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Abstract

The article presents a velocity estimation algorithm through the wheel encoder-based odometry and wheel circumference identification. 

The motivation of the paper is that a proper model can improve the motion estimation in poor sensor performance cases. For example, 

when the GNSS signals are unavailable, or when the vision-based methods are incorrect due to the insufficient number of features, 

furthermore, when the IMU-based method fails due to the lack of frequent accelerations. In these situations, the wheel encoders can be 

an appropriate choice for state estimation. However, this type of estimation suffers from parameter uncertainty. In the paper, a wheel 

circumference identification is proposed to improve the velocity estimation. The algorithm listens to the incoming sensor measurements 

and estimates the wheel circumferences recursively with a nonlinear least squares method. The experimental results demonstrate that 

with the application of the identified parameters in the wheel odometry model, accurate velocity estimation can be obtained with high 

frequency. Thus, the presented algorithm can improve the motion estimation in the driver assistant functions of autonomous vehicles.
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1 Introduction
In autonomous vehicle functions, vehicle localization and 
motion estimation has become a key question nowadays. 
The results of these estimations are utilized in the tra-
jectory planning layer, such as the design of overtaking 
maneuvers (Németh et al., 2019), and in the vehicle con-
trol layer, e.g. suspension control (Basargan et al., 2020; 
Basargan et al., 2021). Therefore, the as accurate as possi-
ble estimation of the motion signals, such as velocity is an 
important requirement in series-produced vehicles.

The motion estimation of vehicles can be performed by 
several methods using a wide range of sensors, such as cam-
era, LiDAR, GNSS (Global Navigation Satellite System), 
IMU (inertial measurement unit), and wheel encod-
ers. The perception-based methods (Bloesch et al., 2015) 
demand prior teaching, and well recognizable features are 
required (Fazekas et al., 2020a). The fusion of GNSS and 
IMU measurements could be precise in higher velocity 
scenarios, but the method requires the actual knowledge of 
the covariances of signals (Caron et al., 2006). Moreover, 
the IMU-based method fails, when there is a lack of strong 
and frequent accelerations (Funk et al., 2017; Thrun et 
al, 2006). Furthermore, the GNSS signal can be unavailable 
in some cases e.g. in parking garages (Schanz et al., 2003), 

and moreover, the accuracy can be weak in several urban 
areas, e.g. between high-rise buildings in urban areas. In 
these situations, wheel-encoder based odometry may be 
the appropriate choice for vehicle localization (Thrun et 
al., 2006), and also it can be integrated into the state esti-
mation layer to improve the performance. Furthermore, 
this method is the most cost-effective.

In mobile robot applications, encoder-based odometry has 
been a widely used method for a long time (Moutarlier and 
Chatila, 1990). In the automotive industry, this type of 
motion estimation appears with the parking assist func-
tions  (Kochem et al., 2002). Several papers deal with the 
odometry for car-like vehicles but in the case of small 
robots. In (Lemmer et al., 2010), the basic velocity cal-
culation through wheel motion is examined and cali-
brated, (Bohlmann et al., 2012) deals with the calibration of 
a four-wheel-steered small RC car. The effect of kinematic 
parameter calibration is presented and tested on a small car 
in (Jung et al., 2016). In the case of real-sized vehicles, only 
a few studies exist. A comparison of the rear and front axle 
models for parking is presented in (Kochem et al., 2002). 
The possible vehicle models are illustrated in  (Brunker et 
al., 2018), with the scope of wheel slippage and parking. Other 
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works (Brossard and Bonnabel, 2019; Toledo et al., 2018), do 
not apply vehicle models directly but learn them from data.

In this paper, the velocity estimation with the applica-
tion of vehicle odometry models, utilizing wheel-encoder 
measurements is examined. The algorithm does not focus 
on any special case, such as parking, but the general mov-
ing scenario of vehicles is illustrated. Since the accuracy 
of the velocity estimation highly depends on the proper 
wheel parameters, a recursive wheel circumference iden-
tification is proposed. 

