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Abstract
The problem of modelling the complex behaviour of freeway

flow leads to a nonlinear macroscopic model. Unfortunately,
high dimensional non-linear characteristics could not be per-
formed easily. The paper’s purpose is to introduce a new, gen-
eral modelling formalism for freeway traffic flow modelling, re-
spectively control. Linear Parameter Varying (LPV) systems
represent a numerically tractable class of complex non-linear
systems. The main idea is to derive some arbitrary, time de-
pendent parameters by capturing the nonlinearities in the sys-
tem. Even if the transformation of the full nonlinear model to
affine and quasi Linear Parameter Varying (qLPV) system is not
unique, an appropriate qLPV model is presented and a com-
putationally low demanding form is given. More, the paper
investigates the problem of selecting the adequate scheduling
variables, endogenous parameters and some linear approxima-
tions giving a novel way to describe freeway traffic systems. An
important aspect of the model selection is the feasibility of the
resulted system throughout the controller and observer design.
The paper describes the problem of quadratic stabilizability and
detectability for LPV flow models. The Linear Matrix Inequality
(LMI) conditions are developed to verify these important prop-
erties. Finally, a numeric example suggests the application of
the LPV structure for a general freeway section with on- and
off-ramps. The comparison of the simulation response of the
non-linear and the derived nominal LPV model has also been
investigated.
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1 Introduction
One of the most progressing research area in traffic modelling

is the theory of freeway traffic flow. There is a high demand
on creating the most accurate set of models describing the real
traffic.

A possible macroscopic technique is based on the analogy
between the traffic flow and the streaming fluids or gases. How-
ever, the generalized density, speed and traffic volume are com-
monly used variables, the analogy is not valid for certain specific
case. The basic correlation between the traffic variables is de-
scribed by the well-known fundamental diagram. After Lighthill
and Whitham [6, 14] formulated, the theory of kinematic waves
were also adapted for freeways. Taking traffic waves into ac-
count, the freeway flow model can be extended to a second or-
der macroscopic model. Due to the wave’s dynamic, the traffic
flow becomes highly nonlinear and complex. The complexity
is increased by the segmentation of a freeway therefore a large
scale system needs to be considered.

Modern control theory offers the opportunity to handle high-
way traffic models (and also other road traffic systems [9]) as dy-
namic systems. Introducing the time dependent freeway model,
a more and more complex and liable description is given. Mod-
ern, respectively postmodern techniques therefore introduce the
states of a freeway dynamical system. The dynamic state equa-
tion formulates how the system evolves in time. The state equa-
tions describe the variation of the actual states based on the given
inputs to the system. Two important questions are arising with
respect to the application in freeway traffic. First, the observa-
tion of the not measured variables and second, the control of the
main flow with variable speed limits and ramp metering. The
traffic modelling literature is large enough and contains several
solutions for traffic analysis and synthesis [2, 6, 11, 12, 14, 16].

The control objective on freeways could be stated as keeping
the main flow volume near to the maximal capacity of the given
stretch. Based on the fundamental diagram, this is equivalent to
keep the density of the stretch around its critical value. Since
the problem is formulated with nonlinear equations, there is a
need for the application of nonlinear control techniques. De-
note, linear controller can also be used to assure the control per-
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formance. Unlike the nonlinear freeway control theory, linear
control system design is elaborated [11]. While the nonlinear
formalism is used to describe global behaviour, linear systems
are applied only to reflect local characteristics around a given
operation point. Linearising or simplifying the complete nonlin-
ear plant always leads to loose certain and sometimes important
information. Hence, there is a trade-off between the accurate
model description and the simplicity of the controller. Since, the
final goal is always to achieve an optimal performance level with
the appropriate control algorithm, the realization of the closed-
loop system needs to be taken into consideration.

As previously it was mentioned, the first part of the freeway
model analysis and synthesis is the observation of the real flow.
The problem is stated in a linear or in a nonlinear way. The state
estimation of non-linear systems is an existing problem. The
estimation technique of the Extended Kalman Filter (EKF) is
widely applied [4, 12, 16] in the industry. The EKF is based on
the linearisation of the nonlinear system around the given opera-
tion point depending on the state trajectory. The convergence of
the estimation has been investigated and it has been showed that
EKF gives a suboptimal solution of the filtering problem. Even
if the convergence of the EKF is not guaranteed, it is often used
as a "nonlinear" observer. State estimation on freeways could
multiple the available set of traffic information, by estimating
the non-measured variables.

