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Abstract

In this paper a high-complexity finite element structure of the truck model is proposed in the control
design of active suspension systems. A significant step of the method is the selection of a reduced-
order model by using the relevant frequencies up to 30 Hz from the modal representation of the model.
The model uncertainty can also be approximated with the difference between the high-order and the
reduced-order models. Then the model is augmented with the specifications of the performance
demands and the multiplicative uncertainty structure. The control design itself is based on the H∞/µ
method, which guarantees that the controlled system achieves robust stability and meets performance
demands.

Keywords: finite element model, H∞/µ synthesis, unmodelled dynamics, uncertainties, perfor-
mances, vehicle dynamics, active suspension.

1. Introduction and Motivation

The control design methods of the active suspension system usually use simple
model structures with masses, dampings and springs. These low-complexity models
contain the basic properties of the actual plant to be controlled [3, 7]. Assuming a
rigid body structure for the plant, significant frequency values may be ignored, e.g.
information about the tire dynamics, screw movement between the front and the
rear parts, movement from the bending dynamics, or super-harmonic components.

For numerical stability reasons of the control design algorithms, the model of
the actual plant should be relatively low-complexity. The control reduction meth-
ods used in the control field usually lead to large modelling errors and unmodelled
dynamics. The message of the paper is the selection of a reduced-order model by
selecting the significant frequencies from the high-order model. The frequencies
which are important in the controlled system sense are selected and the other fre-
quencies are ignored. At the same time the difference between the reduced-order
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model and the high-complexity model can be calculated, which is an estimation of
the error bound.

In this paper the model, which is the basis of the control design, is constructed
by a finite element method. This method usually results in a high-complexity model,
which approximates the actual plant more accurately. In this paper, the control
design itself is based on the H∞/µ method, which is applied to the reduced-order
model. This model guarantees robust stability and meets performance demands for
the system designed, see [2].

The structure of the paper is the following. In Section 2, a reduced-order
model is constructed by selecting the significant modal frequencies from finite
element structure of a flexible truck model. In Section 3, the model is augmented
with the performance specifications and the multiplicative uncertainties. In Section
4, the design process is demonstrated in an illustrative example.

2. Constructing a Reduced-Order Model

In this paper a high complexity model of a truck model is applied in the design
of an active suspension system. The finite element model is 2148 degrees-of-
freedom (DOF). The construction of the finite element model of the truck has been
summarized in previous research works [4, 5]. The structure of the truck model is
illustrated in Fig. 1.

Fig. 1. Skeleton structure of the truck and the tire

The differential equation of motion in the space of the modal displacements
can be written as:

M ÿ + K ẏ + Sy = u + Kww, (1)

where M is the lumped mass matrix, K is the damping matrix, S is the stiffness
matrix, y is the vector of vertical displacements, u is the actuator forces, w is the
excitation of road roughness, Kw is the road matrix.
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After the eigenproblem for Eq. (1) the eigenvectors have been solved that can
be arranged into the modal matrix � with respect to the ascending order of the
related natural frequencies. Define the inverse modal transformation by y = �q in
such a way that the coordinates q in the new space will be the modal displacements.
Applying the transformation, the following differential equation can be formalized:

q̈ + Kv q̇ + �q = Fuu + Kdw, (2)

where q is the vector of modal displacements. q̈ and q̇ denote the modal velocity
and acceleration vectors, respectively. � is the diagonal matrix of the squares of
natural frequencies relating to the applied natural modes.

Then a reduced vector qr with m components is defined in order to create a
reduced-order model of the truck. Select m � n and consider the reduced matrix
�r , the qr contains the first m eigenvectors. Let yr denote the approximation of
generalized displacements and qr the approximation of the m modal displacements.
The inverse modal transformation of the approximation displacements is defined
as yr = �rqr . Thus, the following differential equation is formalized for the
approximation:

q̈r + Kr q̇r + �rqr = Fru + Kdrw. (3)

Here qr is selected in such a way that the reduced-order equation consists of the
significant natural modes up to 30 Hz, since this is the relevant frequency domain
in the active suspension design sense. For the design of active suspensions 12
natural modes have been selected, seven of them relate to the suspension deflections
(vertical, rotational and pitch motions of the body, and the vertical and rotational
motions of axles) and the remaining five belong to the elastic deformations of the
body.

