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Abstract

The paper suggests the necessity of the estimation of unmeasured variables of traffic systems. The
presented method proposes constrained state estimation of unmeasured traffic variable such as turning
rates. The weighted constrained state approach uses moving horizon along the state trajectory which
permits to handle equality and inequality constraints belonging to the nature of the traffic model. A
numerical example illustrates the importance of constrained estimation.
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1. Introduction

Automotive technologies grain ground in modern traffic control systems, since there
is a perpetual growing need of traffic automation.

In many cases, control-related variables are almost inaccessible for design
unless applying estimation techniques. In such a situation the approximation,
computer-based estimation of these variables could be useful. The applications
of traffic simulation can be classified in several parts. Some basic classifications
are the division between microscopic, mesoscopic and macroscopic, and between
continuous and discrete time approaches. The methodology of static and dynamic
analysis of traffic systems is known. Several state variables, derived from the de-
scription of the dynamic, can be used for operational and planning aspects.

A newly emerged area is the demand estimation through microscopic traffic
modelling. The dynamic aspect of traffic simulation in a traffic system needs the
previously measured or estimated volumes of vehicles. Since the measurement of
certain variables in the dynamic description is rather costly, one tries to estimate
them. The observation of permanently varying turning rates in a simple intersection
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is rather costly, however, the amount of the turning vehicle could be applied for
traffic light harmonization, generally speaking for traffic light control.

Many estimation techniques exist for giving reliable estimation on dynamic
OD(Origin Destination) matrix, their results, however, could be different. The
short review on OD estimation begins with the Least Squares (constrained or not),
statically based methods such as Likelihood methods [16] and Kalman filtering
[5, 3, 4], or Bayesian estimator [26]. Sometimes, combined estimators, using
constraints or apriori knowledge about the intersection can be applied.

The greatest drawback of most estimation techniques is the lack of constraints.
Usually, to formulate constraints in the estimation either equality or inequality is
rather difficult.

Constraints must be taken into account in course of a dynamic process, mainly
in OD estimation. A class of optimal state estimation methods is called Moving
Horizon Estimation (MHE) methods [7, 18, 22]. On the way of getting a closer look
to Moving Horizon Estimation (MHE) processes one can enumerate the contribu-
tion of several researchers. After formulating the estimation in a recursive form,
Tyler and Morari showed the property of stability of the linear filter. Findeisen
summarized and featured the advantage of MHE against the existing widespread
methods. Rao has elaborated the filter stability even for nonlinear, constrained
highly complicated dynamic systems.

The MHE can be concerned as the dual of the Model Predictive Control,
though some special assumptions must be given for filter stability. Another advan-
tage of the Moving Horizon Estimation can be the fact that constraints assumption
can be considered in the estimation process. In the following space the Moving
Horizon state estimation method is applied in intersection model.

The paper offers the contribution in 5 chapters. After a short introduction, the
intersection as a basic element of the traffic system is detailed in the first section.
The second section summarizes briefly the estimation techniques for split rate ap-
proximation and shows how to apply them for a basic traffic system. The third part
gives a numerical example. The conclusion contains further research problems.

2. Traffic Modelling

One of the basic elements in traffic network systems is the intersection. One di-
vides the intersection into three parts such as entry, exit and internal flows. The
measurement of both the entry and the exit flows might be assumed. Traffic density
cannot be measured without error, so the idealized flow plays role only in theoretical
aspects. A model setup of entry-exit travel demands regarding an intersection al-
lows estimation methods to determine the internal link flows. The key of the model
buildup is the split parameter ratios. The split rate determines the turning percent-
age of the vehicles entering a traffic system. If one assumes that these turning rates
are slowly varying split probabilities, the methods to determine probabilities are
called split ratio methods [5, 15]. The split rates define a turning proportion.



ESTIMATION OF DYNAMIC ORIGIN DESTINATION MATRIX 5

It is supposed that the proportions of entry-flow split, according to the desti-
nations, are variant. At this intersection there are no traffic lights and the right of
way is not regularized, since from point of view of the estimation one only takes
into account the time varying input and output volumes. However, traffic regulation
can be applied in model description. In this case the mathematical model for the
dynamic process of exit volume is rather elementary.

q1

 
 

y3 
 
 

  q2 

x23 

x24 

  y4 

x13 

x14 

Fig. 1. A simple intersection with two inputs and two outputs

To show the problem the following variables are defined:

• qi (k) the traffic volume (the number of vehicles over a time period) entering
the intersection from entrance i, during time interval k = 1, 2, . . . , N

• y j (k) the traffic volume (the number of vehicles over a time period) leaving
the intersection from exit j , during time interval k = 1, 2, . . . , N

• xi j (k) the percentage of qi (k) (split rate) that is destinated to exit j , k =
1, 2, . . . , N .

