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Abstract
In this paper the robustness analysis of the hierarchical for-

mation stabilization control proposed by [7] is performed. The
analysis is based on the nonlinear small gain theorem and ex-
ploits the strict passivity of the components in the closed loop
dynamics. The computations are tested via a formation control
problem of road vehicles.
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1 Introduction
In the last years the increased computational capabilities of

computer systems and the rapid development of the commu-
nication and sensor technologies have increased the interest in
highly automated unmanned vehicles, which are able to cooper-
ate with other vehicles and are able to perform, in the presence
of uncertainties, disturbances and faults, complex tasks beyond
the ability of the individual vehicles. This general concept has
been realized in multiple applications [2]: Unmanned Aerial Ve-
hicles (UAV-s), [1], Autonomous Underwater Vehicles (AUV-s)
and automated highway systems (AHS) [12].

Although the application fields listed above are very differ-
ent, in the control design several common points can be found.
The control of autonomous vehicle groups is generally hierar-
chical, where the components on the lower levels are local, in
the sense that they depend on the particular - and generally non-
linear - vehicle dynamics. These local controllers modify the
original vehicle dynamics so that the dynamic behaviour of the
closed loop can be modelled by a more simpler - e.g. linear
- system. This simple model, which can even be the same for
different vehicles, is then used in the design of the higher-level
control components, where the prescribed cooperative tasks are
taken into consideration. Due to this decoupling the complex,
task-dependent control problems have to be solved for simpli-
fied vehicle models only, and the controllers obtained will be in-
dependent from the real vehicle dynamics. For the design of the
high-level cooperative control several methods exist, depending
on the prescribed task, the number of vehicles and the design
constraints to be satisfied. In this paper we are focusing on the
methods based on artificial potential functions [4, 5, 10]. These
methods construct a special potential energy function, which
takes its minimum at the solution of the cooperative problem.
Starting from an arbitrary initial state the controller then tries to
steer the system along the gradient of the potential function until
the energy reaches its minimum.

It is clear that the stability of the entire hierarchically con-
trolled formation is a key issue in the controller design. Despite
of this, the cooperative control literature concentrates mainly on
the high-level control design and does not analyse the stability
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properties of the coupled system. Therefore in [7] we have pro-
posed a hierarchical formation stabilization method (consisting
of a dynamic inversion based low-level and a passivity based
high-level controller) which is able to guarantee the stability of
the entire formation. In this paper we concentrate on the robust-
ness properties of this control structure.

The paper is organized as follows. In section 2 the outline of
the hierarchical control structure discussed in [7] is presented.
In section 3 the robustness properties of the control method is
analysed. Section 4 gives a demonstrative example for the cal-
culations and in 5 the most important conclusions are drawn.

2 Hierarchical passivity based control
In order to discuss the robustness properties of the method

proposed in [7], we have to introduce it briefly. The aim of the
control is the stabilization of the formation of vehicles having
nonlinear dynamics. The control structure consists of two lev-
els: the dynamic inversion based low-level controller linearizes
– at least partially – the nonlinear vehicle dynamics. After the
linearization the vehicle can be considered as a simple double
integrator, for which the high-level formation controller can be
easily designed. In order to have a Lyapunov function proving
the stability of the entire closed-loop system a passivity based
external feedback is constructed.

2.1 Vehicle modell
We assume that the vehicle can be modelled by the following

nonlinear dynamic equations:

ẋ1 = h(x1, x2, t)

ẋ2 = A2(ρ)x3 + B2(ρ)u + f (t)

ẋ3 = A3(ρ)x3 + B3(ρ)u (1)

where x1 is the position of the vehicle and x2, x3 are further state
variables, depending on the vehicle model used. It has already
been shown in [7], that the single track vehicle model expressed
in a moving coordinate frame can be rewritten in the form above.