3. Modelling for Control Design

In this section the model to be controlled is augmented with the uncertainty models
and performance objectives. The control design is based on the H∞/µ method.
Thus, the motion differential equation transformed into the state space representa-
tion form:

ẋ = Ax + B1w + B2u, (4)

where x = [
q̇r qr

]T
is the state vector, w is the disturbance, u is the control input

and the state matrices are

A =
[−Kr −�r

I 0

]
, B1 =

[
Kdr
0

]
, B2 =

[
Fr
0

]
.

The performance outputs are the sprung mass accelerations zb, the suspension de-
flections zsd , the wheel travels zt , and the control inputs zu at the left hand and right
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hand sides of the front and of the rear. The measured outputs are the suspension
deflections in the left hand and right hand sides of the front and of the rear. The
performance and the measured outputs can be expressed in the state vectors:

z = C1x + D11w + D12u (5)
y = C2x, (6)

where the forms of the matrices are the following:

C1 =
[−�body Kv −�body�

0 �rel
0 �t

]
, D11 =

[
�body Kg

0
0

]
, D12 =

[
�body Fu

0
0

]
,

C2 = [
0 �rel

]
.

The weighting function Wp represents the performance signals of the active sus-
pension system. The weighting function of the sprung mass acceleration is selected
in the Wp1 = 0.0014s+350

s+1 form, and the weighting function of the suspension
deflection is Wp2 = 2.857s+350

s+1 . It is assumed that in the low frequency domain
disturbances at the accelerations of the sprung mass should be rejected by a factor
of 0.5 and at the suspension deflection by a factor of 3. The control force is limited
by a constant value defined by Wp3 = 0.0018. We assume that the maximum road
disturbance is 0.10 m and hence we choose Ww = 0.1. We set Wn = 0.001, thus
essentially it is assumed that the sensor noise is 0.001 m in the whole frequency
domain. The frequency weighting function of the unmodelled dynamics is selected
in such a way that in the low frequency domain, the uncertainties are about 15%
and in the upper frequency domain they are up to 100%: Wr = 1.05 s+30

s+200 .
The control design applied in the paper is based on the H∞/µ synthesis. The

goal of this method is to minimize overall stabilizing controllers K , the lower LFT
form of the interconnection structure:

min
K

‖Fl(P, K )‖µ. (7)

The optimization problem can be solved in an iterative way by using D and K . The
procedure is called D − K iteration. The formula in the frequency domain:

sup
ω

inf
Dω∈D

σ̄ [DωFl(P, K )( jω)D−1
ω ] (8)

which can be solved pointwise in the frequency domain. The stable and minimum
phase scaling matrix D is selected by an interpolation technique or a graphical
matching. A detailed description of this method can be found in [1, 9].
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4. Numerical Experiments

In this section the effectiveness of the designed active suspensions is studied by
considering the different driving conditions, such as travelling along a straight road
at a constant speed. The shape of the applied road defect (bump) is given in the
upper part of Fig. 2, and its position, which is at the beginning of a smooth road,
is shown in the bottom part of Fig. 2. Its height is 0.10 m, and stretches under the
wheels on both sides resulting in symmetric kinematic road excitations in vertical
direction. The velocity of the applied truck model during cornering and in straight
motion is 20 m/s, while during braking its initial velocity is 20 m/s and its final
velocity is 4 m/s. For the sake of simplicity, the actuator that is designed for an
elastic chassis is called elastic actuator, and the other actuator that is designed for a
rigid chassis is called rigid actuator. For better comparability the vertical vibrations
of the vehicle chassis are studied for each case at the right-hand-side front wheel.
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Fig. 2. The applied road defect