The remainder of the paper is organized as follows. 
The  detailed equations of the front- and rear-odometry 
models can be found in Section 2. The identification of 
the nonlinear model parameters with a least squares based 
method is presented in Section 3. The paper deals with sig-
nals of a real series-produced vehicle, the applied measure-
ment environment is explained in Section 4. The results of 
the wheel circumference identification and the velocity esti-
mation are illustrated with experimental tests in Section 5, 
and finally, the paper is concluded in the last Section 6.

2 Vehicle models for the velocity estimation and wheel 
circumference identification
Although the main scope in this paper is the velocity estima-
tion, for the parameter estimation the wheel encoder and the 
pose measurements should be connected. This can be done 
with the wheel odometry model in which the position px,k and 
py,k , and the orientation ψk are calculated, such as in Eq. (1)

p
p

p v
p v

x k

y k

k

x k k k k

y k k

,

,

,

,

cos /

ψ

ψ ω














=

+ ⋅ +( )
+

− − − −

−

1 1 1 1

1

2

−− − −

− −

⋅ +( )
+

















1 1 1

1 1

2sin / ,ψ ω
ψ ω

k k

k k

	 (1)

where vk and ωk are the longitudinal and angular velocities 
of the vehicle. 

The calculation of the velocities is based on the applied 
vehicle model. The well-known models are the two-wheel 
and kinematic bicycle models (Fig. 1), but in this paper, all 
wheels are integrated. The wheel velocities can be com-
puted from those of the vehicle, such as in Eq. (2)

v
v

v
v

i x

i y

,

,

cos

sin

0 0

0

0
















=

⋅ ( )
⋅ ( )
















+












β
β

ω




⋅
















r
r
i x

i y

,

,
,

0

	 (2)

where the vi,x and vi,y ( i={FL, FR, RL, RR}, F: front, R: rear, 
L:R:) are the lateral and longitudinal components of the 
wheel velocities with respect to the vehicle frame, and the 
ri values are the distances between the reference point and 

the center of the wheel. For us, the inverse calculation is 
required, but with the wheel encoder only the velocity com-
ponent in the direction of rotation is measured (this is the 
longitudinal component in the wheel frame). However, this 
can be expressed with the coordinate components of the 
vehicle frame, such as in Eq. (3)

v v vi i x i i y i= ( ) + ( )⋅ ⋅
, ,
cos sin ,δ δ 	 (3)

where vi  denotes the measured wheel velocities, and δi is 
the wheel angle. Based on these, the vehicle velocities can 
be expressed utilizing two wheel velocity measurements 
in the following way:
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The detailed explanation can be found in the appendices 
of (Fazekas, 2019). The distance values are the following: 
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For example in the case of the well-known two-wheel 
model, where only the rear-wheel speeds are applied 
( i1 = RR, i2 = RL):

Fig. 1 Front- and rear odometry models
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due to δRL = δRR = 0. Finally, the ni wheel encoder measure-
ments are inserted, such as:
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where ci is the wheel circumference. These velocities are 
applied in Eq. (1) to calculate the vehicle pose values, and 
the following nonlinear system is resulted:
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where the inputs and the parameters are:
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Utilizing the measurements of the front wheels, the val-
ues can be determined in the same way, but the δFL and δFR 
wheel angles have to be included, since the front axle of 
the vehicles is steered. The values can be calculated based 
on the Ackermann-steering geometry (Scott et al., 2006), 
such as in Eq. (13):
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where δF are the virtual front wheel angles which can be 
computed with the γ  measured steering wheel angle with 
the following polynomial function:
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A possible calibration of the pi parameters is presented 
in (Fazekas et al., 2021a). Thus, there are two separate sys-
tems, fR and fL, and θR and θL, respectively. However, the 
whole parameter calibration method has the same struc-
ture, thus for simplicity, a general f will be used in the rest 
of the paper, and the algorithm is illustrated with the equa-
tions of the rear odometry, Eqs. (4) to (7).

The velocity can be calculated with Eq. (8), but it con-
tains the wheel circumference values as parameters. Since 
these values vary with the tire wear and the load of the 
vehicle, the parameters should be estimated. The pre-
sented odometry model can be improved with a dynamic 

wheel model (Fazekas et al., 2020b), however in the case 
of velocity estimation it has no significant effect, thus 
in this paper the wheel circumference is assumed to be 
constant. The presented odometry model connects these 
parameters and the pose measurements, which are gen-
erally measured with onboard GNSS and IMU sensors in 
modern series-produced vehicles.

