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Abstract

In this paper some methods developed by the author for the analysis of measurement time series
containing the equally spaced sampled values of continuous-time phenomena having stable proba-
bilistic character are introduced. The neighbourhood figure gives information about the smoothness
of the record with the visualization of the second order probability density function of its nearest
neighbouring values. It can be used for the fast preliminary checking of the time series. For the
quantification of the visual information the neighbourhood number, a dimensionless frequency scale
parameter characterizing the short-term changing rate of the record, is defined. It is suitable for the
numerical rating of the smoothness of the time series and for the evaluation of the applied sampling
frequency in comparison with the character of the sampled continuous function. The neighbourhood
function can be used for the detection of the presence of random measurement errors. Although it
gives complementary information with the autocovariance function, it is sensitive for the small devi-
ation instead of the correlation. A method based on the extrapolation of the autocovariance function
is also introduced for the numerical estimation of the magnitude of the measurement inaccuracies.

Keywords: neighbourhood figure, neighbourhood function, digitally sampled records, time series
analysis.

1. Introduction

For the dynamic stressing of vehicles the applied vehicle models are usually linear
dynamical systems and the excitations (e.g. road surface or profiles, water waves
and atmospheric turbulence) are almost always considered as stochastic processes.
The calculation procedure generally consists of the determination of the input spec-
tral density functions from measurement records and their transformation by the
frequency response function of the vehicle model. For the correct calculation of
the input spectral density function it is enough that the sampling frequency applied
for the measurement satisfies the Nyquist-Shannon criterion [11]. Although the
preceding way of modelling gives acceptable results in practice [2], recently, a con-
version to nonlinear modelling of both the excitation [3, 8] and the vehicle [9] is
noticeable.
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The nonlinear modelling of the excitations means the exploration and ap-
plication of the deterministic natural laws characterizing the phenomena causing
them. Since these laws are usually nonlinear the use of them brings on the chaotic
behaviour of the system, which makes necessary the improvement of the practical
methods using the tools and results of chaos theory. On the basis of the results of
the initial investigations in this subject [3, 8] it can be stated that for the efficient
working of the methods and tools adopted (e.g. phase portrait) a more accurate dis-
crete representation of the phenomena taking place in continuous time is necessary,
because of the application of numerical derivation and the extreme sensitivity of
the chaotic systems for the boundary conditions.

Similar criteria are imposed by the usage of nonlinear vehicle models. In such
cases, the spectral theorem is no more applicable for solving the excitation problem.
Therefore, the calculation is based on the direct solving of the system’s differential
equations in the time domain by numerical integration, of which sufficient working
also claims frequently sampled and smooth time series.

This study deals with some recently developed methods and analysis tools
suitable for the characterization of the smoothness of the time series, for the rat-
ing of the applied sampling frequency comparing to the character of the sampled
continuous function and for the estimation of the magnitude of the random mea-
surement error. All of the procedures introduced are based on the examination of
the short-term unevenness of the time series and result alternative second order
statistics.

In Section 2 the neighbourhood figure, a visual tool for a preliminary fast
checking of the smoothness of the record, is introduced. For the quantification of
the visual information the neighbourhood number is defined and its properties are
discussed in Section 3. The neighbourhood function, a sensitive tool for the presence
of random measurement error, is introduced in Section 4. In the end, in Section 5
the modelling of random measurement error is examined and for the numerical
estimation of its magnitude a numerical method based on the extrapolation of the
autocovariance function is described.

In the following the measured continuous-time signal ζ̃ (t) is considered as a
realization of the stochastic process of ζ̃ (t, ω) characterizing the observed phenom-
enon, where ω denotes the elementary event. On the basis of physical considerations
it can be assumed that the process of ζ̃ (t, ω) has a stable probabilistic mechanism
and its realizations are continuous, differentiable and bounded for all ω. As a con-
sequence of the stable probabilistic mechanism the process is assumed to be weekly
stationary and ergodic for the mean value and the autocovariance function.