2.2 Dynamic inversion based low-level controller design
The low-level part of the hierarchical control framework is

based on the dynamic inverse of the vehicle model. The dy-
namic inverse can be obtained by applying the state transforma-
tion z1 = x1 = y, z2 = ẋ1 = h(x1, x2), z3 = x3 to (1) and
expressing the control input from the dynamic equation of z2.
(For the details see [8]). Applying the same argument as [8]
the dynamic inversion based controller can be obtained in the
following form:

uc = B−1
2 J−1

x2
(−Jx1 z2 − Jx2 A2z3c − Jx2 f (t)− Jt + v)

ż3c = A3z3c + B3u − w =

= A3z3c − B3 B−1
2 J−1

x2
Jx1 z2 − B3 B−1

2 A2z3c −

B3 B−1
2 f (t)− B3 B−1

2 J−1
x2

Jt +

B3 B−1
2 Jx2v − w = (A3 − B3 B−1

2 A2)z3c + u∗
c − w(2)

where Jx2 =
∂h
∂x2

=

[
−v sin θ cos θ
v cos θ sin θ

]
, Jx1 =

∂h
∂x1

, Jt =
dh
dt

and v and w are additional control inputs defined later and z3c is
the inner state of the controller used to estimate the unmeasured
state z3. The controller above transforms the original vehicle
dynamics into the following partially linear closed-loop system:

ż1 = z2

ż2 = v + Jx2 A2(z3 − z3c)

ż3 − ż3c = A3(z3 − z3c)+ w (3)

which, apart from the dynamics of the approximation error
z3 − z3c, is equivalent to a double-integrator. The nonlinearity
is caused by the parameter-dependence of matrices A2, A3 and
state dependence of Jx2 . We have shown in [7] that the controller
above is applicable if the error dynamics ė3 = A3e3 is quadrati-
cally stable with Lyapunov function W (e3, ρ) = eT

3 W (ρ)e3.

2.3 High-level formation control design
The goal of the high-level controller is to solve the formation

control problem, i.e. to steer the group of vehicles into a pre-
scribed spatial formation, while the entire group follows a pre-
defined trajectory. This problem class comprises several special
cooperative control problems, e.g. geometric formation shap-
ing, obstacle avoidance or coordinated collective motion of high
number of vehicles called ’flocking’ [4]. Since the low-level
controller has already linearized the dynamics, the high-level
controller can be implemented as if the vehicles had double in-
tegrator dynamics.

Assume that the formation control problem is prescribed for
a group of N vehicles. Suppose that this problem can be solved
by using artificial potential function, i.e. there exists an artificial
potential function V (ζ1), ζ1 = [z1

1, z2
1, . . . , zN

1 ] so that V (ζ1)

has global minimum at the prescribed spatial formation. Con-
sider now, the total energy of the point-mass system:

V(ζ1, ζ2) = V (ζ1)+
1
2
‖ζ2‖

2 (4)

where ζ2 = [z1
2, z2

2, . . . , zN
2 ]. Let the control input vc be chosen

as follows:

vc(ζ1, ζ2) = −
∂V (ζ1)

∂ζ1
− kζ2 k > 0

vi
c = −

∂V (zi
1)

∂zi
1

− kzi
2 (5)

It can be easily checked that this feedback stabilizes the forma-
tion by rendering the time derivative of V(ζ1, ζ2) negative:

V̇(ζ1, ζ2) =
∂V
∂ζ1

ζ2 − ζ T
2
∂V
∂ζ1

− kζ T
2 ζ2 = −k‖ζ2‖

2
≤ 0 (6)

In order to calculate (??) every vehicle has to know the position
and velocity of the others. This information has to be shared via
appropriate communication channels.
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2.4 Passivity based external feedback design
Now, being in possession of the high-level and the low-level

controllers we can build up the hierarchical control structure.
For this, let us substitute vc(ζ1, ζ2) into (3) to get the coupled
vehicle dynamics:

ζ̇1 = ζ2

ζ̇2 = vc(ζ1, ζ2)+A2ε3

ε̇3 = A3ε3 + ω (7)

where
A2 = diag(J 1

x1
2

A1
2, . . . , J N

x N
2

AN
2 ),

A3 = diag( Ā1
3, . . . , ĀN

3 ), ε3 = [e1
3, . . . , eN

3 ]
and ω = [w1, . . . , wN ].
Notice that the equations (7) realizes a partial interconnection

of the following two subsystems:

1. ε̇3 = A3ε3 + w 2. ζ̇1 = ζ2

ζ̇2 = vc(ζ1, ζ2)

Our aim is to choose the external control input w in such a way
that a Lyapunov function can be constructed for the entire con-
trolled system. We solve this problem by using passivity-based
technique in the following way: first new inputs and outputs are
chosen for the subsystems with respect to which they will be
passive. Then the control input w is set so that the dynamics (7)
realize a negative feedback interconnection of the subsystems,
which consequently will be asymptotically stable [11].