There is a permanent need to control the motorway traffic in
order to avoid traffic jams respectively increase the safety level
of a given section. Two main possibilities are applied to di-
rectly influence freeways traffic. First, the ramp metering, i.e the
freeway on-ramp flow is controlled by signalling. On the other
hand, the display of different speed limits throughout Variable
Massage Sings (VMS). Traffic control synthesis is based on the
results of control engineering [5, 7, 10, 11, 18].

In recent years, a promising approach for nonlinear control
theory is certainly the Linear Parameter Varying (LPV) formal-
ism in state space [1, 8, 13, 15, 17]. The LPV class is a specific
formulation of the nonlinear systems using measured, computed
or estimated parameters. Parameter dependency is given un-
der the time (parameter) dependent variation of the coefficient
matrices. The linear represents the casual structure of the dy-
namic problem in state space where the dynamic and the output
equations are the linear combination of the states and the in-
puts. The LPV description preserves the linear time invariant
(LTI) structure, the only difference stays at the computation of
the coefficients. The parameter vector is a continuously time-
dependent known function. It has been shown that non-linear
systems could be cast into an LPV form by several ways. There-
fore, the LPV model is not unique. In the particular case when
the parameter vector coincides (partially or entirely) with the
state vector the system is called quasi Linear Parameter Varying
(qLPV) system.

The goal of the paper is the development of a control-oriented
LPV model of freeway flow. This model should contain the

complex behaviour of traffic flow and should be able to repro-
duce traffic phenomenons. Moreover the LPV structure will
make it possible to apply the LPV design methodology which
is an effective way to control and observe non-linear systems.

The paper is divided into 5 sections. After the introduc-
tory section, in the problem statement part, the paper de-
scribes briefly the freeway traffic model and formulates the prob-
lem. The forthcoming part presents the proposed solution for
parameter-dependent modelling of the freeway flow. Analytic
questions are answered in the next section. Finally simulation
results illustrate the accuracy of the qLPV model.

2 Problem statement – freeway models
Recent traffic researches are mainly based on the second or-

der macroscopic traffic flow model [5, 7, 16]. This model uses
aggregated traffic variables, such as traffic density, space mean
speed and traffic flow to describe freeway flow. Fig. 1 illustrates
a freeway stretch.

1st segment i-th segment N-th segment

s1 r1 si ri sN rN

∆1 ∆i ∆N

ρ1 v1 ρi vi ρΝ vN

q1 qi qN

Figure 1: Freeway division and traffic variables

• si(k) denotes the off ramp flow of the i -th segment at time step k
[

veh
h

]

• ri(k) denotes the on ramp flow of the i -th segment at time step k
[

veh
h

]

After introducing these variables, the nonlinear difference equations of the second-order macroscopic
traffic flow model for a segment i are written by:

ρi(k + 1) = ρi(k) +
T

∆in
[qi−1(k)− qi(k)] +

T

∆in
[ri(k)− si(k)] (1)

si(k) = βi(k) · qi−1(k) (2)

vi(k + 1) = vi(k) +
T

τ
[V (ρi(k))− vi(k)] +

T

∆i
vi(k) [vi−1(k)− vi(k)]

− ν

τ

T

∆i

ρi+1 − ρi(k)
ρi(k) + κ

− δT

τ∆i

ri(k)vi(k)
ρi(k) + κ

+ ξv
i (k) (3)

V (ρ) = vfexp

[
−1

a

(
ρ

ρcr

)a]
(4)

qi(k) = ρi(k) · vi(k) · n + ξq
i (k) (5)

where T denotes the sample time, n is the number of lanes and a, vf , ρcr, κ, τ , δ, ν are additional
constant parameters. The macroscopic model was shown to work accurately with segment lengths in
the order of 500 meters (or less) [2]. Longer sections could be built up by the interconnection of several
segments through the boundary relations (i.e. ρi+1, vi−1). The second order macroscopic model is used
as a basis of different problems regarding the freeway control and surveillance.

