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Abstract

The complexity of an overtaking maneuver on two-lane roads merits a thorough method for developing an assistance system to 

prevent accidents, thus reducing the number of fatalities and the associated economic costs. This research aims to introduce a 

new Driver Overtaking Assistance System (DOAS). This system is based on the proactive prediction of the possibility of overtaking 

any preceding vehicle(s) both accurately and safely. To provide a comprehensive system, different factors related to the driver, 

the vehicle, the road, and the environment which have an impact on the maneuver have been taken into consideration. In 

addition to considering the main overtaking strategies including accelerative, flying, piggybacking, and the 2+. The proposed 

system is a vehicle-based safety system based on the collection of contextual information from the driving vicinity through 

Hello beacon messages and a set of sensors that are used as part of the reasoning process of the context-aware architecture 

to safely initiate the overtaking maneuver. A classification model was implemented for both the Artificial Neural Network (ANN) 

and Support Vector Machine (SVM) learning algorithms. A vehicle driving simulator STISIM Drive® was used to conduct driving 

experiments for 100 participants of different ages, gender, and levels of mental awareness. The results obtained from the DOAS 

show high accuracy in aiding a safe overtaking maneuver. The classification model shows promising results in the predictions, 

through perfect accuracy and a very low level of outcome errors.
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1 Introduction
In the majority of countries, two-lane rural roadways 
comprise approximately 90% of the roadway network. 
Such roadways result in more than 60% of traffic fatali-
ties worldwide and the deaths of approximately 500,000 
annually (Lamm et al., 2006). Overtaking maneuvers are 
frequent on these types of roads and are highly demanding 
of the driver. Such overtaking can be considered a danger-
ous maneuver due to the need to use the opposing traffic 
lane for an extended period and, generally, at a high speed. 
The opposite lane may be occupied by an oncoming vehi-
cle; therefore, overtaking maneuvers on these roads can be 
considered a particular challenge for the majority of driv-
ers, depending on traffic conditions and road geometry. 
The difficulty of this maneuver is that there are a limited 
number of real solutions that can be introduced.

As a primary source of accident data (Stats19) for overtak-
ing on two-lane roads, the UK's Department for Transport 

(DfT) was considered. This data for the period 2012–2015 
was analyzed to find records for accidents caused by over-
taking maneuvers on two-lane roads. The data set obtained 
comprises a total of 2,211 usable records from police reports 
on these accidents. During this period, these accidents were 
the main reason for 3,565 casualties among drivers and 
motor-vehicle occupants ranging from slight to fatal inju-
ries and also causing damage to 4,909 vehicles.

Considering the statistics of the world's road casual-
ties, and the prediction of World Health Organization 
(WHO) more than 50 million people will suffer injuries 
each year from traffic collisions. This imposes the neces-
sity to develop a real solution to assist drivers in perform-
ing the overtaking maneuver to reduce casualties and any 
economic costs, in addition to exploiting the widespread 
and rapid developments in communication technologies, 
especially in the Vehicle Ad-hoc Network (VANET).
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Many researchers in the past years adopted con-
text-awareness as an intelligent system benefiting from 
the adaptability to detect multi-class states (Al-Sultan et 
al., 2013; Fasanmade et al., 2019). Context-aware systems 
in cooperating multi-layer architecture are divided into 
three phases (sensing, reasoning, and acting) (Pradeep and 
Krishnamoorthy, 2019).

Therefore, this paper introduces a new context-aware 
Driver Overtaking Assistance System (DOAS), which 
takes into consideration most factors related to the driver, 
vehicle, road, and the environment, all of which have a 
serious impact on the overtaking maneuver. In addition, 
different types of overtaking strategies, including acceler-
ative, flying, piggybacking, and the 2+, have been consid-
ered in designing the DOAS; refer to (2.3). The combined 
models for data classification were trained through the use 
of a dedicated dataset collected during this research via a 
microscopic vehicle simulator STISIM Drive® (Rosenthal, 
1999), which consists of 18 variables. These models consist 
of multiple topologies that are designed using the Support 
Vector Machine (SVM) and the Artificial Neural Network 
(ANN). Thus, the results are divided into two parts. 

Here, will present the classification models using both 
ANN and SVM. The results of the data regression for both 
machine learning methods will be presented in a future 
paper. In summary, the main contributions of this study are:

• A new Driver overtaking assistance system on two-
lane roads, considering multiple factors related to the 
driver, the vehicle, the road, and the environment.

• Newly developed predictive models of the ANN and 
SVM.

