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Abstract

As crash data have distinctive behavior like over-dispersion, researchers have used statistical methods to deal with this unique 

behavior of crash data specifically. This study employed generalized linear modeling techniques to develop the model. It was assumed 

that the accident counts followed negative-binomial distribution, and the link function was chosen to be the log link function. Negative-

binomial modeling technique was chosen over Poisson distribution because it is the most used technique by many researchers as crash 

data may encounter over-dispersion. The accident data set showed greater variability between its variance and mean. The accident 

frequency distribution is shown in this study that it is highly skewed, with a very high number of road segments registering zero 

accidents. Negative binomial distribution was chosen over Poisson distribution after comparing Akaike’s Information Criterion (AIC) 

and Bayesian Information Criteria (BIC). The method is widely applied to count data. Twenty-two parameters were estimated in the 

model. Since p < 0.05 in the omnibus test, the null hypothesis is rejected, which indicates that the model is reasonably fit. The strongest 

variables in the model were witnessed to be the length of the links, number of lanes, average daily traffic, bus lane, number of buses 

and trolleys, and HGVs.
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1 Introduction
A road traffic accident has become the 8th leading cause 
of death for all age groups, from the 9th leading cause of 
death. Now it is also the leading cause of death for chil-
dren and young adults aged 5–29 years. Its impact on 
peoples' mobility choices is overlooked when we think 
of the problems due to a traffic accident. In addition to 
the physical and property damage, people are less likely 
to bike or walk around unsafe conditions (World Health 
Organization, 2018). The threat of road crashes and signif-
icant public health and economic problem to communities 
also influence people's travel choices (Kiss et al., 2013).

In road safety research, analysts are interested in pre-
dicting road crashes in terms of location, frequency, pat-
tern, and severity in order to ensure better traffic opera-
tions and save lives (Mussone et al., 2017).

Analyzing the association between relevant contribut-
ing factors and traffic accidents is crucial in traffic safety 
management (Ye et al., 2018). Regression models play 
a significant role in road safety. These models can be used 
for various purposes, such as establishing relationships 
between motor vehicle crashes and different covariates 

(i.e., understanding the system), predicting values or 
screening variables (Geedipally et al., 2012).

Accident rates can be related to selected factors with 
models (Greibe, 2003). Accident data is known to be count 
data. It is known that the traditional regression model can-
not account for the differences among observations (i.e. 
heterogeneity) (Elvik, 2011). The most common approach 
used in modeling this type of data is the Poisson regres-
sion. However, because of overdispersion associated with 
the use of the Poisson model, researchers usually consider 
the negative binomial model as a potential alternative 
(Agresti, 2007).

Though the selection of a specific model hinges on the 
research's objective and the nature of the response com-
pared to statistical modeling techniques (Mekonnen and 
Sipos, 2022) many studies have been carried out over the 
course of years using statistical modeling techniques to solve 
problems related to road traffic accidents. Lord et al. (2008) 
applied Conway-Maxwell-Poisson generalized linear model 
to analyze motor vehicle crashes; Prieto et al. (2014) ana-
lyzed accident blackspots with discrete generalized pareto 
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distribution; Geedipally et al. (2012) employed negative 
binomial-Lindley generalized linear model to analyze crash 
data. As crash data have distinctive behavior like over-disper-
sion, researchers have used statistical methods to specifically 
deal with this unique behavior of crash data. This unique 
behavior also inspired researchers to come up with different 
new modeling techniques (Shirazi et al., 2016). The negative 
binomial distribution is quite the same as the Poisson dis-
tribution, however, unlike the Poisson distribution, the vari-
ance of the negative binomial distribution exceeds its mean. 
As such, if the variance of the observed outcome is suspected 
to be larger than its mean, the negative binomial distribution 
is more suitable compared to the Poisson distribution. 

Generalized Linear Models (GLM) with negative bino-
mial distribution for errors have been commonly used 
to estimate safety at the level of transportation planning 
(Gardner et al., 1995; Geedipally et al., 2012; Hilbe, 2011; 
Shirazi et al., 2016; Wood, 2002). GLMs with log link 
function and negative binomial distributions are widely 
used to relate accidents with explanatory variables (Maher 
and Summersgill, 1996; Wood, 2005).

Few or no such studies have been conducted in Budapest, 
except for Harmati et al. (2008) developed energy distribu-
tion model of car body deformation using linear parameter 
varying (LPV) representations and fuzzy reasoning in 2008.

2 Description and preparation of data
2.1 Description of data
The total number of road links in Budapest that are con-
sidered in this model is 4,701. The total length of road net-
works in the dataset is 1,310 km. The average link length 
is 0.28 km. 1,586 accidents that occurred on the road links 
in the city over three years from 2016 to 2018 were con-
sidered in the model. That is a huge dataset despite the 
fact that it is usually witnessed in the field of road safety 
research, that one of the challenges is limited data. 