The measurement record is a time series containing the measured values of the
continuous realization at equally spaced sampling points in the observation interval
of [0, T ]:

{

ζi = ζ̃ (hi)
}m

i=0
; T = hm. (1)

The results introduced in the following are based on the limits [1] of the empirical
statistics of this stochastic series.
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2. Neighbourhood Figure

Neighbourhood figure, as its name indicates, is a graphical tool for the visualization
of the relations between the nearest neighbouring values of the time series. The
two dimensional set of points {Qi}m−1

i=0 is generated from the time series {ζi}mi=0 by
the transformation of

Qi (ξi, ηi) = (ζi , ζi+1) ; i = 0, 1, ..., m − 1. (2)

In words the coordinates of the points are equal with the adjoining values of time
series. Fig. 1 shows the neighbourhood figures of three different records, a 30 s
long acceleration record measured on a point of a car body in vertical direction
with sampling frequency of 300 Hz and analogue filter cut-off frequency of 30 Hz,
a 200 m long dirt road profile measured with levelling with sampling interval of
10 cm and a 5 s long air flow speed measurement record of wind-tunnel turbulence
digitized with sampling frequency of 2000 Hz and analogue filter cut-off frequency
of 1000 Hz.

Introducing the lag number of j the definition of Eq. (2) can be generalized
beyond the nearest neighbouring values:

Qi (ξi, ηi) =
(

ζi , ζi+j

)

; i = 0, 1, ..., m − j. (3)

The multiplied lag number simulates multiplied sampling interval. The practical
results can be obtained using the basic definition of Eq. (2), this generalized form
helps only to reveal the relevant properties of the plot when j = 1. The generalized
neighbourhood figures of the acceleration record generated with larger lag numbers
can be seen in Fig. 2.

(a) acceleration (b) road profile (c) turbulence

Fig. 1. Neighbourhood figures belonging to various kinds of measurement records

The graphs in Fig. 2 demonstrate that if the observed function ζ̃ (t) is continu-
ous and the sampling interval and the random measurement error are small enough,
the points locate near to the y = x straight line. The graphs in Fig. 2 show that
the points approach to the y = x line with the decrease of the lag number, which
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Fig. 2. Generalized neighbourhood figures generated with multiple lag numbers

is equivalent with the decrease of the sampling interval. Applying the definition of
continuity it is easy to see that if there is no random measurement error, the points
converge to the y = x line when the sampling interval tends to zero. Summarizing,
the width of the cloud of points is characteristic for the local unevenness of the
time series. When the record originates from a continuous function, it depends
on the relationship between the sampling frequency and the short-term unevenness
character of the observed function.

Although, the defining formulas of Eqs. (2) and (3) are the same as that of
the pseudo phase portrait generated with delay coordinates [10], the similarity is
just in form and the previously diagnosed properties of the neighbourhood figures
are originated in the connection with the second order marginal distributions of the
time series. One of its reasons is that now only the shape of the cloud of points is
in interest instead of the reconstructed trajectories.

The shape of the cloud of points sensed by the human eyes can be identified
as the relative density distribution ρ (x, y) of the points. Its exact mathematical
definition is the relative number of points in unit area:

ρ (x, y) = lim
1x→0
1y→0

n (x, y,1x,1y)

N 1y 1x
, (4)

where n (x, y,1x,1y) is the number of points in the small region of [1x,1y]
around the location of [x, y] and N is the total number of points in the plot.

Applying the strong law of large numbers [1] if the vector valued random
variables of Qi (ξi, ηi) are pairwise independent and identically distributed with
the probability density function of pξ,η (x, y), the relative frequency almost surely
[1] tends to the probability:

lim
N→∞

n (x, y,1x,1y)

N
=

x+ 1x
2

∫

x− 1x
2

y+ 1y
2

∫

y− 1y
2

pξ,η (x, y) dy dx. (5)
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Performing the limiting process in Eq. (4) the following limit of

lim
N→∞

ρ (x, y) = pξ,η (x, y) (6)

also exists in the sense of almost sure convergence.
If the observed process is strictly stationary in second order, the following

successive equalities are valid: pξ,η (x, y) = p
(2)
ζ (x, y, j ) = p

(2)

ζ̃
(x, y, hj ), when

m → ∞ and h = const . p
(2)
ζ (x, y, j ) is the second order marginal probability

density function of the stochastic series {ζi} and the first equality is based on Eq. (3).
p

(2)

ζ̃
(x, y, τ ) is the probability density function of the observed stochastic process

ζ̃ (t, ω) and the second equality is the consequence of Eq. (1). Summarizing, the
relative point density of the cloud of points in the generalized neighbourhood figures
depends on the second order probability density function of the observed process,
on the sampling interval and on the lag number:

lim
m→∞

h=const.

ρ (x, y) = p
(2)

ζ̃
(x, y, hj ) . (7)

But this convergence is valid only in mean square [1], because the pairwise inde-
pendency assumed for Eq. (5) is satisfied only asymptotically by the sampled values
of the stochastic process ζ̃ (t, ω).

