. For comparison, the maximum likelihood estimation of
W2 distribution is also shown (W2).

After computing the results the sensitivity analysis should
be performed for every input data. (In some cases the Bayes
method can be sensitive to the prior information [1]). As a con-
trol, in the case of the Góbé the region „F” should be evaluated
separately and the contracted evaluation of all fracture regions
should be performed using all of the methods presented. The
estimated values of the fracture probabilities give the basis of
the determination of the permitted service life. This decision
making needs the basic principle of game theory: the expected
value of the win should be maximized. But it is not enough to
make the “best” decision under uncertainties. The reliability of
the decision should be investigated properly. If the probability
level of avoiding a “wrong” decision is not high enough then
new information must be acquired unavoidably.

8 Conclusions
The estimation of the extremely low probabilities of frac-

tures is a very difficult task. Therefore all usable information
is needed, beyond the direct data of the sample investigated. For
the reliable solving of the task the systematic acquisition of data
of real service fatigue failures and laboratory tests is necessar-
ily needed in every field of application. The Bayesian approach
is proper for taking into consideration of the prior information
acquired. Instead of the maximum likelihood principle the ex-
pected value principle is to be applied. Instead of estimating of
the distribution parameters, the probabilities of fracture are to

be estimated directly. The estimated distribution in this way in-
volves the uncertainties of the estimation also, not only the mod-
elled natural uncertainties of the fatigue lives. There is no real
hope that a simple theoretical distribution type can be proper
for describing of the service lives up to fracture in the whole
range of probability. When using the three-parameter Weibull
distribution (W 3) the low probabilities are significantly under-
estimated. The error can be reduced when the expected values
of the probabilities of fracture are estimated. This application of
the W 3 distribution can be acceptable only. The two-parameter
Weibull (W 2) distribution itself overestimates the low probabili-
ties. But in the example of Góbé the simple maximum likelihood
estimation (MLE) of W2 distribution gives results very close to
the more advanced Bayes estimation. Therefore when there is
no prior information, the W2 distribution and the MLE method
are suggested, as first orientation even in the case when the esti-
mated W2 distribution seems not fit to the sample in the medial
probability range (P>5%).

For more information or for a free trial copy of the estimator
software developed please contact the author per e-mail.
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