Since Subsystem 2 is asymptotically stable with Lyapunov
function V(ζ1, ζ2), then by calculating the time derivative of V
we get hints for the choice of input u2 and output y2:

dV
dt

=
∂V(ζ1, ζ2)

∂ζ1
ζ2 +

∂V(ζ1, ζ2)

∂ζ2
vc︸                                   ︷︷                                   ︸

<0

+
∂V(ζ1, ζ2)

∂ζ2
A2︸              ︷︷              ︸

yT
2

ε3︸︷︷︸
u2

=

− k‖ζ2‖
2
+ yT

2 u2 ≤ yT
2 u2

(8)

i.e. the subsystem 2 is passive with storage function V . A sim-
ilar input/output selection procedure can be carried out for the
subsystem 1 by introducing the Lyapunov function W(ε3) =

1
2ε

T
3 Wε3,W = diag(W 1, . . . ,W N ):

dW(ε3)

dt
= εT

3 WA3︸      ︷︷      ︸ ε3<0 + εT
3︸︷︷︸

yT
1

Wω︸︷︷︸
u1

≤

−λ∗
‖ε3‖

2
+ yT

1 u1 ≤ yT
1 u1

where

λ∗
=

1
2 minρ λ(−WA3(ρ)−A3(ρ)

TW) > 0 (9)

and λ(·) denotes the smallest eigenvalue of its matrix argument.
So, the subsystem 1 is also passive with respect to the chosen
input u1 and output y1 with storage function (W(e3)).

Notice that the partial interconnection of subsystem 1 and 2,
coming from the original structure (7), can be expressed by the

following relation u2 = y1. (The interconnected structure is
depicted in Fig. 1) In order to achieve the negative feedback
interconnection we have to set u1 = −y2 as it can be seen in
Fig. 1. This means that the external control input ω has to be
chosen as follows:

ω = −W−1AT
2
∂V(ζ1,ζ2)
∂ζ2

= −W−1AT
2 ζ2

or

wi
= −(W i )−1 AT

2 (J
i
x2
)T zi

2 (10)

To prove the asymptotic stability of the entire system we prove
first that the interconnected system is passive with storage func-
tion S(ζ1, ζ2, ε3) = V(ζ1, ζ2) + W(ε3) and then we will see
that this function can serve as Lyapunov function in our spe-
cial case. Let us introduce two new, external inputs denoted by
ue1 and ue2 respectively according to Fig. 1. By calculating the
time-derivative of S(ζ1, ζ2, ε3)

Ṡ =
d
dt

{V(ζ1, ζ2)+W(ε3)} =
∂V
∂ζ1

ζ2 +
∂V
∂ζ2

vc︸                ︷︷                ︸
<0

+

εT
3 WA3ε3︸         ︷︷         ︸

<0

+yT
2 u2e + yT

1 u1e ≤

[
yT

1 yT
2

] [
u1e

u2e

]
(11)

we can see that the interconnected system is passive with re-

spect to input

[
u1e

u2e

]
and output

[
y1

y2

]
with storage function

S(ζ1, ζ2, ε3). In our case the external inputs ue1 and ue2 are
0 thus V̇(ζ1, ζ2) + Ẇ(ε3) ≤ 0. The immediate consequence of
this result is that the positive definite function V(ζ1, ζ2)+W(ε3)

is an appropriate Lyapunov function for the coupled dynamics
(7). (For the details see [7].)

3 Robustness properties of the controlled system
In the possession of the Lyapunov function V(ζ1, ζ2)+W(ε3)

we can determine a class of perturbation models, against which,
the stability of the hierarchically controlled system is preserved.
For this, let the disturbances δ1, δ2 be added to the dynamic
equations (1) as follows:

ẋ1 = h(x1, x2, t)

ẋ2 = A2(ρ)x3 + B2(ρ)u + f (t)+ δ1

ẋ3 = A3(ρ)x3 + B3(ρ)u + δ2 (12)

By applying the state transformation and control input (5) to
the group of N vehicles above, the coupled dynamics (7) of the
controlled system can be given by

ζ̇1 = ζ2

ζ̇2 = vc(ζ1, ζ2)+A2ε3 + Jd1

ε̇3 = A3ε3 + ω + d2 (13)

where d1 = [δ1
1, . . . , δ

N
1 ], d2 = [δ1

2, . . . , δ
N
2 ] and J =

diag(J 1
x1

2
, . . . , J N

x N
2
). Calculate now the time derivative of the
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ζ̇1 = ζ2

ζ̇2 = vc(ζ1, ζ2) + A2ε3 + Jd1

ε̇3 = A3ε3 + ω + d2

∆-

¾

[
d1

d2

]