In the first analysis the effectiveness of the actuators is studied during the
straight motion of the truck when it passes over the road defect. Fig.3.a and3.b show
clearly that both of the elastic and rigid actuators decrease the vertical vibrations
effectively, when they are applied to the elastic and rigid chassis, respectively. An
important difference is that the controlled vertical motion, produced by the rigid
actuator reaches to its equilibrium position very slowly (Fig.3.b). By contrast, in
case of the elastic actuator the equilibrium position is reached very quickly (Fig.3.a).
This result shows the advantage of the elastic actuator over the rigid one. Since
the elastic chassis compared to the rigid chassis approximates the structure of the
actual vehicle better, it is interesting to study the behaviour of the rigid actuator if
it is applied to the elastic chassis (Fig.3.c). It is also interesting to apply the elastic
actuator to the vehicle with rigid chassis (Fig.3.d). Comparing these figures it can be
seen that the controlled motion from the equilibrium position produced by the rigid
actuator in an elastic chassis in Fig.3.c is larger than in Fig. 3.d, where it is applied
to the rigid chassis. It shows that there is a small decrease in the effectiveness of the
rigid actuator when it is applied to the elastic chassis. It is noted, that very similar
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results can be achieved if only the vertical oscillations are simulated without the
horizontal motion. It means that the excitation does not have an important role in
the simulation of the horizontal motion. Summing up the elastic actuator is more
suitable to be used in the simulations.
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Fig. 3. Straight motion. The vibration of the chassis at the right-hand-side front suspension

In the second analysis the actuators are studied during braking. Fig.4.a and
Fig. 4.b show clearly that both of the elastic and the rigid actuators decrease the
vertical vibrations effectively when they are applied to the elastic and rigid chassis,
respectively. Similarly to the straight motion the controlled motion produced by
the rigid actuator reaches its equilibrium position very slowly (Fig.4.a). In these
figures a surprising disadvantageous effect of both actuators can be seen. That is
the actuators work in such a way that they increase the pitch motion of the vehicle
chassis during the complete braking process. In order to illustrate this negative
effect the corresponding passive vertical motions of the chassis for smooth road
are shown in 4.a and Fig. 4.b. A natural requirement for these actuators is not to
increase the pitch motions of the chassis compared motions produced by the passive
suspension. This unexpected behaviour of the actuators can be interpreted such a
way, that the vehicle models used in the design of active suspensions do not contain
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any information about the braking process. In Fig.4.c and Fig. 4.d the applications
of the rigid and elastic actuators to the elastic and rigid chassis, respectively, are
demonstrated. It is shown clearly in Fig.4.d that the elastic actuator works well on
the rigid chassis provided that the pitch motion of the chassis is ignored. However,
the rigid actuator applied to the elastic chassis produces abnormal controlled motion
(Fig. 4.c).

0 2 4 6 8 10 12 14
−0.2

−0.16

−0.12

−0.08

−0.04

T I M E [ s ]

V
 E

 R
 I 

T
 C

 A
 L

  P
 O

 S
.  

[ 
m

 ]

passive, smooth road 

passive, excited road

elastic actuator applied 
      to  elastic chassis

0 2 4 6 8 10 12 14
−0.2

−0.16

−0.12

−0.08

−0.04

T I M E  [ s ]

V
 E

 R
 I 

T
 C

 A
 L

  P
 O

 S
.  

[m
]

passive, excited road

passive, smooth road

rigid actuator applied   
        to rigid chassis 

0 2 4 6 8 10 12 14
−0.2

−0.16

−0.12

−0.08

−0.04

T I M E  [ s ]

V
 E

 R
 I 

T
 C

 A
 L

  P
 O

 S
.  

[ 
m

 ]

rigid actuator applied
    to elastic chassis

elastic actuator applied  
       to elastic chassis 

passive elastic chassis 

0 2 4 6 8 10 12 14
−0.2

−0.16

−0.12

−0.08

−0.04

T I M E  [ s ]

V
 E

 R
 I 

T
 C

 A
 L

  P
 O

 S
.  

[ 
m

 ]

passive, rigid chassis 

rigid actuator applied    
      to rigid chassis    

 elastic actuator appliead
         to rigid chassis 

Fig. 4. Braking. The vibration of the chassis at the right-hand-side front suspension

5. Conclusions

In this paper a method which combines the finite element method and the robust
control design method has been presented. The model which is the basis of the
control design is low-order complexity. This model is created by using the relevant
frequencies of the high-complexity model generated by the finite element method.
The control design itself is based on the H∞/µ method. With this method both
the performance demands and the model uncertainties can be taken into consider-
ation. The diagrams presented in the last section for various road conditions prove
conclusively the effectiveness and robustness of the active suspensions designed.
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