Many studies used hundreds or even dozens of observa-
tions due to the limited availability of crash and highway 
data (Wu and Lord, 2017). Fig. 1 is a map from the ArcMap 
10.4.1 showing the distribution of crashes on the road links 
for the city of Budapest for the three study years.

2.2 Data preparation
To conduct sound traffic safety study and practice, 
researchers should have a better understanding of their 
data (Zhao et al., 2019). Information about road elements 
is normally collected in the form of nodes and links, with 
nodes as intersections and links as segments (Qin and 

Wellner, 2012). The Budapest road network shape files 
and accident datasets were imported to ArcMap 10.4.1. 
Crashes are not completely randomly distributed but 
highly associated to the traffic condition and geometric 
features of the road. This postulate leads researchers to 
conduct segment based traffic safety analysis (Zhao et al., 
2019). A buffer radius of 50 m was taken at every node or 
junction as the sample is shown in Fig. 2. The segment 
which is out of the buffer radius, or the midblock section 
was considered as road link. After buffering, the inter-
section point between the buffer and the links were found 
and segmentation was completed. 

Fig. 1 Crash distribution on Budapest road links from 2016 to 2018 
(Source: Authors)

Fig. 2 Buffering of crashes with 50 m radius from nodes 
(Source: Authors)
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Roadway segmentation is partitioning roadways into seg-
ments to create the observations for modelling. Segmentation 
heavily affects the modelling of roadway crash frequen-
cies because crashes are rare events. Very short segments 
result in many segments with zero crashes, which leads to 
over-dispersion. Over-dispersion means that the variance of 
crash data exceeds its mean. For the accident data in this 
study, the variance was found to be 1.992, and the mean is 
0.66, which shows a greater variability. It creates challenges 
for statistical inference because it is difficult to accurately 
assign a crash to a segment if segment lengths are very small 
(Lord and Mannering, 2010).

The next step was to assign crashes, as the sample is 
shown in Fig. 3 and Fig. 4, to individual road elements. 
After assigning crashes to segments, an attribute table 
with crash information was exported to a separate Excel 
file to prepare it for modelling. 

Accidents and frequency of road links are summarized 
in Table 1.

The event dealt with in this study is rare and the distri-
bution of number of accidents is highly skewed, with fre-
quencies showing peak for lower number of accidents and 
sharply declines towards the right end for higher number 
of accidents.

Fig. 5 shows the frequency distribution of accidents 
occurred in Budapest City from 2016 to 2018 on road 
segments.

Table 1 Crashes and frequency of road links (Source: Authors)

No. of 
accidents

No. of 
road links % No. of 

accidents
No. of 

road links %

0 3115 66.3 9 3 0.1

1 909 19.3 10 3 0.1

2 350 7.4 11 2 0.0

3 141 3.0 12 1 0.0

4 75 1.6 15 1 0.0

5 49 1.0 16 1 0.0

6 19 0.4 17 1 0.0

7 19 0.4 18 1 0.0

8 10 0.2 28 1 0.0

Total 4701 100.0

Fig. 3 Crashes outside the buffer zone (Source: Authors)

Fig. 4 Crashes within the buffer zone (Source: Authors)

Fig. 5 Number of crashes on Budapest road links from 2016 to 2018 
(Source: Authors)
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3 Modeling
3.1 Model structure
Generalized linear modelling techniques were employed to 
develop the model. The GLM generalizes linear regression 
by allowing the linear model to be related to the response 
variable via a link function and by allowing the magnitude 
of the variance of each measurement to be a function of 
its predicted value. The GLM consists of three elements. 
An exponential family of probability distributions, a lin-
ear predictor, and a link function (Aliakbar Golkar and 
Valizadeh Haghi, 2011).

The random component of a GLM consists of a response 
variable Y with independent observations ( y1 , …, yN ) from 
a distribution in the natural exponential family. This fam-
ily has probability density function or mass function of 
the form: 

f y a b y y Qi i i i i i; exp� � �� � � � � � � � ��� �� . (1)

Several important distributions are special cases, 
including the Poisson and binomial. The value of the 
parameter θi may vary for i = 1, …, N, depending on the 
values of explanatory variables. The term Q(θ) is called 
the natural parameter.

Poisson regression is utilized when a researcher has 
a count data on some dependent measure representing the 
incidence rate of some event (Moksony and Hegedűs, 2014). 
However, when working with this this distribution one can 
assume that the mean of the distribution is equal to its vari-
ance. When the variance of a distribution is greater than its 
mean, the distribution is said to be over-dispersed. 

