
Ŕ periodica polytechnica

Transportation Engineering
36/1-2 (2008) 3–8

doi: 10.3311/pp.tr.2008-1-2.01
web: http://www.pp.bme.hu/ tr

c© Periodica Polytechnica 2008

RESEARCH ARTICLE

Server Architecture Development for
On-line Tracking of Large-sized Vehicle
Fleet
Szilárd Aradi

Received 2007-03-03

Abstract
This article describes the structure of a fleet management sys-

tem and its system elements. First, the schematic structure (cen-
tral server and on-board computers) are outlined. Therefore the
details of the communication, operation and the emerged prob-
lems are given. Later the development and testing of the central
server, its software, and the database server are described. Fi-
nally the advantage of the system and the development possibil-
ities are summarized.

Keywords
computer · communication · fleet management system

Szilárd Aradi

Department of Control and Transport Automation, BME, H-1111 Budapest
Bertalan L. u. 2., Hungary
e-mail: szilard.aradi@auto.bme.hu

1 Introduction
Thanks to the rapid development of microelectronics and mo-

bile telecommunications by the end of the 90’s a wider range of
fleet diagnostics and satellite tracking became possible. These
innovations gave a technological background of the creation of
fleet management systems. Economical demand for fleet man-
agement systems strengthened as an effect of the increased com-
petitive situation in passenger and freight transport especially in
road traffic. This effect was strengthened by the increase of traf-
fic density and the intensification of transportation demand in
Europe. One of the social impacts of this increase is an increase
in the number of accidents that intensifies the demand for safer
vehicles.

Spread in on-line fleet management systems was greatly aided
by the constant decrease of communication charges and the in-
crease of speed in data transmission.

For all these reasons in the recent years online fleet manage-
ment systems in traffic spread rapidly.

Its advantages are the followings:

• a greater safety in delivery,

• aiding dynamic freight arrangement,

• constant tracking of the mechanical condition of the vehicles,

• easier documentation,

• aiding efficiency wages,

• developing safety of traffic,

• developing safety of freight,

• increased environmental protection.

This article presents the structure and elements of an online fleet
management system, with a special regard on the invention of a
server system of a higher reliability.

2 System structure
General construction of online fleet management systems are

demonstrated on Fig. 1. The three main features are:

• on-board computer,

Server Architecture Development for On-line Tracking of Large-sized Vehicle Fleet 32008 36 1-2

http://www.pp.bme.hu/tr


• central server,

• user computers.

The operation of the system is the following. The board in-
struments on the vehicle measure the operational parameters of
the vehicle (state of the switches, energy consumption, motor
parameters, etc.), and its position (aided by GPS based location),
and they store the data given by the vehicle (the name of the ac-
tual activity, etc.). These parameters are sent to a central server
at the actualization of previously defined events (alarm-signal,
sudden decrease in fuel level, etc.) and in previously defined
periods of time.

On-board computers communicate with the central server
through mobile systems. The incoming data are evaluated and
stored in a database. If necessary the central server can send an
alarm to a given e-mail address or even a mobile phone. In this
structure communication from the server towards the vehicle is
plausible as well. Aided by this the incoming data packages can
be confirmed, a written message can be sent to the driver and the
parameters of the board unit can be set.

Vehicles are detectable and observable almost constantly (on-
line) and the operating parameters (running performance of ve-
hicles, energy consumption, activities and work time of drivers,
delivery performance) can be followed by a later evaluation of
data stored in the centre (offline).

3 On-board unit (OBU)
In the building of the on-board unit important aspects are a

heavy-duty design (EMC protection, shake protection, fluctua-
tion of environmental temperature, etc.) and modularity. There-
fore one should use a system that is built up of individual units.
The connection of these by a series communication connection
is worth realizing for the sake of simplicity and easy expansion.
For this the most appropriate is the Controller Area Network
(CAN) bus system.

Board unit is made up of the following main units:

• GSM/GPS module,

• central unit,

• incoming unit,

• human interface device,

• diagnostic adapter,

• CAN bus,

• power supply unit and background batteries.