[
ζ2

ε3

]
ζ̇1 = ζ2

ζ̇2 = vc(ζ1, ζ2) + A2u2

y2 = AT
2

∂V
∂ζ2

T

ε̇3 = A3ε3 + W−1u1

y1 = ε3

�

--ue1

ue2

y1

u2y2

u1

6–

�

Figure 1: Interconnection of passive subsystems (left). The hierarchically controlled system com-
pleted with perturbation ∆ (right)

control inputs are the steering angle (δ) and acceleration (α). As outputs the position coordinates
x and y were chosen, both are are supposed to be measured by appropriate inertial and/or GPS
sensors. The remaining parameters of the model are constant and can be calculated as follows:

a11 = −
cf+cr

m
, a12 =

crlr−cf lf
m

, a21 =
crlr−cf lf

J
, a22 = −

crl2r+cf l2f
J

, b1 =
cf

m
, b2 =

cf lf
J

, where m is
the mass of the vehicle, cr, cf are the rear and front cornering stiffness, J is the inertia, lr, lf are the
distances of the center of mass from the rear and front axle. This single-track dynamics describes
well the vehicle motion in case of normal operation i.e. when the lateral acceleration is not too
high (< 4 m

s2 ). In [8] we have shown that this model can be transformed into a moving coordinate
frame K attached to a moving point P of the reference trajectory. In the new coordinates (18)
reads as

ṡ1 = v cos θ − ṡ(1 − c(s)y1) ẏ1 = v sin θ − c(s)ṡs1 (19a)

θ̇ = φ̇ − ϕ̇ =
a11

v
β +

a12

v2
r − c(s)ṡ +

b1

v
δ v̇ = α (19b)

β̇ =
a11

v
β + (

a12

v2
− 1)r +

b1

v
δ ṙ = a21β +

a22

v
r + b2δ (19c)

where θ = φ − ϕ, s(t) : R → R is a continuous function, ṗ =

[
ẋP (t)
ẏP (t)

]

=

[
ṡ cos ϕ(s)
ṡ sin ϕ(s)

]

defines

the motion of P on the trajectory curve and c(s) = ∂ϕ(s)
∂s

. By introducing new input and state
variables so that

x1 =

[
s1

y1

]

x2 =

[
θ
v

]

x3 =

[
β
r

]

u =

[
δ
α

]

(20)

the dynamics above can be rewritten in the form of (1).

In the simulation the vehicles had the following identical modelling parameters, which were
obtained by identifying a heavy-duty vehicle: [9]:

a11 = −147.1481 a12 = 0.0645 a21 = 0.0123 a22 = −147.1494 b1 = 66.2026 b2 = 31.9835
(21)

If 1 ≤ v ≤ 25 we found - by solving the appropriate LMI [6] - that the estimation error dynamics
ė3 = A3e3 in (3) is quadratically stable with the following Lyapunov function

W = eT
3

[
246.7608 −4.7350
−4.7350 247.7231

]

e3 ∀i (22)

6
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Figure 2: Vehicle model and its parameters (left). Intended formation and scaling function µ(·).
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Figure 3: Simulation results. The motion of the vehicles along the prescribed trajectory.

which makes it possible to use the dynamic inversion based controller.

Suppose now that the vehicle dynamics is uncertain and the uncertainty can be modelled by
an appropriate dynamical system connected to the nominal vehicle model according to figure 1. In
order to get some quantitative measurement on the robustness we have to determine the maximal
L2 gain γ∆ of the potential disturbance models ∆ that satisfies the small gain condition formulated
in section 3. It can be easily checked, that in our case

α = min(k, λ∗) = k = 1 (23)

γ2 = max
{
1, v2

1 , . . . , v2
N , λ2

1,max, . . . , λ
2
N,max

}

= max
{
λ2

1,max, . . . , λ
2
N,max

}
= 2522 (24)

This means that, if the L2 gain of the disturbance model satisfies the relation γ∆ ≤ 1/252 ≈ 0.004
the cooperative system remains globally stable by means of the results of section 3.

5 Conclusions

In this paper the robustness analysis of the hierarchical formation control structure [8] has been
performed. By exploiting the strict dissipativity of the passive components in the control structure

7

Fig. 3. Simulation results. The motion of the vehicles along the prescribed trajectory.