3 Parameter identification method
3.1 Estimation with nonlinear least squares
The parameter estimation is handled as a fitting in this paper, 
which can be solved with the least squares (LS) method. 
The minimization problem is formulated, such as Eq. (15):
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where the predictor yk(θ ) is the value of the vehicle model 
at time k, and yk  is the measurement used for the estima-
tion. If the system is linear, yk(θ ) has the form of φ θk ⋅  and 
the optimization is a convex problem, which has a unique 
solution and can be computed in one step (Ljung, 1998). 
However, the consequence of the nonlinear odometry model 
is that nonlinear LS method should be applied. These meth-
ods are numerical search techniques and approximate the 
minimization task of Eq. (15). The applied method handles 
the nonlinearity with the first order Taylor-approximation of 
the predictor (Tangirala, 2014), such as in Eq. (16):
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The approximation results in a locally linear LS problem:
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which can be solved with the basic LS solution, with the 
result as:
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Thus, the new value of the parameter vector is:
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where W is a weight matrix that takes into account the dif-
ferent range of the position measurements in meter and the 
orientation measurements in radian. The J iθ −( )1  matrix is 
formed from the jk iθ −( )1  values, thus this is the Jacobian 
of the predictor yk(θ ), such as:
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In the last term, Y iθ −( )1 ,  and Y  matrices are formed 
from the yk iθ −( )1 ,  and yk  values, respectively. The term 
contains the integrated vehicle model with the previous 
parameters and the residuals are calculated utilizing the 
reference measurements:
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Since the predictor is a dynamic system, the minimization 
task has to be initialized at time k0 with state values of 
time k0, such as:

 y y y f x uk k i k k k i0 0 1 0 0 1 0 1 1
− ( ) = − ( )− − − −θ θ, , . 	 (23)

The possible choice is to apply the reference measure-
ments yk0 1− ,  but its uncertainty can result in unfeasible 
parameter estimation (Fazekas et al., 2021b). The numer-
ical search with this Taylor-approximation is an iterative 
technique, thus the parameter vector has to be initialized 
as well. The nominal values of the circumferences are 
used, which can be found in the vehicle's datasheet.

The iterative estimation runs until the residual decreases 
or the maximum iteration is reached, the final estimated 
values are denoted with θopt .

3.2 The estimation architecture
With the presented estimation method the model is calibrated 
from K input and output values. The value of K is determined 
based on two facts. First, it is clear in a LS fitting that by 
increasing the number of measurement points the effect of 
noise is decreasing. However, the uncertainty in the state ini-
tialization can result in divergence easily in the vehicle path 
and in parallel in the parameter estimation. Thus, the mea-
surement length is chosen for 30  s, which corresponds to 
K = 1200 with a 40 Hz measurement frequency. Furthermore, 
the 30 s results in around 300 m path length, assuming 10 m/s 
average speed, which is realistic in city driving.

The other advantage of the shorter subtraces used for 
the calibration is that further filtering techniques can be 
applied to stabilize the circumference estimation. A basic 
recursive averaging is proposed, in which the Θs denotes 
the actual value of the circumferences, and updated every 
time in the following way when an estimated parameter 
θopt of a separate subtrace is available: 
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s
s s

=
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1 1
1

θ , 	 (24)

where s is the number of subtraces applied. Thus, the pro-
posed calibration method is a moving window estimator. 
The shift between the separate subtrace estimations is 2.5 s. 
The whole calibration architecture can be found in Fig. 2. 
The algorithm listens to the incoming sensor measurements, 
and estimates the wheel circumferences with the nonlin-
ear LS technique in every Δt = 2.5 s based on the last 30 s 
of driving, and the individual subtrace estimations are fil-
tered recursively. The circumference values Θs = [cRL  cRR ] 
(and [cFL  cFR ] in the case of front odometry of course) can 
be used anytime to calculate the velocities of the vehicle. 
Furthermore, the architecture could handle sensor errors 
easily, e.g. when the GNSS signals are unavailable or highly 
uncertain, the recursive filtering is not executed and for the 
velocity or pose calculation the last Θs values are utilized.