4 Communication
The communication system can be built up by OSI model as

shown on Table 1.
The connection point between the OBU-s and the server is the

session layer (UDP or TCP socket).

The first step is the determination of the session layer’s pro-
tocol. There are a few key features that set TCP apart from User
Datagram Protocol:

• Ordered data transfer,

• Retransmission of lost packets,

• Discarding duplicate packets,

• Error-free data transfer,

• Congestion/Flow control.

In the data block of TCP packet there must be built up a record
structure (Table 2), which contains the vehicle data.

The record can contain BCD (Binary Coded Decimal) char-
acters for numbers, and ASCII (American Standard Code for
Information Interchange) characters for letters.

5 Central server
5.1 Tasks
The main tasks of the central server are:

• data receiving from the vehicles,

• piggybacking to the vehicles,

• identification of drivers,

• inserting data to the SQL database,

• sending alert, if necessary,

• setting the parameters of OBU-s,

• remote diagnostic handling

• software update.

5.2 Challenges
A computer of decent performance should be enough for deal-

ing with the tasks of communication, because of the simple kind
of raw data arriving from the vehicles, not larger than about 100
bytes/client. This amount of data can not cause any problem
even in case of thousands of clients. On the other hand it is
necessary to handle the clients carefully to avoid data loss. The
bottleneck of such application is the database server, because of
the enormous size of the tables and the amount of queries indi-
cates the use of a powerful hardware.

For example let us consider 1000 vehicles and a 30 seconds
data sending period:

1000 ×
60
0.5

× 24 = 2880000
messages

day

By calculating with messages of 100 bytes, the overall storage
size is only:

2880000 × 100
10242 � 275

Mb
day

, but

2880000
rows
day

are inserted into SQL table.

Per. Pol. Transp. Eng.4 Szilárd Aradi



Fig. 1. System structure

Tab. 1. Architecture of communication system
OSI model Used protocol or ser-

vice

Implementation in

OBU

Implementation in

central server

Physical layer GSM 100BASE-TX

Data link layer GPRS GSM modem Ethernet

Network layer Internet Protocol (IP) Operating system

Transport layer Transmission Control

Protocol (TCP) or

Universal Datagram

Protocol (UDP)

TCP stack in GSM mo-

dem or

microcontroller’s soft-

ware

TCP or UDP server

class (Server software)

Session layer TCP socket or UDP

socket

Client thread (Server

software)

Presentation

layer

Data exchange with

pre-defined records

Microcontroller’s

software

Client thread and SQL

thread

(Server software)

Application

layer

SQL server – SQL server (Oracle)

Tab. 2. Structure of the record
Start Data type ID, Event

ID

Ordinal number of

record, Length

Vehicle ID, Driver ID Date and Time

GPS data Digital signals

(switches, CAN

data)

Analogue signals

(fuel quantity, engine

speed, temperature

etc.)

Activity data End

Server Architecture Development for On-line Tracking of Large-sized Vehicle Fleet 52008 36 1-2



The number of the rows depends on the structure of the data
record (see Section 4).

The example shows, that the size of the table grows dynam-
ically. In an ordinary database, one INSERT statement runs
for each new data-row. The user applications execute a lot of
queries on the received data, as a result of the on-line vehicle
following. These properties raise more problems:

• a lot of INSERT statement cause a large load

• the queries are slow,

• because of the load caused by queries, a timeout error may
occur by the INSERT statement.

The identification of the drivers may cause further load.

5.3 Development of the server application
Considering the above mentioned problems, a Win32 server

application was developed with the Borland Developer Studio
2006, Turbo Delphi for .NET rapid application developer.

The database server is an Oracle 10g SQL server, which runs
on an older computer with an Intel Pentium 4 1.6 GHz proces-
sor, 768 Mb RAM, enough HDD space, and Windows XP Pro-
fessional SP2.