An alternative strategy for modeling involves using the 
negative binomial distribution. It has the same "sample 
space" as the Poisson distribution but also has an addi-
tional parameter used to model the variance. This parame-
ter is referred to, unsurprisingly, as the dispersion param-
eter (Gardner et al., 1995).

The systematic component of a GLM relates a vector 
( η1 , …, ηN ) to the explanatory variables through a linear 
model. Let xij denote the value of predictor j( j = 1, 2, …, p) 
for subject i. Then 

� �i j ij
j

x i N� � �� , , ,1  (2)

This linear combination of explanatory variables is called 
the linear predictor. Usually, one xij = 1 for all i, for the coef-
ficient of an intercept (often denoted by a) in the model.

The third component of a GLM is a link function 
that connects the random and systematic components. 

Let μi = E( Yi ), i = 1, …, N. The model links μi to ηi by 
ηi = g( μi ), where the link function g is a monotonic, differ-
entiable function. Thus, g links E( Yi ) to explanatory vari-
ables through the formula" (Agresti, 2002):

g µ x i Ni j ij
j

� � � � ��� , , ,1 . (3)

In this study, it was assumed that the accident counts 
follow negative-binomial distribution, and the link func-
tion was chosen to be log link function. Negative-binomial 
modeling technique was selected because it is the most 
used technique by many researchers as crash data may 
encounter over-dispersion. 

Overdispersion may cause standard errors of the esti-
mates to be deflated or underestimated, i.e. a variable may 
appear to be a significant predictor when it is not actually 
significant (Hilbe, 2011).

Assumption: 

Y X m a Var y x µ µi i i� � � � � � � � �NB , , � 2 , (4)

where α is the dispersion parameter that indicates the 
degree of over-dispersion.

In negative binomial regression, the mean of y is deter-
mined by the exposure and a set of k regressor variables 
(the x's). The expression that creates a relationship among 
these quantities is 

µ E Y x X X Xi i i i i k ki� � �� � � � � ���� �exp � � � �
0 1 1 2 2

, (5)

where β0 is called the intercept. The regression coeffi-
cients β1 , β2 , …, βk are unknown parameters that are esti-
mated from a set of data. Their estimates are symbolized 
as b1 , b2 , …, bk .

3.2 Modeling procedure
Initially, all the independent variables were considered 
in the model. Then all insignificant variables were elim-
inated based on likelihood ratio analysis and standard 
errors of the parameter estimate values. The correlation 
matrix was analyzed, and if two variables were correlated 
to each other strongly, one of them was eliminated from 
the model. This helps avoid the confounding effect in our 
model. Even if a variable was found to be significant but 
had less contribution to the decrease in deviance, it was 
eliminated from the model. 

Categorical variables were interacted with and coupled 
together in the model analysis. In the generalized linear 
modeling, Negative binomial distribution and log link 
function were considered.
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Simplification of some explanatory variables was car-
ried out. Free flow speed values were categorized in four 
groups: the first category is less than 20 km/h, the sec-
ond between 20 and 50 km/h, the third between 50 and 
90 km/h and the last greater than 90 km/h. The original 
dataset contains four categories of HGVs, and they are 
HGVs < 3.5 ton, 3.5–7.5 ton, 7.5–12 ton, and > 12 ton, 
respectively. Then the first category, which is < 3.5 ton is 
grouped with taxis. The following two categories of HGVs 
are grouped, and the last HGVs category, which is > 12 ton 
is considered as it is. Each parameter was also identified as 
a covariate and factor in the model development. 

Overall, the modelling process involves the following 
four steps:

1. Specifying models in two parts: equations linking 
the response and explanatory variables and the prob-
ability distribution of the response variable.

2. Estimating parameters used in the models.
3. Checking how well the models fit the actual data.
4. Making inferences (Dobson, 2002).

3.3 Model test
Goodness of fit for a generalized linear model is tradition-
ally assessed using either the scaled deviance G2 (twice 
the difference between log likelihood of saturated model 
and loglikelihood of current model) or Pearson's χ2 sta-
tistic (sum of squares of standardized observations). Here 
the models are assumed to be nested, and the larger model 
is that with, the greater number of parameters. If the data 
is normally distributed, these statistics follow chi-square 
distributions with degrees of freedom equaling the dif-
ference between the number of parameters in the larger 
model and the number in the smaller model (Wood, 2002).

Hilbe (2011) mentions Akaike's Information Criterion 
(AIC) as one of the most used fit statistics. It has the fol-
lowing formulation: 

AIC � � � �2 2k ln  , (6)

where k is the number of estimated parameters in the 
model, including the intercept, and  is the maximum 
value of the likelihood function for the model.