Lyapunov function V(ζ1, ζ2)+W(ε3):

d
dt {V(ζ1, ζ2)+W(ε3)} =

−k‖ζ2‖
2
− λ∗

‖ε3‖
2
+ ζ T

2 Jd1 + εT
3 W d2

≤ −α
[
ζ T

2 εT
3

]
︸         ︷︷         ︸

yT

[
ζ2

ε3

]
︸ ︷︷ ︸

y

+

[
ζ T

2 εT
3

]
︸         ︷︷         ︸

yT

[
Jd1
W d2

]
︸     ︷︷     ︸

u

(14)

where α = min(k, λ∗). It can be seen that the controlled system
is strictly output passive with respect to output y =

[
ζ T

2 εT
3

]
and input u =

[
(Jd1)

T (W d2)
T
]T

. We know from [11] that
all strictly output passive systems have finite L2 gain. In our
case the L2 gain is 1

α , i.e.:

2Ṡ
α

=
1
α2 uT u − yT y (15)

We are interested in the L2 gain between the output and the dis-

turbance, so we substitute u =

[
Jd1
W d2

]
back into (15):

2Ṡ
α

=
1
α2 dT

[
J

W

]T [
J

W

]
d − yT y ≤

γ 2

α2 dT d − yT y

(16)
where γ 2 is the greatest eigenvalue of the positive definite ma-
trix diag(J,W )T diag(J,W ). Using the formula for J deter-
mined in section 2.2 it can be easily checked that

γ 2
= max

{
1, v2

1, . . . , v
2
N , λ

2
1,max, . . . , λ

2
N ,max

}
(17)

where d =

[
dT

1 dT
2

]T
and λi,max is the maximal eigenvalue of

Wi .
Suppose that the modelling uncertainties can be represented

by a nonlinear system 1 interconnected with (13) according to
Fig. 1. By small gain theorem, if 1 has finite L2 gain γ1 so
that γ1

γ
α < 1 and 1 is zero state detectable then the hierar-

chically controlled system remains globally stable even in the
presence of uncertainty. (The zero state detectability of the con-
trolled system (13), that is also necessary to apply the small
gain theorem, follows from the fact that the invariant subset
� = {(ζ1, ζ2, ε3) | Ṡ(ζ1, ζ2, ε3) = 0}, examined in the previ-
ous section contains only the origin.)

4 Formation control of road vehicles
As an illustrative example we have solved in [7] a formation

reconfiguration problem with five road vehicles. In the begin-
ning the vehicles are in a column formation that is perpendicular
to the trajectory. Then they are ordered to change their forma-
tion. The new formation is a line, which is tangential to the
trajectory (according to Fig. 2). Of course, during the reconfig-
uration the vehicles must not collide and the entire group has to
track a prescribed trajectory. The details of the controller design
can be found in [7]. In this paper we focus on the robustness
analysis only.

The vehicles were modelled by the simplified single-track dy-
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Figure 3: Simulation results. The motion of the vehicles along the prescribed trajectory.

where z3c(0) =
[
βc(0) rc(0)

]T
. The target positions of the vehicles inside the formation were

chosen according to the configuration depicted in figure 2: s1d =
[
10 20 0 −20 −10

]
, y1d =

[
0 0 0 0 0

]
where the inter vehicle distance was d = 10m.

The simulation results in case of controller parameters M = 4, m = 0.1, k = 1, kV = 4 can
be found in figures 3, 4, 5. It can be seen that the vehicles follow the prescribed trajectory in the
intended formation while the control inputs remain in a realizable range. The right subfigure of
figure 5 depicts the minimal inter-vehicle distance measured during the simulation. As it can be
seen every vehicle moved far enough from the others, so no collisions occured.

5 Conclusions

A hierarchical, dynamic inverse and passivity based control structure has been proposed for the
stabilization of vehicle formation. The control structure contains a dynamic inversion based low-
level controller, which linearizes, at least partially the nonlinear vehicle dynamics. We have shown
that the internal dynamics of the inverse system is globally stable, irrespective of the physical
parameters, thus the inversion based controller can always be constructed. After linearizing the
vehicle dynamics the formation control can be designed by using an arbitrary method based arti-
ficial potential functions. In order to guarantee the stability of the entire formation and to obtain
an appropriate Lyapunov function we have designed an external feedback by exploiting the pas-
sivity property of the coupled controlled system. At the end of the chapter we have examined the
robustness properties of the control structure by giving a class of perturbation models, against
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Fig. 2. Vehicle model and its parameters (above). Intended formation and
scaling function µ(·).

namics ([3],[9]) given by the following equations:

ẋ = v cos(β + ψ) = v cos(φ)
ẏ = v sin(β + ψ) = v sin(φ)
φ̇ = β̇ + ψ̇ =

a11
v β +

a12
v2 r +

b1
v δ

β̇ =
a11
v β + ( a12

v2 − 1)r +
b1
v δ

ṙ = a21β +
a22
v r + b2δ

v̇ = α

(18)

where (x, y) denotes the position of the vehicle on the 2D plane
in a fixed coordinate frame K0 and v, β, r, ψ are the veloc-
ity, slideslip angle, yaw-rate and orientation respectively (see
Fig. 2). The control inputs are the steering angle (δ) and accel-
eration (α). As outputs the position coordinates x and y were
chosen, both are supposed to be measured by appropriate iner-
tial and/or GPS sensors. The remaining parameters of the model
are constant and can be calculated as follows: a11 = −

c f +cr
m ,

a12 =
cr lr −c f l f

m , a21 =
cr lr −c f l f

J , a22 = −
cr l2

r +c f l2
f

J , b1 =
c f
m ,

b2 =
c f l f

J , where m is the mass of the vehicle, cr , c f are the
rear and front cornering stiffness, J is the inertia, lr , l f are the
distances of the center of mass from the rear and front axle. This
single-track dynamics describes well the vehicle motion in case

of normal operation i.e. when the lateral acceleration is not too
high (< 4 m

s2 ). In [7] we have shown that this model can be trans-
formed into a moving coordinate frame K attached to a moving
point P of the reference trajectory. In the new coordinates (18)
reads as

ṡ1 = v cos θ − ṡ(1 − c(s)y1)

ẏ1 = v sin θ − c(s)ṡs1 (19.a)

θ̇ = φ̇ − ϕ̇ =
a11

v
β +

a12

v2 r − c(s)ṡ +
b1

v
δ

v̇ = α (19.b)

β̇ =
a11

v
β + (

a12

v2 − 1)r +
b1

v
δ

ṙ = a21β +
a22

v
r + b2δ (19.c)

where θ = φ − ϕ, s(t) : R → R is a continuous function,

ṗ =

[
ẋP (t)
ẏP (t)

]
=

[
ṡ cosϕ(s)
ṡ sinϕ(s)

]
defines the motion of P on the

trajectory curve and c(s) =
∂ϕ(s)
∂s . By introducing new input and

state variables so that

x1 =

[
s1

y1

]
x2 =

[
θ

v

]
x3 =

[
β

r

]
u =

[
δ

α

]
(20)

the dynamics above can be rewritten in the form of (1). In the
simulation the vehicles had the following identical modelling
parameters, which were obtained by identifying a heavy-duty
vehicle [9]:

a11 = −147.1481 a12 = 0.0645 a21 = 0.0123
a22 = −147.1494 b1 = 66.2026 b2 = 31.9835

(21)

If 1 ≤ v ≤ 25 we found - by solving the appropriate LMI [6] -
that the estimation error dynamics ė3 = A3e3 in (3) is quadrati-
cally stable with the following Lyapunov function

W = eT
3

[
246.7608 −4.7350
−4.7350 247.7231

]
e3 ∀i (22)

which makes it possible to use the dynamic inversion based con-
troller.

Suppose now that the vehicle dynamics is uncertain and the
uncertainty can be modelled by an appropriate dynamical sys-
tem connected to the nominal vehicle model according to Fig. 1.
In order to get some quantitative measurement on the robustness
we have to determine the maximal L2 gain γ1 of the potential
disturbance models1 that satisfies the small gain condition for-
mulated in section 3. It can be easily checked, that in our case

α = min(k, λ∗) = k = 1 (23)

γ 2
= max

{
1, v2

1, . . . , v
2
N , λ

2
1,max, . . . , λ

2
N ,max

}
= max

{
λ2

1,max, . . . , λ
2
N ,max

}
= 2522 (24)

This means that, if the L2 gain of the disturbance model satis-
fies the relation γ1 ≤ 1/252 ≈ 0.004 the cooperative system
remains globally stable by means of the results of section 3.
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5 Conclusions
In this paper the robustness analysis of the hierarchical for-

mation control structure [7] has been performed. By exploiting
the strict dissipativity of the passive components in the control
structure we can determine the maximal L2 gain of the uncer-
tainty model at which the closed-loop system remains stable.
The calculations have been demonstrated via a formation con-
trol problem of road vehicles.
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