The communication runs on a self-made protocol based on
TCP. The data record contains only BCD and ASCII bytes, ex-
cept the start and stop bytes. It makes the syntactic and semantic
checks easier, and reduces the cost of the data transmission. The
record also contains an internal 16 bits checksum.

The application works with more simultaneous threads. The
threads used in the software are the following:

• Central server thread for listening socket (ServerThread)

• Client threads for each clients (ClientThread)

• Database threads (SQLThread)

The base functionality of the application is the following. At
the starting of the program the ServerThread (TThread class)
creates the Server object as an instance of the TTcpServer class.
The ServerThread is listening continuously on a specified port
by the Server object. If an incoming connection occurs, the
ServerThread creates a ClientThread entity (TThread class),
which takes over the handling of the connection. The Client-
Thread communicates by the Client object which is an instance
of the TTcpClient class. The ClientThread is the most complex
part of the software. It has to deal with the following tasks:

• data receiving

• data checks (syntactic, semantic, checksum)

• data conversion and passing to the SQLThread

• piggybacking to the clients

• identification of the drivers

• sending the parameters of the OBU

The SQLThread is also an instance of the TThread class. The
.NET assembly of the Oracle Client 10g is used for connecting
to the Oracle database server and running PL/SQL commands.
The tasks of the SQLThread are keeping the database connec-
tion, inserting the data into a table (OBU_Table), and querying
the driver’s ID and the OBU’s parameters. In section 5 it was ap-
pointed, that the huge number of INSERT statements may over-
load the database server. To avoid it, a stored procedure, named
OBU_InsertProc was created by the following scheme:

CREATE OR REPLACE PROCEDURE
"TEST"."OBU_INSERTPROC" (PNumber1 NUMBER, . .
., PNumberN NUMBER, PString1 VARCHAR2, . . ., PStringN
VARCHAR2)

BEGIN
INSERT INTO "TEST"."OBU_TABLE" (FNumber1, . .

.,FNumberN, FString1, . . . ,FStringN) VALUES (PNumber1, .

. ., PNumberN, PString1, . . ., PStringN);
END
Where the FNumberN shows the NUMBER(x,y) type fields

and the FStringN shows the VARCAHR2(x) type fields in the
OBU_Table. With this procedure the data inserting is more ef-
fective, because the Oracle Client’s OracleCommand class sup-
ports the use of so-called “bind variables” meaning, that the
stored procedure can accept also arrays as input parameters, if
the required properties (CommandType, ArrayBindCount etc.)
of the class are properly configured. With this method, it is
avoidable to insert the records one by one, but several records
can be collected to one array and handed it over to the stored
procedure. The filling up of the OBU_Table is more effective
and faster with this solution.

The other problem is the slowness of the queries because
of the huge size of the OBU_Table. The solution is that the
OBU_Table contains only the data of one day (24 hour). The
other part of the data can be sorted by a vehicle property or date,
and it can be stored in other tables or databases. If the GPS data
(necessary for on-line vehicle following) is continuously copied
to another table, the effectiveness will increase. An SQL trigger
is the most suitable for this task. It must run after insert on each
new row. The following trigger was created:

CREATE OR REPLACE TRIGGER GPS2TOPO_TABLE
AFTER INSERT ON "TEST"."OBU_TABLE" FOR EACH

ROW
DECLARE
BEGIN
END
It refreshes the GPS data for each vehicle in a table called

TOPO_Table. TOPO_Table contains only one row for each
vehicle and field of driver ID is indexed. So the queries
of topographic applications run faster and does not load the
OBU_Table.

Per. Pol. Transp. Eng.6 Szilárd Aradi



Fig. 2. System structure

Fig. 3. Test system

6 Testing
The server application was tested by a simulator, which is

developed specially for this work. This application can simulate
a predefined number of clients and it can communicate with the
protocol used by the server. The period of data sending, the
size of the data record and the distribution of the load can be
configured. The simulator saves all of the sent data for each
simulated clients to files, so the test results can be evaluated by
comparing the sent data with the OBU_Table.