The most challenging problem in freeway control engineering is the state (density, speed and volume)
observation. Special inductive loop-detectors are installed at distinct locations (usually 4-5 kilometers
far from each other) in a freeway’s pavement, not in the entire stretch of freeway. These detectors collect
traffic data from a single point i.e. no information is available between their installation points. Using
the dynamical equations of freeway flow and the theory of state estimation one could design a freeway
estimator which filters out the measurement and process noises and gives a suboptimal estimation of the
traffic variables between detector stations. This technique multiplies the available set of data, and this
additional information could be used for better freeway control and incident detection.

3 Derivation of the qLPV model

The analysis and synthesis of complex systems require complex mathematical techniques. Complex
usually covers the nonlinear effect and the large number of state variables. Parameter dependent models
have been motivated by the simplification of the analytic and control design properties.

Let us define the following continuous time, nonlinear and input affine state space model under the
form of a Linear Parameter Varying (LPV) system

[
ẋ(t)
y(t)

]
=

[
A(p(t)) B(p(t))
C(p(t)) D(p(t))

] [
x(t)
u(t)

]
(6)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the control input vector, y(t) ∈ Rny is the measured
output vector and p ∈ P is the parameter vector over a given compact set P. A,B, C and D are parameter
varying coefficient matrices with the appropriate dimensions.

3

Fig. 1. Freeway division and traffic variables

Due to the complex behaviour, the model is discretized in
space; the stretch is subdivided into N segments with length
1i , i = 1 . . . N and each segment is given by its traffic variables
denoted by the subscript as follows:

ρi(k) denotes the density of the i-th segment at time
step k

[
veh
km

]
vi(k) denotes the space-mean speed of the i-th segment

at time step k
[ km

h

]
qi(k) denotes the traffic flow leaving the i-th segment

at time step k
[

veh
h

]
si (k) denotes the off ramp flow of the i-th segment at

time step k
[

veh
h

]
ri (k) denotes the on ramp flow of the i-th segment at

time step k
[

veh
h

]
After introducing these variables, the nonlinear difference
equations of the second-order macroscopic traffic flow model
for a segment i are written by:

ρi (k + 1) = ρi (k) +
T

1i n

[
qi−1(k) − qi (k)

]
+

T
1i n

[ri (k) − si (k)] (1)
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si (k) = βi (k) · qi−1(k) (2)

vi (k + 1) = vi (k) +
T
τ [V (ρi (k)) − vi (k)] +

T
1i

vi (k)
[
vi−1(k) − vi (k)

]
−

ν
τ

T
1i

ρi+1−ρi (k)
ρi (k)+κ −

δT
τ1i

ri (k)vi (k)
ρi (k)+κ + ξv

i (k) (3)

V (ρ) = v f exp
[
−

1
a

(
ρ

ρcr

)a]
(4)

qi (k) = ρi (k) · vi (k) · n + ξ
q
i (k) (5)

where T denotes the sample time, n is the number of lanes and
a, v f , ρcr , κ , τ , δ, ν are additional constant parameters. The
macroscopic model was shown to work accurately with seg-
ment lengths in the order of 500 meters (or less) [2]. Longer
sections could be built up by the interconnection of several seg-
ments through the boundary relations (i.e. ρi+1, vi−1). The
second order macroscopic model is used as a basis of different
problems regarding the freeway control and surveillance.

The most challenging problem in freeway control engineering
is the state (density, speed and volume) observation. Special in-
ductive loop-detectors are installed at distinct locations (usually
4-5 kilometers far from each other) in a freeway’s pavement, not
in the entire stretch of freeway. These detectors collect traffic
data from a single point i.e. no information is available between
their installation points. Using the dynamical equations of free-
way flow and the theory of state estimation one could design a
freeway estimator which filters out the measurement and process
noises and gives a suboptimal estimation of the traffic variables
between detector stations. This technique multiplies the avail-
able set of data, and this additional information could be used
for better freeway control and incident detection.