• Implementation of the accelerative, flying, piggy-
backing, and  overtaking strategies in the proposed 
system.

• Application of a Microscopic traffic simulation to 
collect a new dedicated dataset for 100 participants 
of different ages, gender, and levels of mental aware-
ness to be used by other scholars.

The rest of the sections are organized as follows. 
Subsection 1.1 presents a literature review of related work. 
Section 2 introduces the model dataset highlighting the 
participants, the experimental design, and the maneuver 
strategies. Section 3 describes the predictive models of 
both ANN and SVM and provides a comprehensive eval-
uation and metrics. Sections 4 and 5 present the DOAS 
model and the system preliminaries, respectively. Section 
6 presents the results of the predictive models. Whereas, 

Section 7 presents a research discussion of the output. 
Section 8 concludes. Lastly, Sections 9 and 10 present the 
system limitation and the future work, respectively. 

1.1 Related work
Despite the assistance systems utilized by many high-
class vehicle manufacturers as overtaking assistance sys-
tems (OAS), the literature review shows that none of the 
work available in the literature (to the best of our knowl-
edge) has considered a comprehensive solution to this type 
of maneuver to date.

A driver assistance system called dynamic pass predic-
tion (DPP) was described as an overtaking assistance sys-
tem to perform the maneuver more safely (Loewenau et 
al., 2006). The DPP directs the driver to a section of the 
road where it is safe to start an overtaking maneuver and 
specifies how long that road section will be. In practice, 
the system combines the digital map data from the vehi-
cle's global positioning system (GPS) to state its position, 
acceleration, and velocity with data; combining vehicle 
data with roadway geometry from the vehicle navigation 
system provides the driver with a clear picture of the cur-
rent traffic situation.

Another study investigated the operational effects of 
passing lanes on two-lane highways using field and sim-
ulation data (Jafari et al., 2020). Field data were collected 
from two study sites in Oregon to calibrate the traffic sim-
ulation program to evaluate the effective length of passing 
lanes under different traffic levels and numbers of no-pass-
ing zones. The results showed that the effective length of 
the overtaking lane is a function of the traffic level as well 
as of the number of no-passing zones for any segment of 
two-lane roads. In addition, the results supported the oper-
ational advantages of overtaking lanes for a significant 
distance downstream of the overtaking lane, with this dis-
tance varying in the range between 3 and 20 miles depend-
ing on the traffic level and the number of no-passing zones.

This same study further developed an autonomous sys-
tem to assist with overtaking maneuvers (Milanés et al., 
2012). This design was based on the use of stereo vision to 
trigger an autonomous OAS when detecting a preceding 
vehicle in the same driving lane. The system can detect 
the length and width of any type of preceding object on 
the road, such as motorbikes, vehicles, or trucks. A vision 
system for automating overtaking maneuvers was applied 
to multi-lane trajectories; to emulate human actions while 
overtaking, a controller based on a fuzzy logic model was 
used. A positioning-based system and the vision system 
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are the source input information for the system, whereas 
the output is a set of actions for controlling the vehicle’s 
throttle, brake pedals, and steering wheel.

The design of an Android app called EYES is reported 
in (Patra et al., 2015). This app is intended to function as 
an overtaking assistant system and offers real-time video 
for oncoming vehicles traveling in the opposite direction 
before overtaking. A fifth report assessed the efficiency 
of a Dedicated Short-Range Communication (DSRC) 
method for wireless communication, V2X, on rural two-
lane highways (Motro et al., 2016). This method was 
used to enhance safety during overtaking maneuvers by 
predicting the possibility of an accident and by warning 
the driver before they initiate the maneuver. The authors 
examined the prediction of unsafe overtaking maneuvers 
via DSRC in terms of three factors: driver behavior, vehic-
ular kinematics, and DSRC features. The heterogeneity of 
the three factors was determined using 18,000 overtaking 
maneuvers and around 10,000 accidents.

Microsimulation was identified as a valuable instrument 
for analyzing traffic operations (Llorca et al., 2015). This 
group focused on the development of a microsimulation 
model using the Aimsun software on rural two-lane high-
ways over three stages: the desire to pass, the decision, and 
the execution. The data used in this study were collected 
from 1,752 maneuvers on ten rural highways in Spain. 