The one with the minimum AIC value is preferred for 
the given set of models.

Hilbe (2011) mentions the Bayesian Information 
Criterion (BIC) as another common fit statistic. It has the 
following formulation: 

BIC � � � � � �ln lnn k 2  , (7)

where n is the number of data sets or the number of obser-
vations, k is the number of estimated parameters in the 
model, including the intercept, and  is the maximum 
value of the likelihood function for the model.

An omnibus test was made to test whether the explained 
variance in a dataset was significantly greater than the 
unexplained variance overall. Likelihood ratio chi-square 
test was made to the model.

The following two hypotheses were tested to imply 
whether the model is fit or not: 

H k0 1 2
0: � � �� ��� �  

H j1
0: at least one � � . 

4 Results and discussion
IBM SPSS Statistics 25 (Statistical Package for Social 
Sciences) software was employed in developing a general-
ized linear model based on the negative binomial distribu-
tion in this study. IBM SPSS Statistics is the most widely 
used software to analyze quantitative data. IBM SPSS is 
a comprehensive system for generating descriptive statis-
tics and complex statistical analysis (Vilaça et al., 2017).

Road accident datasets were prepared in a single data-
base, and the following parameters were analyzed with 
IBM SPSS.

In the case of the Poisson distribution, the Pearson 
Chi-Square value divided by the degree of freedom gives 
2.074, which is greater than one. We understand that the 
data are over-dispersed, and negative binomial distribu-
tion is suitable. The negative binomial distribution model 
greatly improved the model with Pearson Chi-Square ratio 
to the degree of freedom value of 1.264. Table 2 shows the 
comparison of the two models from Poisson and Negative 
binomial distributions based on multiple criteria.

Based on all three criteria, the Negative binomial distri-
bution improved the model significantly. It was found to be 
suitable to model the over-dispersed data.

The parameter estimates from the IBM SPSS are pre-
sented in Table 3. 

Table 2 Comparing the Poisson and Negative binomial distributions 
(Source: Authors)

Criterion
Distribution

Poisson Negative binomial

AIC 10,015 9,242

BIC 10,157 9,384

Pearson Chi-square/df 2.074 1.264
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The generalized linear model was developed to predict 
the probability of the number of accidents that will occur 
in the future.

Since p < 0.05 in the omnibus test, the null hypothesis 
is rejected. Therefore, the model is proven to be reason-
ably fit.

The model shows length of the links, average daily traf-
fic, bus lane, number of busses and trolleys, and bike vol-
umes with *** rating which has highest significance for 
the contribution of the dependent variable followed by 
interaction of free flow speed category 2 and number of 
lanes category 1 with ** significance rating. But all the 

parameters in the final selected model have relevance in 
predicting the dependent variable to an acceptable degree.

5 Conclusion
The study aimed at developing a traffic accident model 
which would predict the possible number of accidents in 
the future at a specific road link in the city of Budapest. 
In addition, the purpose was to identify factors that affect 
traffic safety and contribute to an accident on the road 
links. Multiple models were run based on 1,586 accidents 
from 1,310 km of road links. 

The accident data was highly skewed and showed greater 
variability between its mean and variance. Because of that, 
Negative binomial distribution was chosen over Poisson as 
it is better to deal with over-dispersed data. The strongest 
variables in the model which contribute to traffic accidents 
were the length of the links, average daily traffic, bus lane, 
number of busses and trolleys, and bike volumes.

Since internal correlation within the data has been wit-
nessed to be a major problem, the safety effects from a 
single explanatory variable were difficult to estimate as it 
may be affected by other variables in the model. One of the 
challenges during the statistical analysis of this study was 
association of quite many road links with zero accidents. 
Out of the total 4,701 road links, 3,115 of them showed 
zero number of accidents recorded. Modeling and analy-
sis of accidents at junctions w not the scope of this study 
which is recommended to be compared with the safety 
issues at road links.

Table 3 Parameter estimates (Source: Authors)

Parameter B Sig.

(Intercept) −3.821 **

[CAT_FF_SP = 2] * [NUMLANES = 1] 2.910 **

[CAT_FF_SP = 3] * [NUMLANES = 1] −26,050a

[CAT_FF_SP = 3] * [NUMLANES = 7] 0b

BUS_LANE 0.417 ***

BUS_TROL_4 0.000 ***

HGV_12_D 0.074 .

BIKE_VOL 0.000 ***

LN_ADT 0.282 ***

Ratio_HGV −4.142 ***

LN_LENGTH 1.473 ***

(Scale) 1c

(Negative binomial) 1c
Sig. (. if p < 0.3; * if p < 0.05; ** if p < 0.01; *** if p < 0.001)
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