3 Derivation of the qLPV model
The analysis and synthesis of complex systems require com-

plex mathematical techniques. Complex usually covers the non-
linear effect and the large number of state variables. Parameter-
dependent models have been motivated by the simplification of
the analytic and control design properties.

Let us define the following continuous time, nonlinear and
input affine state space model under the form of a Linear Param-
eter Varying (LPV) system

[
ẋ(t)
y(t)

]
=

[
A(p(t)) B(p(t))
C(p(t)) D(p(t))

] [
x(t)
u(t)

]
(6)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the control in-
put vector, y(t) ∈ Rny is the measured output vector and p ∈ P
is the parameter vector over a given compact set P . A, B, C and
D are parameter varying coefficient matrices with the appropri-
ate dimensions.

Two alternate classes of the parameters exist. Exogenous and
endogenous variables can be defined. With the use of exogenous
parameters the dynamic evolution of the nonlinearities occurring
in the system can be hidden by replacing them with a variable.

The value of the exogenous parameter needs to be known by
measurements, computation or estimation. The entire trajectory
of p(t) ∈ FP is not known, though the value of p(t) must be
available at the given time τ , and hence a system might be re-
evaluated at Aτ , Bτ , Cτ , Dτ .

Quasi linear parameter-varying (qLPV) systems are applied
whenever any of the scheduling parameters becomes a state of
the system as well. By definition, the actual value of the pa-
rameter is required to the computation of the coefficient of the
equation of motion. The selection of quasi LPV model is not
unique. Hence, the (quasi) parameter-dependent approach pro-
vides a certain modelling flexibility.

The affinity of the parameter dependent description gives a
special class of LPV system:

A(p(t)) = A0 + p1(t)A1 + p2(t)A2 + ... + pN (t)AN (7)

B(p(t)) = B0 + p1(t)B1 + p2(t)B2 + ... + pN (t)BN (8)

C(p(t)) = C0 + p1(t)C1 + p2(t)C2 + ... + pN (t)CN (9)

D(p(t)) = D0 + p1(t)D1 + p2(t)D2 + ... + pN (t)DN .(10)

Eqs. (7)-(10) formulate the linear dependency of the coeffi-
cient matrices on the element of the parameter vector p. The
resulted parameter-dependent matrix is given by the linear com-
bination of the parameters pi , i = 1..n.

Apart the affine (quasi or not) LPV approach, the polytope
method is a general way to describe parameter-dependent sys-
tems. The polytope LPV model is a set of linear time invariant
plants over a predefined parameter envelope. The linear plants
cover a polytope. Exact linear model information is only avail-
able at the distinct point of polytope, at the grid points of the
parameter envelope. In between the grid points, linear interpo-
lation subjected to the given parameters is applied to compute
the model.

Model nonlinearities in the second order macroscopic free-
way model arise in several forms. Equations contain exponen-
tial relations between states (V (ρi )), multiplication of states
(i.e.ρi · vi ) and also dividing with states

(
vi

ρi +κ

)
.

In order to handle these nonlinearities one may first reformu-
late the basic density-speed relation as:

V (ρ) = v f

[
1 −

ρ

ρop

]
(11)

where ρop is the traffic density value corresponding to the scope
of freeway control. The Fig. 2. shows this linear approximation
of the fundamental equation. First order curve is fitted on a set of
measurement, similar as Greenshields suggested. Data had been
collected on a 4.5 km long highway section(M3) in Hungary.
The linear approximation is valid only up to a given density (50
veh/km).

Note that the transformation:

f (x) = A(x)x, A(x) =

∫ 1

0

∂ f (λx)

∂λx
dλ (12)
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Figure 2: The nonlinear and the fitted linear fundamental relationship

Clearly the first 2N coordinate of the scheduling vector correspond to the states, and the remaining m
coordinates correspond to the control inputs. With this chose, the state matrices are:

A(p(k)) = A0 +
2N∑

j=1

pj(k)Aj ∈ R2N×2N , A0 =




1 0 . . . . . . 0
− vf

ρop
1− T

τ 0 . . . 0
... − vf

ρop

. . . 0
0 1 0
0 − vf

ρop
1− T

τ




A2i−1 =




0 . . . 0 . . . 0

0
. . . . . . 0

... . . . − T
∆ 0

0 T
∆ 0 T

∆ 0
... 0 T

∆ (1− β) 0
. . . 0

... 0 0
0 . . . . . . 0




, A2i =




0 . . . 0 . . . 0

0
. . . . . . 0

... . . . νT
τ∆ 0 − νT

τ∆ 0
...