Behavioral differences in different groups of drivers, 
as classified by age and gender were also studied (Farah, 
2011). The authors used a driving simulator to collect data 
for 100 drivers (69 males and 31 females) for different sce-
narios on two-lane rural highways and consider different 
road design geometries and traffic conditions. The results 
revealed the principal aspects that have a significant 
impact on drivers' behavior: driving speed, following dis-
tance, duration of the overtaking maneuver, critical over-
taking gaps, and the frequency of overtaking maneuvers. 

A separate study (Vlahogianni, 2013) likewise modeled 
the overtaking maneuver to detect the factors affecting 
the duration of overtaking for both male and female driv-
ers on two-lane rural roads, based on data provided from 
a driving simulator. It involved 57 participants who had 
each held a driving license for at least 1 year. The findings 
of the research revealed that overtaking duration depends 
on driver gender – which represents a critical factor – the 
speed of the oncoming traffic, the speed difference com-
pared to the preceding vehicle, and whether the driver is 
involved in conducting multiple maneuvers.

Finally, a methodology was proposed, using a driving 
simulator, to monitor overtaking maneuvers on two-lane 

roads and to study the impacts of the preceding vehicle’s 
speed, vehicle type, and the overtaking sight distance 
on the following gap distance as an indicator of driving 
behavior (Figueira and Larocca, 2020). Around 640 over-
taking maneuvers by 80 participants were studied. The 
results showed that at the beginning of overtaking, the 
speed of the preceding vehicle had a greater impact on the 
following gap distance than the length of the overtaking 
sight distance and the type of the preceding vehicle.

An in-depth review of all relevant studies and the over-
taking assistance systems implemented to date has there-
fore shown that considerable limitations are consistently 
encountered in these studies. In particular, there is no 
comprehensive system currently available that focuses 
accurately and proactively on recognizing the possibility 
of performing an overtaking maneuver. This involves cal-
culating the available distance for overtaking, as well as 
considering the effects of all factors that have an impact 
on maneuvering from the perspective of context-aware-
ness. In our study, all these limitations are addressed in 
the design of the proposed assistance system.

2 Model dataset
The DOAS we present is based on the use of a specific data 
set obtained from driving experiments using the micro-
scopic driving simulator STISIM Drive® (Rosenthal, 
1999). The collected data includes 18 variables related to 
performing overtaking maneuvers on two-lane rural high-
ways. All variables used here are significant in terms of 
careful consideration of the more influential factors in per-
forming such a maneuver. In the final version of the out-
come data set, these variables will be used with the SVM 
and ANN machine learning models to train and test the 
proposed assistance system, as explained below.

The data set collected comprises a total of 1,557 records 
divided into two classes: 1,012 records representing the 
completed maneuver, and the remaining 545 records rep-
resenting incomplete maneuvers or accidents. The num-
ber of accidents in the accelerative, flying, and piggyback-
ing strategies in these experiments were 190, 355, and 0, 
respectively. It is worth noting that there are 588 safely 
completed maneuvers in the collected dataset and the sep-
arating distance between the subject and oncoming vehi-
cles was less than 65.61 feet.

2.1 Participants
100 participants were chosen for our experiment from 
different countries, ages, genders, driving experience, 
and educational levels. To be eligible for the driving 
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experiment, volunteers had to hold a valid driving license. 
The mean driving experience was about 16.3 years, with 
a distribution of 1–52 years. Likewise, driver ages ranged 
from 18 to 72 years with a mean of 37.96 years of age and 
a standard deviation of 15.40 years. Male participants con-
stituted 65% of the total number of participants, with the 
remaining 35% being female drivers. The educational 
level ranged from low education to undergraduate, and 
postgraduate, including university professors.

2.2 Experimental design
Our experiments were conducted using the STISIM 
Drive® vehicle simulator to collect data on the overtaking 
maneuver. Participants were asked to drive, in two sepa-
rate scenarios, for 7.6 miles (12.92 km) on two-lane rural 
roadways. Roadways were designed according to UK leg-
islation and marked with a dashed centerline, meaning 
there are no legal limitations on performing the overtaking 
maneuver throughout the driving route. There were also 
two continuous (solid) lines on each side of the roadway. 