3.3 Tuning of the method
The tuning of the method aims to determine the value of 
the weight matrix W, and the stopping conditions, such 
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Fig. 2 Architecture of the parameter identification
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as the maximum iteration number imax and the residual 
decreasing rate parameter υ.

The last is limited by the requirement of the computa-
tion capacity. In our case, υ = 0 is chosen, which means that 
the iterative estimation runs until the residual decreases or 
the maximum iteration is reached. This can be applied, 
because the computation time is not critical in this appli-
cation, since 2.5 seconds are available between two cal-
culations. The maximum iteration should be chosen to 
guarantee the convergence of the iterative LS estimation. 
Several tests demonstrate that the relative change of the 
residual after 3 iterations is below 0.1 %, which verifies 
that the method converges to an optimum.

The determination of the optimal value of the weight  
matrix is more difficult. The matrix is generally included 
in the minimization task Eq. (17), to take the different 
magnitude of the equation noises into account. In the pre-
sented case the positions are measured in meter while 
the orientation in radian, thus the error of the orientation 
equations are significantly lower. Consequently, without 
weighting, the numerical optimization would only try to 
reduce position errors, which means that the circumfer-
ences that resulted in the minimal position error would be 
the optimal values. However, the estimation is based only 
on subtraces and due to the measurement noises, several 
local minimums can exist in a nonlinear dynamic model 
calibration problem (Schoukens and Ljung, 2019).

The aim is to estimate that parameters of the model 
from measurements of a subtrace, which result in min-
imum errors on different subtraces, as well. To guaran-
tee this generalization capability the whole model Eq. (1), 
which defines the connection between the parameters and 
the measurements applied for its calibration, should be 
taken into account. Thus, the form of the weight matrix is:
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Because only the ratio of the weights matters, the only 
tuning parameter is the wψ. The optimal value is difficult 
to obtain since the weights can not be expressed as the 
reciprocals of the sensor measurement noises, because of 
the dynamic model.

Therefore, an experimental tuning is applied. The 
appropriate order of magnitude of weight is calculated by 
test with the nominal setting. The odometry model with 

θnom RL nom RR nomc c=  , ,  parameters was integrated on 
every subtrace, and the ratio of the position and orientation 
errors are calculated such as:
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The values of the subtraces can be found in Fig. 3. 
The mean is 99, but the value is varying significantly, and 
it is the result with the nominal setting, which is applied 
only in the first iteration of the estimations. However, it 
can be seen that the ratios are in a relatively narrow range. 
Therefore, the whole estimation is tested with wψ values 
between 50 and 250, and the optimal setting of the circum-
ferences resulted by wψ  =  173 setting. It is significantly 
higher than the mean of 99, but if we examine the vehi-
cle model Eq. (1), it is evident that an accurate orientation 
value is also essential for low position error.

4 Test vehicle and measurements
The test vehicle was a Nissan Leaf electric compact car 
that is equipped with automotive-grade GNSS and com-
pass. From the vehicle CAN bus the wheel encoder sig-
nals were also saved. The sampling frequency was 40 Hz. 
The vehicle is also equipped with a dual antenna GNSS/
IMU sensor, which contains internal filter algorithms and 
provides absolute velocity signals. This is applied as a ref-
erence to validate our results, and the raw GNSS signal is 
utilized for the calibration.

The test track was a 20 km long route in suburb and city 
driving with full traffic (Fig. 4). The track contained sev-
eral sharp and large curved bends, two roundabouts, and 
lots of crossroads. Because of this various track and traffic 
characteristics, the velocity was varied, the maximum was 
18.72 m/s, the mean was 9 m/s while the standard devia-
tion was 4 m/s.

Fig. 3 Ration of errors in the subtraces
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The odometry model applies kinematic vehicle param-
eters to calculate the pose change from the wheel rota-
tions. The value of these parameters can be obtained from 
the vehicle datasheet. Table 1 shows the numerical values of 
our test vehicle. The nominal value of the circumferences 
is computed by the geometry size of the tire, thus not con-
taining the deformation resulted from the load and the wear.

5 Results
In this section, the results of the estimation are presented. 
First, the estimation method is illustrated in detail on a 
given subtrace, next the estimated circumferences are 
shown on all subtraces, and finally the accuracy of the 
method is validated with the demonstration of the veloc-
ity estimation with the calibrated model. Due to the lin-
earization in the  LS method, initial parameter guess is 
required. For these, the nominal wheel circumference val-
ues are applied.