. . . 0
0 . . . . . . 0




B(p(k)) = B0 +
2N+m∑

j=2N+1

pj(k)Bj ∈ R2N×m, B0 =




T
∆n . . . 0

0
. . . 0
0 T

∆n
0 0 0
...

...
...

0 0 0




, Bj =




0 . . . 0

0
. . . 0
0 δT

∆τ 0

0
. . .

...
... 0

0 0 0 0




The vector of measured disturbance (could be take into consideration in controller design):

W ∈ R2N×1, W =




q0

v0 + vf

0
vf

0
...

0
ρN+1 + vf




5

Fig. 2. The nonlinear and the fitted linear fundamental relationship

does not work in this case because f (0) , 0, so the exact fac-
torization could not be performed.

After this modification the scheduling parameters could be
chosen to include the nonlinearities as follows p1i = vi , i.e.
the space mean speed of each segment, p2i =

1
ρi +κ and finally

p3i =
vi

ρi +κ .
Then a freeway stretch with N segments could be thought as

an affine qLPV system with the following state variables:

x =

[
ρ1 v1 . . . ρi vi . . . ρN vN

]T
∈ R2N (13)

The control inputs are the merging flow of segments with on-
ramps:

u =

[
r1 . . . ri . . . rN

]T
∈ Rm (14)

The scheduling parameter vector is partitioned as follows:

p =

[
v1

1
ρ1+κ . . . vi

1
ρi +κ . . . vN

1
ρN +κ

v1
ρ1+κ . . .

vi
ρi +κ . . . vN

ρN +κ

]T
∈ R2N+m (15)

Clearly the first 2N co-ordinate of the scheduling vector corre-
sponds to the states, and the remaining m co-ordinates corre-
spond to the control inputs. With this chose, the state matrices
are:

A(p(k)) = A0 +

2N∑
j=1

p j (k)A j ∈ R2N×2N ,

A0 =



1 0 . . . . . . 0
−

v f
ρop

1 −
T
τ 0 . . . 0

... −
v f
ρop

. . . 0

0 1 0
0 −

v f
ρop

1 −
T
τ



A2i−1 =



0 . . . 0 . . . 0

0
. . . . . . 0

... . . . −
T
1 0

0 T
1 0 T

1 0
... 0 T

1 (1 − β) 0
. . . 0

... 0 0
0 . . . . . . 0


,

A2i =



0 . . . 0 . . . 0

0
. . . . . . 0

... . . . νT
τ1 0 −

νT
τ1 0

...
. . . 0

0 . . . . . . 0



B(p(k)) = B0 +

2N+m∑
j=2N+1

p j (k)B j ∈ R2N×m,

B0 =



T
1n . . . 0

0
. . . 0
0 T

1n
0 0 0
...

...
...

0 0 0


, B j =



0 . . . 0

0
. . . 0
0 δT

1τ 0

0
. . .

...
... 0

0 0 0 0


The vector of measured disturbance (could be taken into con-

sideration in controller design):

W ∈ R2N×1, W =



q0

v0 + v f

0
v f

0
...

0
ρN+1 + v f


4 Quadratic stability
This section shows the advantages of the LPV formalism with

respect to traffic flow modelling and control.
Before designing a state feedback for control purposes one

has to satisfy the stabilizability criteria. Moreover, the dual pre-
condition of the state estimator is the detectability that needs to
be fulfilled. The stabilizability and detectability check in linear
case can be solved by computing and validating Kalman’s rank
conditions. If the system is non-linear, the equivalent controlla-
bility and observability distributions are often hard to compute
especially for higher dimensions. One of the main advantage of
LPV systems is the simplicity of the above analytic propeties.
The notion of quadratic stabilizability and quadratic detectabil-
ity is known [15, 17]. Just a brief traffic-oriented overview is
given in the sequel for highway flow modelling purpose.
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The scheduling parameter p (k) is an 2N + m dimensional
parameter vector, which takes its value from the parameter set
P ⊆ R2N+m .