Let us consider the following intersection model

y j(k) =
m∑

i=1

qi (k)xi j (k) + v j (k), (1)

where i = 1, ..n and j = 1, ..m. v j (k) is a zero mean noise term. The input
measurement is a noisy term, since qi(k) = q̃i (k)+ζi(k), with the same assumption
for the noise ζi(k) as above.

Split variables are independent trials. The model and its constraints are given
by

xi j (k + 1) = xi j (k) + wi j (k) (2)
0 ≤ xi j ≤ 1 (3)

m∑
j=1

xi j (k) = 1. (4)
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The random variation in split parameter is small, and the wi j (k) is a zero mean
random component. All random components ζ , v, w are mutually independent
terms. The scheme of the MH observer is given in Fig.2. For the sake of simplicity,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x̂   

Process 
LTV traffic model 

y q 

v ζ MHE observer 
with constraints: 

0<=xij<=1;  Σ xj=1 
 

with noises: 
ŵ,v̂,ζ  

Fig. 2. The MHE observer

let us arrange all elements of the OD matrix in a single vector and use the following
notations:

xk = [xi j (k)]T

wk = [wi j (k)]T

vk = [v j (k)]T

The problem is to observe the xk states under certain conditions. The latest esti-
mation of the split parameters can be treated as a filtering problem. The difficulty
of the task is that constraints have to be taken into consideration. In the presented
case, two types of constraints are applied (inequality and equality), but further con-
straints may be implemented. When using state estimation, constraints can only be
put on the observer with difficulty. In the following section one tries to emphasize
the effectiveness of the constraint Moving Horizon Estimation (MHE) method as a
reliable state observer of split ratios of the intersection layout shown in the Fig.1.

3. Receding Horizon State Estimation

The following section describes, in an inductive manner, the general receding hori-
zon approach. Starting form the presentation of the simple one step back estimation
process throughout the N stepped one, the final conclusion is the general infinite
stepped estimator (Batch Estimator) subjected to constraints. The proof of the filter
stability is not outlined in this article.
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Let us consider the following discrete linear time-variant system

xk+1 = Axk + Gwk (5)
yk = Ckxk + +vk (6)

with x0 given. One can denote that for the first view, without assuming anything
about the noise components, wk is the state error and vk is the measurement noise
vector, the description remains totally deterministic. x(t) is the state vector. A, G
are constant parameter matrices, Ck is time-variant output map of the dynamic
system.

In our case one can neglect the control input (see previous section to under-
stand the nature of the intersection model), since the split rate are random trials,
with G = A = In where n is the number of states (i.e. the number of turning rates).
In that case the random components can be filled with real content up. These para-
meters are unknown, because in most of the cases only input and output detectors
are installed in intersections.

If one chooses the horizon equal to one (N = 1), the one stepped moving
estimation process uses always the 1 back stepped measurement and the actual one.
Let as denote the actual step by k, and the one stepped estimator is given by

min
(x̄0,ŵk−2|k ,ŵk−1|k )

�k (7)

�k = ŵT
k−2|k Q−1

0 ŵk−2|k + ŵT
k−1|k Q−1ŵk−1|k + v̂T

k−1|k R−1v̂k−1|k + v̂T
k|k R−1v̂k|k + �0

(8)
or in a more compact form

min
(x̄0,ŵk−2|k ,ŵk−1|k )

[
ŵk−2|k ŵk−1|k

] [
Q−1

0 0
0 Q−1

][
ŵk−2|k
ŵk−1|k

]

+ [
v̂k−1|k v̂k|k

] [
R−1 0

0 R−1

] [
v̂k−1|k
v̂k|k

]
+ �0 (9)

subjected to the following dynamic equality constraint

x̂k−1|k = x̄k−1 + Gŵk−2|k (10)
x̂k|k = Ax̂k−1|k + Gŵk−1|k (11)

and with the following measurements:

yk−1 = Ck−1 x̂k−1 + v̂k−1 (12)
yk = Ck x̂k + v̂k . (13)

One needs to note that the C output map is a time-dependent one, since the ele-
ments of C are the input measurements. Henceforth one defines the supplementary
equality and inequality constraint coming from the geometry of the intersection (see
3,4).
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Geometric (see Fig. 1) equality constraints are given by

x̂13 + x̂14 = 1 (14)
x̂23 + x̂24 = 1. (15)

One can augment the estimation process with some other constraints subjected to
noise as well.