The experimental scenarios were designed using dif-
ferent conditions including, weather (e.g. clear or foggy), 
light status (daylight or darkness), road curvature (straight, 
curved, uphill, and downhill), and roadway surface (dry 
and icy). Based on these different conditions we have alter-
nated between the above-mentioned conditions to perform 
the overtaking maneuvers. This means the conditions of the 
driving environment and road characteristics were changed 
throughout the test, and consequently, the participants 
tested all available conditions on the road. The speed of all 
vehicles was set to be between 14 and 75 mph. The subject 
vehicle was not limited in either speed or direction. The 
distribution of vehicles along the direction of travel and in 
the opposite lane was created with no fixed distance sepa-
rating the vehicles, to achieve a reasonable level of realism. 
This is in contrast to other researchers (Hegeman, 2008) 
who programmed the arrival of oncoming vehicles with 
increasing fixed gaps of 4, 6, and 8 s, and so on. This study 
also set fixed speeds for the preceding vehicles, using three 
different speed regimes: the first was programmed at 46.6 
mph, the second at 58.8 mph, and the third changed speed 
every 8 s between 47.2 and 56.5 mph. 

2.3 Maneuvering strategies
In our driving experiments, alternate drivers were 
instructed to overtake one or more preceding vehicles. The 
strategies employed fall into three categories: 

•  Accelerating: the subject vehicle alternates its speed 
until the emergence of an overtaking opportunity.

•  Flying: the subject vehicle can start overtaking the 
preceding vehicle without the need to reduce its 
speed whilst performing the maneuver. 

•  Piggybacking: a vehicle in front overtakes the pre-
ceding vehicle (impeding vehicle) and the subject 
vehicle (the overtaker) follows this vehicle to per-
form the maneuver, both vehicles overtake the pre-
ceding vehicle in the same maneuver. The need for 
acceleration is still present, as is the necessity to pass 
the preceding vehicle and complete the maneuver. 

Maneuvers were further categorized into overtaking 
a single vehicle or two or more vehicles (2+). The total 
number of maneuvers recorded in our experiments are 
489 accelerating, 995 flying, and 73 piggybacking ones, 
respectively. The driving experiments were conducted on 
the premise that the driver must overtake one or more pre-
ceding vehicles. 

The boxplots of the subject's initial vehicle speed in feet 
per second (ft/s) at the beginning of a maneuver, categorized 
by strategy, are shown in Fig. 1 (for overtaking a single vehi-
cle) and Fig. 2 (for overtaking multiple vehicles). In Fig. 1, 

Fig. 1 Boxplot of initial speeds for overtaking a single vehicle

Fig. 2 Boxplot of initial speeds for overtaking two or more vehicles
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the minimum and maximum initial speeds in the acceler-
ative strategy were 37.48 and 101.25 ft/s, respectively; for 
the flying strategy, minimum and maximum initial speeds 
were 47.02 and 110.00 ft/s, respectively; for the piggyback-
ing strategy, these values were 51.04 and 85.14 ft/s. 

Comparing the centers of distribution for the three 
boxes, the median value for accelerating, flying, and pig-
gybacking were 69.56, 98.15, and 71.27 ft/s, respectively; 
while the spreads (interquartile range, IQR) of these dis-
tributions were 17.58, 29.58, and 12.36 ft/s, respectively. 
The shape of the distribution for accelerating was more 
similar to piggybacking than flying, with little skewing at 
the bottom end of these distributions; on the other hand, 
the distribution for the flying strategy was skewed only at 
the bottom. Outliers were found only in the accelerating 
strategy, with speeds of 108 and 110 ft/s. 

When overtaking two or more vehicles, as shown in 
Fig. 2, there are only two types of maneuvers to consider: 
the accelerative and flying strategies. Piggybacking to 
ultimately overtake two or more vehicles in the same trial 
seems unrealistic and represents a particular challenge. 
The minimum and maximum initial speeds for the subject 
vehicle were 42.12 and 89.09 ft/s, respectively, for acceler-
ating and 56.79 and 110 ft/s for flying. 

The median values for accelerating and flying were 
66.20 and 89.97 ft/s, respectively, while the IQR was 23.57 
and 14.26 ft/s, respectively. The shape of each strategy's 
distribution was different: both distributions were skewed 
at the bottom end, but the flying distribution was skewed 
more than that of the accelerating strategy. No outliers 
were found for either strategy.

2.4 Maneuvering process
It is worth mentioning that the required information as 
stated in Subsection 2.4 is always being gathered depend-
ing on the surrounding situation and the related factors. 
The completed overtaking maneuver includes two parts, 
the start and the end of the maneuver. The beginning of the 
maneuver starts once the front tire of the vehicle touches 
the centerline. The end of the maneuver completes once the 
vehicle has completely returned to the driving lane and the 
second rear tire of the vehicle passes the centerline. The 
information gathered to complete the maneuver safely are:

• Distance from preceding vehicle,
• Distance from an oncoming vehicle,
• Distance from approaching vehicle,
• Speed of the subject vehicle,
• Speed of the preceding vehicle,

• Speed of the oncoming vehicle,
• Speed of approaching vehicles,
• Maneuver distance.