Each parameter co-ordinate allowed to vary in a convex set:
pi ∈

[
pmin

i , pmax
i

]
. Then the P set is defined by:

P =

{
p, pi ∈

[
pmin

i , pmax
i

]
for all i

}
,P = conv (P0)

where P0 denotes the vertices of P .
The selection of a single Lyapunov candidate might lead to a

feasible quadratic stability problem with parameter independent
solution, P where the system is given by the Eq. (6). The single
Lyapunov function and parameter independent gain given by:

V (k) = x (k)T Px (k) (16)

u (k) = K x (k) (17)

The dissipative condition can be written as:

V (k + 1) − V (k) < 0

V (k + 1) − V (k) = x (k + 1)T Px (k + 1) − x (k)T Px (k) =

= x (k)T [A (p (k)) +

B (p (k)) K ]T P

[A (p (k)) + B (p (k)) K ]

x (k) − x (k)T Px (k) =

= x (k)T
[
[A (p (k)) + B (p (k)) K ]T P

[A (p (k)) + B (p (k)) K ] − P] x (k) < 0
(18)

which is equivalent with:

[A (p (k)) + B (p (k)) K ]T P [A (p (k)) + B (p (k)) K ] − P ≺ 0

P − [A (p (k)) + B (p (k)) K ]T P [A (p (k)) + B (p (k)) K ] � 0

Using the Schur decomposition the following matrix inequality
is given[

P [A (p (k)) + B (p (k)) K ]T

[A (p (k)) + B (p (k)) K ] P−1

]
� 0

With a simple pre-multiplication [3] the inequality is trans-
formed to[

GT PG GT A (p (k))T
+ GT K T B (p (k))T

A (p (k)) G + B (p (k)) K G P−1

]
� 0

(19)
Let us denote Q as the inverse of P and apply Y = K G with a

lower bound approach for the remaining Q−1 term.[
GT Q−1G GT A (p (k))T

+ Y T B (p (k))T

A (p (k)) G + B (p (k)) Y Q

]
� 0

Finally, the following LMI condition for the quadratic stability
of the discrete time system can be given by[

GT
+ G − Q GT A (p (k))T

+ Y T B (p (k))T

A (p (k)) G + B (p (k)) Y Q

]
�

0 for all p ∈ P (20)

Since P is the convex hull of P0, it is sufficient to verify
quadratic stability for all p ∈ P0. This implies a finite num-
ber of LMIs at the 22N+m vertices.

Parameter dependent quadratic gain can be formulated with
a single Lyapunov function. Let us assume the affine parameter
dependent gain:

K (p (k)) = K0 + p1 K1 + p2 K2 + . . . p2N+m K2N+m (21)

Recall the closed loop system to be quadratically stable. The
definite condition derived above takes the following form:

P − [A (p (k)) + B (p (k)) K (p (k))]T

P [A (p (k)) + B (p (k)) K (p (k))] � 0

The problem is in the latter inequality, which in general not
affine in p. As a consequence, for fixed x ∈ Rn the function
fx : P → R defined by:

fx (p) = xT
[

P − [A (p (k)) + B (p (k)) K (p (k))]T

P [A (p (k)) + B (p (k)) K (p (k))]] x

will not be convex so that the implication

{ fx (p) < 0 for all p ∈ P0} ⇒ { fx (p) < 0 for all p ∈ P}

used in the previous section will not hold [15]. The solution is
that the fx (p) should be partially convex in each of its argu-
ments pi . Since fx is a twice differentiable function, the partial
convexity implies:

f ”
x =

∂2 fx

∂p2
j

≥ 0
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Figure 3: The accident free and the accidental flow simulation

5 Numerical example

This section gives an example to compare the fully nonlinear and the qLPV traffic models.
Using the same constant parameter values determined by identification for all segments, the compari-

son of the non-linear model and the derived qLPV model are carried out. To perform simulation, a simple
freeway stretch was built in MATLAB/Simulink. The stretch consists three 500 meters long segments,
each with two lanes. There is an on-ramp in the middle segment. First the two model were compared
under slowly varying traffic flow, the typical characteristics of the morning and evening rush hours are
represented through changing flow and speed. Simulation response of the models for the case of normal
flow and interrupted (accident) flow are shown on Fig. 3(a).

