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Abstract
In the transportation industry, a general desire is to reduce

the energy consumption. One way to achieve this is the use
of light weight metals like magnesium and its’ alloys. An al-
ternative solution is the use of magnesium based hybrid struc-
tures which are combinations of magnesium and another ma-
terial like aluminium or steel in one machine part. Hybrid
materials can offer optimal technical performance due to the
favourable strength-weight ratio. On the other hand during cut-
ting increased difficulties arise due to the different nature of the
coupled materials. Hybrid material couples due to their con-
structions have to be machined in one operation. Particularly
the magnesium–sintered steel combination requires special ap-
proach because of the completely different machinability of the
constituents. Authors aimed to optimize face milling process of
hybrids in dry conditions. Experiments focused on the tool ma-
terial and cutting edge geometry. The milling tests on the hybrid
material couple specimens were carried out basically by single
cutting edge, and the cutting forces, torque, surface roughness,
the chip temperature was measured in the cutting process. Be-
cause of the flammability of magnesium chips, shape and type of
chips were also examined.
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1 Introduction
Magnesium is a very promising light metal for the universal

use in vehicles. Traditional materials like steel and cast iron
or even also aluminum can be replaced with it in automotive
parts. Mg alloys have by 33% lower density in comparison to
aluminum and by 77% compared to steel [6]. On the other hand,
the wear resistance and stiffness of magnesium is not sufficient
for many applications. In order to improve the technical per-
formance of a magnesium based machine part the material has
to be reinforced while requirement of low weight can be also
fulfilled.

The application of lightweight construction of magnesium
based hybrid material parts has been extended in the last few
years since recent casting technologies made possible to in-
clude other materials directly into mould parts [4]. Magnesium–
aluminum-silicon (Mg–AlSi hybrid) and magnesium–sintered
metal (Mg-Sint hybrid) constructions are used more and more.
Promising application in automotive industry is the Mg-based
hybrid engine block (Fig. 1) [5]. The hybrid material is ad-
vantageous due to its low weight combined with high strength,
good wear characteristics and heat resistance. Structural parts
exposed to heavy loads are produced of wear or heat resistant,
high strength materials like AlSi or sintered steel. These em-
bedded parts improve the relative poor mechanical strength of
magnesium alloy while the high volumetric proportion of mag-
nesium ensures low weight for the whole structure.

Fig. 1. Scheme of a Mg-hybrid engine block [5]

Cutting of hybrid structures causes increased process instabil-
ity since the machinability of the simultaneously cut materials is
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different. As a result of the very different machinability of mag-
nesium, aluminium and sintered steel, very special conditions
come into being. The different cutting forces between the ma-
terials call for detailed investigations of the cutting tools, their
cutting edges and coatings, and stable machine tools are also
needed [3]. Cutting conditions have to meet the requirements
of optimum simultaneous machining. Cutting of magnesium
and their alloys holds great fire and explosion risk because of
their ease of ignition which depends on the size and shape of the
workpieces. The resulting magnesium chips and dust are highly
combustible substances with high surface/volume ratio which
may ignite spontaneously [4]. Fire risk is more significant at the
presence of sintered steel in hybrid material because high tem-
peratures of sinter metal chips may ignite the flammable mag-
nesium chips.

Two main machining strategies of magnesium are possible in
order to reduce the risks to acceptable level. Industrially imple-
mented method is a hydrogen controlled large quantity emulsion
lubrication [7]. Dry or MQL lubrication could be more advan-
tageous from economical and ecological point of view since the
lubricants, and their cleaning and recycling could be saved. Be-
cause of the fire hazard, this latter strategy requires moderate
cutting data ensuring low chip temperature.

Due to constructional design of hybrid parts, typical machin-
ing operations are various kinds of milling and drilling. In the
following, the paper deals with face milling.