Eq. (7) means that all of the properties of the shape of the generalized neigh-
bourhood figures, e.g. the symmetries discussed and illustrated in [4], are the
appearance of the same properties of the second order probability density functions
of the record. In the practical case when the lag number j = 1, the shape of the
cloud (and its width as well) depends on the second order marginal probability
density function p

(2)

ζ̃
(x, y, h) of the observed process and on the sampling interval.

As a conclusion, it can be stated that the neighbourhood figure is a fast and
simple tool for the visualization of the second order probability density function
of the nearest neighbouring values of the time series. Thus, it is suitable for the
preliminary qualitative checking of the measurement records. Its simplicity is due
to the natural ability of the human eyes for the recognition of the density distribution
of the cloud of points. For comparison a complex method for the numerical deter-
mination of the second order probability density function using delay coordinates
can be found in [7].

3. Neighbourhood Number

For the quantitative characterization of the width of the cloud of points appearing
in the neighbourhood figure, the neighbourhood number has been defined by the
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expression

δh =
1

σζ

√

√

√

√

1

m

m−1
∑

i=0

(ζi+1 − ζi)
2 , (8)

where σζ denotes the empirical standard deviation of the discrete record and the
subscript h refers to the influence of the sampling interval. Although this quantity
has originally been defined as the normalized R.M.S. value of the vertical distances
of the points of the neighbourhood figure from the y = x straight line, it can also be
originated directly from the record. Introducing the notations

{

ζ ′
i = ζi+1 − ζi

}m−1

i=0
for the incremental time series and σζ ′ for its empirical standard deviation, the
neighbourhood number can be written in the simple form:

δh = σζ ′

σζ

. (9)

If all of the realizations of the observed function ζ̃ (t) are continuous and there is
no random measurement error, increasing the sampling density the neighbourhood
number decreases due to the diminishing of the standard deviation of the incremental
time series and approaches to zero for all ω [1] when the sampling interval tends to
zero [5]:

lim
h→0, m→∞
T =hm=const.

δh = 0 . (10)

If the observed function ζ̃ (t) is even differentiable, another limit can also be proven
in mean square sense:

lim
h→0, m→∞
T =hm→∞

δh

h
=

σ ˙̃ζ

σζ̃

, (11)

where σζ̃ and σ ˙̃
ζ

denote the standard deviations of the stochastic process ζ̃ (t, ω)

and of its derivative ˙̃
ζ (t, ω).

Taking into account the definition formula of the Taylor’s time scale [6] of

λζ̃ =
√

2σζ̃
√

−R̈ζ̃ (0)

=
√

2
σζ̃

σ ˙̃
ζ

, (12)

the right hand side of Eq. (11) can be interpreted as a frequency scale measuring the
shortterm changing rate of the continuous process ζ̃ (t, ω). Moreover, on the basis
of the right hand side of Eq. (9) the neighbourhood number can be recognized as
the same parameter of the discrete record of {ζi}, a dimensionless frequency scale
measuring the short-term changing rate of the time series.

Eq. (9) represents that a small value of the neighbourhood number belongs
to a smooth time series and its limit value of zero in Eq. (10) can be considered as
the case of the infinite smoothness. In case of sampled records originating from
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differentiable function Eq. (11) clearly shows that the value of the neighbourhood
number is proportional with the short-term changing rate of the observed function
and with the length of the sampling interval. Using this equation without the
limiting process in the opposite direction the best estimation of the Taylor’s scale of
the continuous process allowed by the applied sampling interval can be calculated
from the neighbourhood number.

Finally, if the record contains an uncorrelated series of random variables hav-
ing identical mean value and standard deviation [5] the limit of the neighbourhood
number in mean square is

lim
m→∞

δh =
√

2 . (13)

The maximal possible value of 2 is obtained when the correlation coefficient be-
tween the adjoining values of the random series is -1.

4. Neighbourhood Function

Since the diminishing of the sampling interval to zero is not possible in practice,
for the experimental checking of the limits of Eqs. (10) and (11) the neighbourhood
function, a series of neighbourhood numbers calculated with multiple time lags, has
been defined by the formula:

δh (j) =
1

σζ

√

√

√

√

1

m − j + 1

m−j
∑

i=0

(

ζi+j − ζi

)2
. (14)

If the sampling interval is small enough, the beginning trend of this function is
expected to be linear according to Eq. (11) and its extrapolated value to zero lag
number calculated with a polynomial smoothing function is expected to be near to
zero in correspondence with Eq. (10).