The test system was built as seen on Fig. 3. The server appli-
cation and the test software run on two separate computers with
the same hardware configuration: Intel Pentium M 1.8 GHz pro-
cessor and 512 Mb RAM, Windows XP Professional SP2. The
specification of the database server can be read in the Section
5.3

In this phase of the development two case studies were com-
pleted. The first test was accomplished with the following pa-
rameters:

• 200 clients,

• 100 byte data record

• 20 field OBU_Table

• 5 s data sending period for each clients,

• normal data records,

• 24 hours testing time.

During the test:
1
5 × 602

× 24 × 200 = 3456000 rows were inserted.
During the evaluation of the test results, it has been proven,

that the 100% of data got into the OBU_Table.
The second one was a worst-case test. The assumption of this

test is that the largest load occurs after a long time server shut-
down (for example by a hardware error or maintenance). In this
case all of the clients are sending their data stored in the memory
of the OBU continuously, so that the normal functionality of the

system can be restored as soon as possible. The parameters of
the test were the following:

• 200 clients,

• 100 bytes data record

• 20 field OBU_Table

• 5 s data sending period at normal mode,

• continuous data sending after server start

• normal data records

• 2 hours server shutdown

The test executed as long as all of the data (theoretically col-
lected during 2 hours) were got into the database. During the
test all of the clients were needed to send

1
5 × 602

= 720 messages, so
720×200 = 144000 rows were inserted into the OBU_Table.
The data received the database in 9 minutes without any data

loss.
Also the performance test log file of the Oracle server was

appraised at the end. It showed that the triggers and stored pro-
cedures worked normally, only the CPU and memory usage was
at critical level, and the usage of pagefile became increasingly
frequent. However it was prospective because of the database
server’s hardware configuration.

One must take into account that the client bandwidth (100
Mbit / 200 clients) was much larger, than a GPRS connection’s
maximal bandwidth, which indicated a much larger load in the
second test case, than in practice.

Finally these tests indicated that the basic principles of such
application are suitable. In accordance with the server applica-
tion’s average CPU and memory usage it can be stated that there
is a lot of reserve in the software.

Server Architecture Development for On-line Tracking of Large-sized Vehicle Fleet 72008 36 1-2



7 Summary
The article presented the theoretical structure of an on-line

fleet management system containing a huge number of vehicles.
A general purposed server system was developed, able to satisfy
the claims of any on-line fleet management system. The system
was designed for a fleet containing 1000 vehicles. Also an OBU
simulator software was developed for testing the server. The
results of the test are promising. The tests also show that the de-
signing, managing, and maintaining of the database server needs
a lot of consideration.

But on the other hand, more tests will be necessary in the
future. The more real-like simulation and emulation, and the in-
crease of the number of clients are necessary. A well-configured
and more powerful hardware based database server will have to
be built. The simulation of the queries of the user applications
is also important.

References
1 Scientific Association for Infocommunications: Telecommunication Networks

and Informatics Services, available at http://www.hte.hu. On-line book.
2 Aradi Sz, Telemonitoring System with Locomotive On-Board Computer,

Hungarian Rail Technology Journal (2007), no. 1, 27-28.
3 Oracle Database Express Edition 10g Release 2 (10.2) Documentation Li-

brary, available at http://www.oracle.com/pls/xe102/.
4 Tóth B, Tamás P, Programozzunk Turbo Delphi rendszerben!, Computer-

books, 2007.
5 Microsoft .NET Framework Documentation, .NET Framework Developer

Center, available at http://msdn2.microsoft.com/en-us/library/
aa139615.aspx.

Per. Pol. Transp. Eng.8 Szilárd Aradi

http://www.hte.hu
http://www.oracle.com/pls/xe102/
http://msdn2.microsoft.com/en-us/library/aa139615.aspx
http://msdn2.microsoft.com/en-us/library/aa139615.aspx

	Introduction
	System structure
	On-board unit (OBU)
	Communication
	Central server
	Tasks
	Challenges
	Development of the server application

	Testing
	Summary