2 Experimental work
The basic application sample of the research was a cylinder

block, illustrated in Fig. 1. There is not accessible technologi-
cal information about simultaneous machining of absolutely dif-
ferently behaving materials like Mg–AlSi or Mg–sintered steel.
Cutting force fluctuation in milling is even more characteristic
in hybrid machining (Fig. 2). Cutting tool optimization experi-
ments were performed in dry face milling of AZ91–AlSi12 and
AZ91–SD11 hybrid couples respectively. However the chemi-
cal composition of AZ91 differs from AJ62 and AlSi12 differs
from AlSi17, it has not significant influence to the deviation of
machinability of different hybrid couples. AZ91 and AlSi12 ma-
terials are adequate for the general modelling of Mg-AlSi and
Mg-sintered steel hybrid structures.

Focusing on tool optimization, the first important question is
the possibly applicable tool material and/or coating for Mg–AlSi
or Mg–sintered steel, respectively. Determination of most suit-
able insert materials for both experimental Mg–hybrids, the op-
timization of cutting geometry concerning cutting forces, chip
temperature, surface roughness and chip formation were carried
out by several face milling experiments. The main aim was to
find the optimal edge material and cutting edge geometry for
Mg–AlSi and Mg–sintered steel hybrid materials, furthermore
to work out a general method of milling tool optimization of
hybrid materials.

Since safe machining is emphasized when magnesium is ma-

chined, cutting temperature has to be a highlighted optimizing
parameter. The temperature of sintered steel chips is the most
important risk factor because it can reach the value of 600˚C,
which is enough to ignite magnesium chips. The ignition tem-
perature strongly depends on the surface/volume ratio, 250˚C
was concerned as critical.

2.1 Experimental details
General principles of the face milling experiments for the chip

temperature measurements were:

• Machining with a single insert, χ=45˚,

• Symmetrical positioning of milling head, ae=2/3×D or
ae=1×D,

• Fixed cutting depth: ap=1 mm,

• Fixed cutting speed e.g.: v=330 m/min or 134 m/min,

• Cutter diameter: D=80mm,

• Feed/tooth was the altering cutting parameter: fz= 0,05; 0,1;
0,2 mm/tooth,

• Tests were carried out on: AZ91, SD11, AZ91+AlSi12 and
AZ91+SD11 hybrid materials

• Dry conditions.

The suitability of tested edge materials and the various edge ge-
ometries were ordered according to equal weighted ranking of
measured values.

Measuring equipment used were:

• Kistler force measuring system (Fx, Fz, Fy),

• Data acquisition with Test Point software, evaluation with
special program,

• Mitutoyo Surftest 301,

• Agema THV R© 880 LWB IR camera.

2.2 Determination of chip temperature with thermovision
Most risky factor of magnesium ignition is the hot chip of sin-

tered steel part of the Mg-Sint hybrid. For this reason, steel chips
have to be investigated in their hottest condition: during cutting
and directly after leaving the surface of insert. This means that
temperature measurement has to be happened on the rotating
and working tool.

Basically there are two possibilities to determine chip tem-
perature. Chip temperature can be estimated on theoretical way
by simulation of cutting process [1]. The numerical methods
make possible the calculation of chip temperature at any time of
the process or on any part of the chip. Experimental possibil-
ity is the infrared measurement during the machining process.
Infrared technology is very fast and flexible compared to ther-
mocouples or other touch based methods. There are no literature

Per. Pol. Transp. Eng.74 Péter Ozsváth / Attila Szmejkál / János Takács



Fig. 2. Effect of different machinability on the cutting force

data regarding continuous thermovision of chip temperature of
face milling of hybrid materials.

The principle of thermovision is based on detecting of in-
frared radiation of bodies. The thermovision scanner measures
infrared radiation within a certain spectral range. The received
radiation has a non-linear relationship to the object temperature
and detection can be affected by atmospheric damping and in-
cludes reflected radiation from object surroundings.

The received and detected infrared radiation in the instru-
ments for numerical measure is called thermal value. The re-
lationship between thermal value and received photon radiation
is linear. However, the relationship between thermal value and
object temperature is non-linear.

Generally, in thermal measurement situations, where several
factors influence the measurements, the true object temperature
has to be derived by calculation. The resulting measurement
formulae together with the calibration function are used as algo-
rithms in the software of the computer for thermovision system
[6].