Fig. 3 shows the beginning segments of the neighbourhood functions of var-
ious records. All the values as well as the extrapolated value of graph (a) are

√
2

inside the error margin independently the lag number as it is expected on the basis
of Eq. (13) for uncorrelated random series. The beginning part of graph (c) is linear
and the extrapolated value is practically zero in correspondence with the statements
of Eqs. (10) and (11). It shows that the sampling was frequent enough and the
measurement inaccuracies were practically negligible. The beginning segment of
graph (b) is quite curved that suggests that the linear segment cannot be seen, be-
cause the sampling interval is not small enough. But with a more frequent sampling
the linear part could be seen and the extrapolated value would be near to zero. In this
case the sampling frequency was 2000 Hz, while the cut off frequency was 1000 Hz
that seems to confirm the preceding suspicion. The beginning part of graph (d)
is not curved, but gives a significantly non-zero extrapolated value. It seems that
the further decrease of the sampling interval would not modify the extrapolated
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value and the similarity to graph (a) suggests that the record contains a fast fluctu-
ating component that becomes dominant at small scale and can be recognized as an
additive random measurement error.

(a): series of independent Gaussian random variables, length: m = 8000
(b): turbulence, sampling: fS = 2000 Hz, analogue filtering: fC = 1000 Hz, length: T = 5 s
(c): acceleration record, sampling: fS = 300 Hz, analogue filtering: fC = 30 Hz, length: T = 30 s
(d): dirt road profile, measured with levelling, sampling interval: h = 10 cm, length: λ = 200 m

Fig. 3. Neighbourhood functions belonging to various records

Fig. 4. Relationship between the neighbourhood and the autocovariance functions

In the following section, improved models of digital sampling taking into
account measurement errors are introduced for the interpretation of the non-zero
extrapolated value of the neighbourhood function. For the examination of the mod-
els, an important relationship valid in mean square sense between the neighbourhood
and the autocovariance function is introduced [3]:

lim
m→∞

h=const.

[

δ2
h

2
+

Rζ

σ 2
ζ

]

= 1. (15)
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The formula represents that these functions give complementary information, but
the neighbourhood function (and the neighbourhood number as well) is sensitive
in the domain of small deviation when the correlation is still almost perfect, while
the correlation coefficient is sensitive for the weak synchronism (Fig. 4).

Taking into account that the beginning part of the autocorrelation function of
a differentiable process can be approximated by the parabola [6] of

lim
τ→0

Rζ̃ (τ ) = σ 2
ζ̃



1 −
(

τ

λζ̃

)2


 (16)

and using Eq. (15) the linearity predicted by Eq. (11) can also be confirmed. This
linearization is the main reason of the extreme sensitivity of the neighbourhood
number and function in the domain of high correlation (Fig. 4).

5. Modelling and Estimation of Random Measurement Error

A simple model of the imperfect sampling suggested by the similarity between
graph (a) and graph (d) in Fig. 3 is given by the equation

ζi = ξ̃ (hi) + ηi ; i = 0, 1, ..., m, (17)

where ξ̃ (t) is the observed continuous function and the measurement error is taken
into account as an uncorrelated random series of ηi having zero mean and identical
standard deviation of ση added to the digitized values.

In the presence of this kind of additive discrete measurement error, on one
hand, the autocovariance function of the discrete record is obtained in the form of

lim
m→∞

h=const.

Rζ (j) =
{

Rξ̃ (0) + σ 2
η ; j = 0

Rξ̃ (hj) ; j 6= 0 , (18)

where Rξ̃ (τ ) is the autocovariance function of the observed process and the limit
is valid in mean square. On the other hand, the neighbourhood number does not
converge to zero when the sampling interval tends to zero but to the ratio of the
standard deviation of the random component and the total standard deviation of the
discrete record for all ω [5]:

lim
h→0, m→∞
T =hm=const.

δh = ση

σζ

. (19)

This result accounts for the non-zero extrapolated value of the neighbourhood func-
tion.

Since the beginning segment of the neighbourhood function obtained by the
substitution of Eq. (18) into Eq. (15) has an inflexion point, its polynomial smoothing
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gives a biased estimation of the limit value of Eq. (19). Nevertheless, Eq. (16) is still
valid, therefore, the extrapolation of the beginning segment of the autocovariance
function of the time series gives acceptable result. The recommended smoothing
function is a polynomial containing only even order components fitted to several
beginning points except the one relating to zero lag number. The estimated value
of the variance of the random measurement error is obtained by the difference
between the variance of the record and the extrapolated value. Moreover, using the
coefficients of the fitted curve a more accurate estimation of the Taylor’s scale can
also be given than that can be calculated with Eq. (11).