Q and R are weighting matrices. If the expected output is small, R−1 has to
be chosen large compared to Q−1, and the resulting sensor noise vector becomes
small, compared to ŵ j |k . On the other hand, if the measurements are not reliable,
Q−1 should be chosen large, compared to R−1.

�0 is the so-called arrival cost to the analogue of the cost to go in MPC
technique. The arrival cost summarizes all knowledge about the best estimation
before the N-th step. For the unconstrained linear case, the arrival cost can be
expressed explicitly. If state or noise inequality constraints, or nonlinearities are
present, we do not have an analytic expression to generate the arrival cost. Though
an analytic approach is unavailable, an approximate cost may be given. When
inequality constraints are inactive, the approximation is exact. Therefore, the poor
choice of the arrival cost leads to the filter’s instability.

The Moving Horizon Estimation scheme can be seen in Fig.3.
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Fig. 3. General Moving Horizon Estimation process
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Let the generalized MHE optimization criteria with a horizon N be defined
by the following functional

min
(x̄k−N−1,ŵk−N−1|k ,...,ŵk−1|k )

�k (16)

�k = ŵT
k−N−1|k Q−1

0 ŵk−N−1|k+
k−1∑

j=k−N

ŵT
j |k Q−1ŵ j |k+

k∑
j=k−N

v̂T
j |k R−1v̂ j |k+�0 (17)

subject to:

x̂k−N |k = x̄k−N + ŵk−N−1|k (18)
x̂ j+1|k = Ax̂ j |k + Gŵ j |k j = k − N − 1, . . . , k − 1 (19)

y j = Cx̂ j |k + v̂ j |k j = k − N − 1, (20)

0 ≤ xk ≤ 1 (21)
m∑

j=1

x jk = 1, . . . , k (22)

with R−1, Q−1 which are symmetric positive semi-definite noise weighting matri-
ces. While Q−N |k penalizes the x̄k−N initial state, R−1 weights the output prediction
error and Q−1 penalizes all estimated state noise.

To find the initial condition of general MHE, we used a batch estimation for
the first N−1 step estimates. The stability of the MHE filter is effected by the choice
of the initial condition and the weighting matrices, as well. The batch estimator is
an infinite horizon state estimator. When applying batch estimation, the entire past
behavior of the system is known.

min
(x̄0,ŵ−1|k ,...,ŵk−1|k )

�k (23)

�k = ŵT
−1|k Q−1

0 ŵ−1|k +
k−1∑
j=0

ŵT
j |k Q−1ŵ j |k +

k∑
j=0

v̂T
j |k R−1v̂ j |k, (24)

subject to:

x̂0|k = x̄0 + ŵ−1|k (25)

x̂ j+1|k = Ax̂ j |k + Gŵ j |k (26)

y j = Cx̂ j |k + v̂ j |k (27)

0 ≤ xk ≤ 1 (28)
m∑

j=1

x jk = 1. (29)
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However, Batch Estimator, even for a small state space is intractable from the point
of view of the numerical computation, as the Batch Estimator window is infinite.

Sliding alies estimation windows and contains an initial condition to the
method. There is more than one method to assure the transit between to windows,
the most plausible approximation is to use the estimated, filtered state. However,
there is no direct probabilistic relation for the use of the one step before calculated
smoothed state estimation, cycling behaviour of estimation can be avoided. To slide
between windows the filtered estimate update is preferred.

4. Simulation Results

In the following space the constrained general MHE is solved for a simple traffic
system. Let us assume that the q1 and q2 input volumes, entering the intersection
and y3, y4 volumes leave the intersection. The simulation of such a traffic system
creates 4 split rate.

A software for traffic simulation was elaborated and treated as the reference
real environment of intersection, furthermore the data provided by it are the ‘real’
data of the split rate estimation.