Using the line scanning mode of AGEMA infrared camera a
unique method for real time investigation of working tool was
developed. The scheme of the process is shown in Fig. 3 [2].

The IR detector of the instrument gets information only from
a line. According to the markings of Fig. 3/a the y position of
the camera is adjusted slightly over to the plane of previously
milled surface. The perfect adjustment ensures that all inserts
or insert seats are “visible” for the IR detector of the instrument
during the whole rotation except when inserts cover each other.
The scanning frequency is 2500Hz, which means 0,4ms period
time. According to the connection between rotary movement
and alternating movement, the period time of the rotating tool
(n=1314/min) is 21,9Hz. The high difference between frequen-
cies ensures that chip and insert do not move to significant dis-
tance during one scanning cycle. When thermographs of each
line scan are packed onto each other approximation of the sinus
curve of the rotary movement of the inserts will be displayed.

(See Fig. 3 and Fig. 4).
The steel chips has to be investigated in their hottest condi-

tion: during cutting and directly after leaving the surface of in-
sert. This means that temperature measurement has to be done
on the rotating and working tool. Using the line scanning mode
of AGEMA infrared camera a unique method for real time in-
vestigation of working tool was developed. The scheme of the
process is shown in Fig. 3.

The IR detector of the instrument gets information only from
a theoretical line. When thermographs of each line scan are
packed onto each other approximation of the sinus curve of the
rotary movement of the inserts will be displayed. Chip temper-
ature can be determined according to kinematical geometry.

3 Analysis and comparison of cutting edge materials
In general AZ 91 is well machinable with Al cutting geometry

and this material can be cut with the lowest force. The cutting
speed is limited from bottom values because of forming of built-
up edge and flank build-up [3].

The machinability of AlSi12 and especially sintered steel is
worse. Because of the significant wear of the tool cutting speed
is limited from top values [3].

Commerce available inserts were tested in the milling experi-
ments in order to choose the most suitable ones. AZ91–AlSi12
hybrid specimens were tested with 12 different insert types: un-
coated or polished cemented carbide inserts (γ=+25o), coated
cemented carbide inserts with Al geometry (γ=+25o), conven-
tional diamond coating, nano diamond coating, PCD insert,
thick diamond film coated insert.

In case of AZ91–SD11 hybrid the number of tested inserts
was lower and 6 different types were tested: uncoated cemented
carbide, coated cemented carbide, cermet.

The most suitable cutting material was selected according to
the experiment series, the measured data and evaluation princi-
ple is detailed in point 2.1.

Different tendencies of the cutting force can be observed in
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Fig. 5. Cutting force (Fx) during machining of pure specimens at three fz steps 
 
Different tendencies of the cutting force can be observed in milling of AZ91 according to the 
cutting edge materials (see Fig. 5). Force values decreased at two uncoated cemented carbide 
inserts, while CVD diamond coated insert showed mixed behaviour. Force values monoto-
nously increased at the other cases. The geometry of these inserts is recommended for alumin-
ium. 

When AlSi12 was milled by cemented carbide (HW) and diamond edge inserts two 
clearly divided groups were formed (see Fig. 5). 
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sert 4 is a coated cemented carbide with high rake angle. The average chip temperature was 
also very favourable on the insert 4 compared to the other three types. 

As a result of the experiments, the mostly recommended cutting materials for AZ91–
AlSi12 hybrid are uncoated cemented carbide insert (γ=+25º), CVD diamond coated insert 
(γ=0º) or with nano diamond coated cemented carbide insert. 

TiAlN coated cemented carbide insert (γ=+25º) proved to be the most suitable for 
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Fig. 7. Special experimental milling head and
built-in-tools (cartridges) developed by project part-
ner LOSONCZI Ltd.
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4. Developing of special edge geometry 
 
For geometry optimization a special experimental milling head was developed which made 
possible to realize several cutting geometries. This cutter had four different seats with various 
axial rake angles (γp), and three different built-in-tools (cartridges) were developed with vari-
ous axial and radial angles (γp / γf). The cutting geometry of face milling was determined by 
the insert–, the build-in-tool– and the seat geometry of milling head. 
 