Fig. 5a illustrates the relation of Eq. (18), while the beginning segment of the
autocovariance function of the dirt road record with the extrapolating curve, which
is a sixth order parabola fitted to four points, is shown in Fig. 5b. The estimated
variance of the random error is 0.206 cm2.

(a) Illustration
(b) Result of measurement with

the extrapolating curve

Fig. 5. The autocovariance functions with the presence of discrete measurement error

Although the model of the discrete measurement error explains the non-zero
extrapolated value of the neighbourhood function, it cannot be valid for all practical
cases. On one hand, it can be assumed that with the decrease of the sampling interval
the adjoining values of the random error become correlated. On the other hand, this
model cannot represent the measurement noise occurring on the analogue side of
the A/D converter.

Nevertheless, this model is valid when the time consumption of the measure-
ment of the individual values is much less than the separation time between them.
This condition is satisfied in case of relatively rarely repeated fast measurements,
e.g. levelling or the determination of the rate of the flow based on the measurement
of the propagation speed of disturbances in different directions.

A model suitable for the consideration of the analogue measurement noise is
defined by the equation

ζi = ζ̃ (hi) = ξ̃ (hi) + η̃ (hi) ; i = 0, 1, ..., m, (20)

where the noise is represented by a Gaussian stochastic process of η̃ (t) having zero
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mean and autocorrelation function of Rη̃ (τ ). Assuming that there is no correlation
between the noise and the observed process the autocorrelation function of the
record is obtained by the sum of

lim
m→∞

h=const.

Rζ (j) = Rζ̃ (hj) = Rξ̃ (hj) + Rη̃ (hj) , (21)

where the limit is valid in mean square.
In a general case when the noise has long-term correlation the additive term

Rη̃ (τ ) dislocates several points of the resultant autocovariance function compared
to the original one. Thus, the variance of the noise cannot be sufficiently estimated
by extrapolation as it is illustrated in Fig. 6a. However, if the correlation length
of the noise is smaller than the sampling interval, which means that τ > h ⇒
Rη̃ (τ ) = 0, the summation modifies only the value of Rζ (0) as it can be seen in
Fig. 6b. Therefore, the extrapolation works well similarly to the case of the discrete
error. Fig. 6c shows the beginning segment of the autocovariance function of the
turbulence record with the extrapolating curve, which is a sixth order parabola fitted
to four points. The estimated variation of the random error is 0.0307 m2.

(a) Illustration of long-
term correlation

(b) Illustration of short-
term correlation

(c) Result of measurement
with the extrapolating curve

Fig. 6. The autocovariance functions in the presence of fast fluctuating analogue noise

Since in practice only the autocovariance function of the discrete record is
known (Fig. 6c), the efficiency of the estimation cannot be checked directly. Fur-
thermore, in a general case the process of η̃ (t) can be recognized as the sum of the
high frequency components of the signal at the input of the A/D converter. This
part of the input signal is evaluated as measurement inaccuracy by the extrapolation
method, because its fast fluctuation cannot be tracked with the applied sampling
frequency. If there is any assumption or a priori knowledge about the noise sources,
it can be identified with the random measurement error. However, the preceding
argumentation shows that a loss of information eventuates due to sampling. The
fine structure of the observed phenomena cannot be transformed to discrete form,
but the variance of the lost components can be estimated.

Finally, for the checking of the estimated value of the variance of the random
error a repeated calculation of the neighbourhood function is recommended accord-
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ing to Eq. (15) after the changing of the first value of the autocovariance function
to the extrapolated one.

6. Conclusions

The objective of this paper was to introduce some methods developed by the author
for the analysis of digital records originating from the equally spaced sampling
of continuous-time phenomena having stable probabilistic character. The neigh-
bourhood figure and neighbourhood number are suitable for the characterization of
the smoothness of the time series and for the rating of the applied sampling fre-
quency in comparison with the changing character of the observed process. While
the neighbourhood figure can be used for a fast preliminary visual checking, the
neighbourhood number gives exact quantitative information.

The neighbourhood function with its extrapolating curve is an efficient tool for
the detection of the presence of random measurement errors, because it is sensitive
for the small dispersion of the measurement values. For the numerical estimation
of the magnitude of the measurement inaccuracies an estimation procedure based
on the extrapolation of the autocovariance function was also introduced.
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