This software is a modular simulation environment, what means that – except
for some fundamental issues – the simulation kernel can be easily changed. This
feature makes the environment able to provide the proper data structure for our
scope and the Matlab implementation. The fundamental structure possesses the
‘TSimulation’ and the ‘TNet’ classes which are responsible for the kernel and the
topological functionality of the microscopic model. For the complete topological
modelling, multiple basic classes have been implemented, such as ‘TLine’, ‘TLane’,
‘TCell’ and ‘TNode’. Using these classes together, any basic road network can
be easily built. For the modelling of the moving entities (such as cars) in the
environment, the ‘TCar’ class has been introduced. Any moving object can be
derived from this class. Yet, this environment had not got any interface, signal or
control properties, so the definition of a generic class was necessary. The ‘TObj’
base class is the solution of implementing any other structure into the kernel. All
other classes are inherited from this interface class, and this is the feature that makes
this environment modular, and able to communicate with other processes. There are
multiple inherited classes of the TObj responsible for the more precise modelling,
such as ‘TCarGenerator’, ‘TLamp’, ‘TSimEvent’, ‘TMeasure’, ‘TNodeMeasure’
etc... When we are talking about microscopic traffic modelling, it means that we are
studying the individual vehicle behaviour. The model examines the current state
of the vehicle (i.e. speed, position, acceleration etc), its environment (i.e. speed
limit, priorities, signals, nodes), its desired travel parameters (i.e. speed, routing),
and the vehicles interacting with it (cars before, after, in the neighboring lanes, in
the opposite lane etc). By using all known parameters, the vehicle itself decides its
way of behaviour for the current moment, [10]. The main aspect of microscopic
models is the ‘car-following model’, where the vehicle adjusts its acceleration (or
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speed) using the states of the interacting vehicles. Other base decisions are the lane
changing, overtaking, and object related interactions. The inbuilt car behaviour
model uses Fuzzy-Sugeno type [13] procedures for acceleration, deceleration, lane
changing, and for other object-dependent decisions. The input fuzzy sets of the car
following are the distance, speed difference and the acceleration difference between
the vehicle and the vehicle in front. The lane changing model examines the potential
of free flow in the current lane, and the potential for the neighbouring lanes. The car
generation routine generates the following times as a Gaussian distribution about
the reciprocal mean traffic flow (frequency). The deviation is half of the frequency.
Under this scope, the vehicle entities do not have a preferred routing, they decide
their directions of turning randomly at each node entrance.

The measurement of the incoming cars is done by the ‘TMeasure’ class. The
entities of this class can simulate a ‘measurement at a point’ process, which means
that they can detect the vehicles passing by them. The measurement records the
time of passing, and the speed of the vehicle. The proceeding of the traffic flow uses
a moving time frame at each measurement point, with a frame length of ten minutes.
The output of this process is the sum of the cars passing by the measurement point
in the last ten minutes. (Traffic flow in [veh/10 min]) The data required for the
project is the in- and outgoing traffic flow of the node, so measurement points are
placed at the end of each incoming lane, at the beginning of each outgoing lane,
and at each virtual turning lane in the node for validation purposes.

In the following one tries to gain the turning rates using MHE approach. After
describing the discrete time model of the system one can assume to have

xk+1 = Inxk + wk

yk = Cxk + vk,

where the time-dependent C contains the elements of q1,2. The structure of C
depends upon the layout of the intersection.

Let us suppose we have 5 samples in every second. For solving MHE numer-
ically, one may use a quadratic programme-solver. Let the horizon comprise 1–5
samples, and let us apply the diagonal scaling for R, Q the following results are
gained. The simulation covered 300 samples, which took 1 minute. Simulating the
split parameter for intersection with 1, 3 or 5 samples a long horizon can be seen
in Figs. 4, and 5.

In each Figure the ‘real’ split rates are denoted by dotted line.
Not only the horizon length has an important role on state estimation but also

the weighting factors Q and R. The performance of the estimation contrasted can
be seen in Figs. 6 and 7.

The MHE simulation time is relevant. Even for a horizon of 5 samples and
having constraints the elapsed time between starting and stoping was more than five
minutes in a Pentium 4, 2.4 GHz PC machine.



12 B. KULCSÁR et al.

50 100 150 200 250 300

0.45

0.46

0.47

0.48

0.49

0.5

Samples

P
er

ce
nt

ag
e 

of
 th

e 
in

flo
w

 v
ol

um
e

Estimated split rate parameters

Real
N=1
N=3
N=5

50 100 150 200 250 300
0.5

0.51

0.52

0.53

0.54

0.55

Samples

P
er

ce
nt

ag
e 

of
 th

e 
in

flo
w

 v
ol

um
e

Estimated split rate parameters

Real
N=1
N=3
N=5

Fig. 4. Real and estimated split rates turning from input 1 to 3, 4
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Fig. 5. Real and estimated split rates turning from input 2 to 3, 4

5. Conclusion

The article summarizes the MHE approach for a simple traffic system, for an in-
tersection. In traffic engineering the estimation of split variables is important and
could create the base of further control problems. A numerical example has been
shown to demonstrate how to apply the Moving Horizon technique for split rate
observation.

The MHE optimal estimation method shows a possible way for including con-
straints into the design procedure. One could possibly extend the state estimation,
based on MHE algorithm with some additional constraints in inequality form on
states, noise or other variables.

The general MHE technique could be applied to nonlinear processes which
will be in the focus of our traffic system estimation research.
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Fig. 6. Influence of the Q weighting on estimated split rates turning from input 1 to 3, 4
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Fig. 7. Influence of the R weighting on estimated split rates turning from input 2 to 3, 4
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