5.1 The estimation method
The proposed parameter calibration method is illustrated 
with the estimation of the rear wheel circumferences on 
5 separate subtraces. In Figs. 5 and 6, the estimated val-
ues of the iterations can be found in 5 different subtraces. 
The estimated values are stabilized during 3 iterations, 
and the left and right values are close to each other, as 
it is expected. The change in the first iteration is huge, 
which can be explained if we examine the relative resid-
ual decrease in Fig. 7. In the first iteration, the cumulated 
weighted error decreased by 95–99%, while in the  next 
iterations the decrease was only a few percent. This 

illustrates two facts, firstly the uncalibrated model is not 
applicable for the estimation, and secondly the nonlinear 
LS estimation can converge fast. Furthermore, in the last 
two iterations the residual change is almost zero, thus a 
minimum is achieved.

5.2 The estimated circumferences
The final values of the estimated circumferences of all 
subtraces can be found in Figs. 8 and 9. Both the rear and 
front values are varying significantly, which is the conse-
quence of the noisy reference pose measurements used for 
calibration. In our previous paper (Fazekas et al., 2021b), 
the issue is examined in detail and an internal filtering is 
proposed to mitigate the effect of measurement noise. In 

Fig. 4 Path of the vehicle in the experimental test

Table 1 Vehicle parameters of the test car from datasheet

Parameter Value

Nominal wheel 
circumference ci,nom 2 m

Front track width tF 1.539 m

Rear track width tR 1.534 m

Wheelbase l 2.7 m

Fig. 5 Estimated wheel circumference in the iterations 1

Fig. 6 Estimated wheel circumference in the iterations 2

Fig. 7 Relative residual decrease in the iterations
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most cases, the estimated rear and front values are close 
to each other, only in some cases, for example around sub-
trace 410, differ the values from each other significantly.

Because of the high variety of the estimations, a recur-
sive filtering technique Eq. (24) has been proposed. 
The  filtered circumferences can be found in Fig. 10. As 
we can see after the first 150 estimations the values of the 

front circumferences are stabilized in a ±  2  mm range, 
and the rear ones also after 350 estimations. The conver-
gence to the optimum values can be verified also with the 
examination of the standard deviation of the estimations, 
which can be found in Fig. 11. The deviations are maxi-
mized around 12.5 mm, and it is reached after 250 itera-
tions. Thus, it is clear that after 350 estimations, which is 
equal to 8 km, the calibrated model can be applied for the 
motion estimation task. 

The final values of the estimated parameters and their 
uncertainty can be found in Table 2.

5.3 The estimated velocity
The previous figures demonstrate that the estimation 
method converges to a stable optimum. However, in a non-
linear dynamic model, several local optimums exist, thus 
the equality of the parameter values resulted from the esti-
mated optimum and the true ones is always an open ques-
tion in such cases. The validation of the results is performed 
with the comparison to reference velocity signals. Four 
cases are examined, the velocity calculated with the der-
ivation of the GNSS position measurements (GNSS posi-
tion in the following figures), the signals estimated by the 
GNSS sensor based on the Doppler-effect (GNSS veloc-
ity) (Serrano et al., 2014), and the estimated velocity with 

Fig. 8 Estimated wheel circumferences of all segments 1

Fig. 9 Estimated wheel circumferences of all segments 2

Table 2 Estimated parameter values and their standard deviation

Parameter Value Standard dev.

Estimated wheel 
circumference FL cFL = 1.943530 m σFL =12.6 mm

Estimated wheel 
circumference FR cFR = 1.944398 m σFR =12.5 mm

Estimated wheel 
circumference RL cRL = 1.947349 m σRL =13.1 mm

Estimated wheel 
circumference RR cRR = 1.949352 m σRR =13.1 mm

Fig. 10 Estimated circumferences with the recursive filtering

Fig. 11 Standard deviation of the estimated circumferences
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the presented odometry model Eq. (7), with the calibrated 
parameters (odometry front and rear).