 
 
 
 
 
 
 
 
 
 
 
 

γp= +4º; 0º; -4º; -8º   γp / γf = 0º/3º; 8º/3º; 8º/0º 
 

Fig. 7. Special experimental milling head and built-in-tools (cartridges) developed by project 
partner LOSONCZI Ltd. 

 
The optimum rake angles of the seat were determined separately according to the evaluation 
of experimental results (F, Ra, temperature, chip formation) for milling of AZ91–AlSi12 with 
uncoated HW insert and AZ91–SD11 when using TiAlN coated HW insert. Cutting force and 
chip temperature decreased using the optimized cutting edge geometry. 
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5. Summary 
 
The pre-determined aims of development of Mg-hybrid milling have been reached. As a result 
of the research, the optimized tool material and cutting edge geometry is available for dry 
machining of Mg–AlSi12 and Mg–SD11 hybrid materials. 
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magnesium (AZ91) and sintered steel (SD 11)

milling of AZ91 according to the cutting edge materials (see
Fig. 5). Force values decreased at two uncoated cemented car-
bide inserts, while CVD diamond coated insert showed mixed
behaviour. Force values monotonously increased at the other
cases. The geometry of these inserts is recommended for alu-
minium.

When AlSi12 was milled by cemented carbide (HW) and dia-
mond edge inserts two clearly divided groups were formed (see
Fig. 5).

The difference between cutting force can be observed in
Fig. 6. The results were measured on four different inserts when
AZ91–SD11 hybrid specimen was milled. Inserts 1-3 are rec-
ommended for steel, this is the reason for higher AZ91 values
than ones displayed in Fig. 5. Insert 4 is a coated cemented car-
bide with high rake angle. The average chip temperature was
also very favourable on the insert 4 compared to the other three
types.

As a result of the experiments, the mostly recommended cut-
ting materials for AZ91–AlSi12 hybrid are uncoated cemented
carbide insert (γ=+25o), CVD diamond coated insert (γ=0o) or
with nano diamond coated cemented carbide insert.

TiAlN coated cemented carbide insert (γ=+25o) proved to be
the most suitable for milling of AZ91–SD11 steel hybrid.

4 Developing of special edge geometry
For geometry optimization a special experimental milling

head was developed which made possible to realize several cut-
ting geometries. This cutter had four different seats with vari-
ous axial rake angles (γp), and three different built-in-tools (car-
tridges) were developed with various axial and radial angles (γp

/ γ f ). The cutting geometry of face milling was determined by
the insert–, the buildt-in-tool– and the seat geometry of milling
head.

γp= +4o
; 0o

; −4o
; −8o γp/ γ f = 0o/3o

; 8o/3o
; 8o/0o

The optimum rake angles of the seat were determined sepa-
rately according to the evaluation of experimental results (F, Ra ,
temperature, chip formation) for milling of AZ91–AlSi12 with
uncoated HW insert and AZ91–SD11 when using TiAlN coated
HW insert. Cutting force and chip temperature decreased using
the optimized cutting edge geometry.
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Fig. 8. Characteristical chip temperatures at different milling edge geome-
tries

5 Summary
The pre-determined aims of development of Mg-hybrid

milling have been reached. As a result of the research, the op-
timized tool material and cutting edge geometry is available for
dry machining of Mg–AlSi12 and Mg–SD11 hybrid materials.

New results of MQL and dry face milling experiments with
AZ91D–AlSi12 and AZ91D–SD11 magnesium-based hybrid
materials: Various tool materials and coatings were com-
pared and
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• cutting force components and their change,

• achievable surface roughness,

• maximum chip temperature

were measured. Experiments were performed with continuous
force measurement and evaluation system. A new thermovision
method was developed for examination of chip temperature on
rotating milling tool. The method is based on line scanning, and
chip temperature is determined according to kinematical geom-
etry of the rotating cutter.
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