In the second case an accident was simulated in the third segment, by suddenly decreasing the outflow.
The responses are given on Fig. 3(b).

As it could be seen on Fig. 3(a)-3(b), the nominal qLPV model can accurately simulate the dynamics
of freeway flow. Clearly the response of the qLPV model is more like linear under fast variation, due
to the linear approximation of the fundamental diagram. Also a small difference between the models
appears when the density rises over the critical values, denoted by ρop. On the other hand these effects
could be take into consideration through robust qLPV framework, which will be in focus of our further
research.

6 Conclusion and further research

The paper presents a generic model formalism, the Linear Parameter Varying (LPV), in order to handle
nonlinearities in a complex highway flow model.

The paper clearly implies the advantages of the modeling technique and derives feasible stability condi-
tions. Quadratic stabilizability and detectability questions are answered using Linear Matrix Inequalities
(LMI). Single Lyapunov function is assumed to make the closed loop system feasible.

In the near future, the advantage of formulating a parameter dependent Lyapunov function, or pa-
rameter dependent gain (K(p(t)) or L(p(t))) will be given. On the other hand, further works will be
carrying on the control of highway flow with the help of LPV systems.
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So the solution for parameter dependent gain will be calculated by the following non-strict LMIs:

[
GT

+ G − Q GT A (p (k))T
+ Y (p (k))T B (p (k))T

A (p (k)) G + B (p (k)) Y (p (k)) Q

]
� 0 (22)

for all p ∈ P0 (23)

P = P ′
� 0 (24)[

0 Y T
2 BT

2
B2Y2 0

]
� 0 (25)

A generic solution of quadratic stability problem can be derived from parameter dependent Lyapunov function (P(p)) with
parameter dependent gain (K (p)). Let us suppose the inverse of the P(p) is an affine function of p by

Q (p (k)) = Q0 + p1 (k) Q1 +

p2 (k) Q2 + . . . p2N+m (k) Q2N+m

Taking the parameter variation in time into consideration, the change of the inverse can be computed under the form:

pi (k + 1) = pi (k) ± λi (26)

Q (p (k + 1)) = Q (p (k)) ± λ1 (k) Q1 ± λ2 (k) Q2 +

. . . ± λ2N+m (k) Q2N+m (27)

Based on the dissipative energy condition the parameter dependent Lyapunov criteria might be driven back to the LMI condition

[
GT

+ G − Q (p (k + 1)) GT A (p (k))T
+ Y (p (k))T B (p (k))T

A (p (k)) G + B (p (k)) Y (p (k)) Q (p (k))

]
� 0 (28)

for all p ∈ P0 (29)

Q = Q′
� 0 (30)

The ensure quadratic stabilizability of the qLPV freeway model the upper and lower bounds of the scheduling parameters (and
their variations) were determined from real traffic measurements. Finally the derived LMI conditions were found to be feasible at
the vertices of the parameter set defined by the parameter bounds.
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This section gives an example to compare the fully nonlinear
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and speed. Simulation response of the models for the case of
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ment, by suddenly decreasing the outflow. The responses are
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As it could be seen on Fig. 3, the nominal qLPV model can
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The paper presents a generic model formalism, the Linear Pa-

rameter Varying (LPV), in order to handle nonlinearities in a
complex highway flow model.

The paper clearly implies the advantages of the modelling
technique and derives feasible stability conditions. Quadratic
stabilizability and detectability questions are answered using
Linear Matrix Inequalities (LMI). Single Lyapunov function is
assumed to make the closed loop system feasible.

In the near future, the advantage of formulating a parame-
ter dependent Lyapunov function, or parameter dependent gain
(K (p(t)) or L(p(t))) will be given. On the other hand, further
works will be carrying on the control of highway flow with the
help of LPV systems.
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