Parts of the estimated velocity signals and the reference 
one can be found in Figs. 12 to 15. The Fig. 12 illustrates 

the  main advantage of the wheel-encoder based meth-
ods. The signals computed with the usage of the GNSS 
sensor have significant delay, due to the derivation and 

the low 5 Hz sampling frequency of the sensor. Take into 
account that the delay resulted not only by the 0.2 s time-
step, because the GNSS sensor contains internal optimi-
zation algorithms to determine the outputs. In contrast 
the velocity signals of the odometry models track the ref-
erence one clearly, see Fig. 13.

Furthermore, mainly in the higher speed region, high 
frequency and huge errors appear in the GNSS-based sig-
nals, which can be found in Fig. 14. These may be resulted 
because the radio waves were blocked by buildings and 
were not spread directly in the line-of-sight or a satellite 
became suddenly unavailable. 

In some cases, the wheel encoder based signals have 
higher error, but these mostly appear in the front odometry 
case, see Fig. 15. 

For the illustration of the accuracy of the different meth-
ods, the histograms of the error from the reference signals 
are generated. Figs. 16 and 17 show the histograms of the 
GNSS velocity and the rear odometry cases, respectively. 
The different resolutions of the distributions illustrate the 
advantage of the model-based estimation and the accuracy 

Fig. 12 The estimated velocity signal 1

Fig. 13 The estimated velocity signal 2

Fig. 14 The estimated velocity signal 3

Fig. 15 The estimated velocity signal 4

Fig. 16 Histogram of the velocity error of GNSS
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of the calibration. For comparison, the histograms of the 4 
cases were generated with the same resolution and can be 
found in Fig. 18. The diagram validates the accuracy of the 
calibration, thus the reached optimum should be close to 
the true parameter values. The higher accuracy of the rear 
odometry can be explained by the lower sensitivity to the 
neglected sideslip values. 

The disadvantage is the high-frequency changes in the sig-
nals which could result in unstable behavior if the signal is 
applied in a control loop. This problem can be measured with 
the formulation of the histogram of the error variation which 
is presented in Fig. 19 for the 4 cases. The histogram illus-
trates that the uncertainty of the odometry-based signals are 
3–4 times lower than the GNSS-based ones. Furthermore, 
the sampling frequency is one order of magnitude higher, 
thus in precise control applications, the calibrated odometry 
is a feasible and cost-effective method for velocity estima-
tion. A summary of the 4 methods can be found in Table 3, 
which illustrates that the accuracy of the rear odometry is 

3-4 times higher than the GNSS-based, and the front odom-
etry performs better, as well.

6 Conclusion
In this paper, a velocity estimation algorithm was pre-
sented, which is based on the wheel encoder measure-
ments. Since in the calculation the wheel circumferences 
are applied as parameters, the values are identified with 
a nonlinear least squares method. The algorithm listens 
to the incoming sensor measurements and estimates the 
wheel circumferences recursively from GNSS and IMU 
measurements. The experimental tests demonstrate the 
efficiency of the parameter estimation that results in accu-
rate, and in parallel robust velocity estimation in a cost-ef-
fective way. The proposed method can be applied for the 
motion estimation and localization task in the driver assis-
tance and self-driving functions.

In the future, an integrated state- and parameter esti-
mation algorithm will be developed, with which the accu-
racy of both tasks can be improved.

Fig. 17 Histogram of the velocity error of rear odometry Table 3 Error parameters of the 4 cases

Error GNSS 
position

GNSS 
velocity

Odometry 
rear

Odometry 
front

Min [m] −2.2349 −2.2169 −0.5177 −0.6679

Max [m] 4.5084 2.8475 1.5082 1.5122

Mean (abs.) [m] 0.1888 0.1464 0.0368 0.0766

Std [m] 0.1989 0.1588 0.0612 0.1128

Error variation GNSS 
position

GNSS 
velocity

Odometry 
rear

Odometry 
front

Min [m] −4.3858 −2.3610 −0.6867 −1.0058

Max [m] 4.4540 1.7079 0.4522 0.7325

Mean (abs.) [m] 0.0726 0.0779 0.0173 0.0241

Std [m] 0.1223 0.1148 0.0262 0.0372

Fig. 18 Histogram of the velocity errors

Fig. 19 Histogram of the error variations
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