3 Predictive models
We used a binary classification model, for both ANN and 
SVM, based on class labels for  of either 0 or 1, where 
0 refers to a completed maneuver ("not accident"), and 1 
refers to an accident. Therefore, one variable represents 
the output in terms of accidents and is used with the clas-
sifying function for predicting an accident or otherwise.

In data classification, there are two different techniques. 
The first is to model; this provides the probability of class 
membership in addition to the class label for the data item. 
This technique is used most prominently in ANN, logis-
tic regression, decision trees, and k-nearest neighbors. In 
the second technique, only the dichotomous distinction 
between the two classes is taken into consideration, and 
the unknown data points are assigned with the class labels 
0 or 1. SVM is the most common application of this tech-
nique (Dreiseitl and Ohno-Machado, 2002).

In our study, we trained the ANN using the backprop-
agation algorithm (BPA). The supervised training method 
used two ranges of K-fold cross-validation to evaluate 
the predictive models; these are 5-fold and 10-fold types, 
applied with 20 iterations for each fold type.

The ANN model we used has multiple inputs, two or 
more hidden layers, and one output. The input of the net-
work consists of various attributes related to the driver, the 
vehicle, the road, and the environment, as listed in Table 1. 

Some of the input variables for the ANN network are 
of a categorical type, consisting of more than one state, 
whereas the others are continuously valued variables. 

Several different parameters have an impact on the 
ANN level of generalization and accuracy. Among these 
parameters are training data, initial weight and bias, 
learning rate, momentum parameter (Gómez et al., 2014), 
activation function, and the number of hidden neurons. 
Practically, the initial weights and biases in this study 
were randomly generated; the value of the momentum 
parameter was set to 0.01 and the learning rate was 0.008, 
to keep the size of changes in weight and bias to a low 
level in learning the BPA. The training was constrained to 
six validation levels and 1000 epochs. While training the 
ANN, the error was represented by the difference between 
actual and expected outputs.

In the classification model, the default threshold value is 
set to 0.5 (safety threshold); refer to Eq. (1), the samples of 
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the output greater than or equal to 0.5 would be assigned to 
the "not accident" (completed maneuver) class, whereas the 
remaining samples would be assigned to the "accident" class. 

f x
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�
�

��
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3.1 The ANN analysis model
A user-friendly graphical user interface (GUI) was devel-
oped in the MATLAB environment, as depicted in Fig. 3, 

to ease model implementation. To utilize the best quality 
results from the ANN and SVM by covering the widest 
number of the adopted functions, the developed GUI con-
sists of the different components, as shown in Table 2.

3.2 The SVM analysis model
In recent years, SVMs have been used in a wide range 
of application domains such as classification, optimiza-
tion, prediction, pattern recognition, image analysis, and 
so on, (Nayak et al., 2015). SVM is one of the supervised 
machine learning algorithms that can be used to detect 
an optimal hyperplane to separate a set of inputs into two 
classes. The selected hyperplane has to provide a maxi-
mum margin or separation between these two classes. 

The vertical distance between the closest data points 
that denote the support vectors and the decision boundary 
is called a margin (Nagalla et al., 2017). The separating 
hyperplane might not exist when a low dimensionality of 
input features is used; in such a case, nonlinear mapping into 
a high-dimensional feature space is applied (Iliya, 2016). 
This mapping into a high-dimensional feature space 

Table 1 Description of the explanatory variables

Explanatory Variables Description

Weather (Fine; Fog)

Light Condition (Daylight; Darkness)

Road Surface (Dry; Ice)

Road Curvature (Straight; Curved; Uphill; Downhill)

Time (Daytime; Night time)

Driver Age (18–72 years)

Driver Gender (Male; Female)

Driver Experience (1–52 years)

Initial Speed Speed of subject vehicle before 
maneuvering (14–75 mph)

Speed (Oncoming) Speed of oncoming vehicle (14–75 mph)

Distance (Oncoming) Distance from oncoming vehicle 
(79.46–4551.07 ft)

Speed (Preceding) Speed of preceding vehicle
(46.6–56.5 mph)

Distance (Preceding) Distance from preceding vehicle 
(17.65–467.05 ft)

Speed (Approaching) Speed of approaching vehicle (50–75 mph)

Distance (Approaching) Distance from approaching vehicle 
(13.11–274.60 ft)

Front Distance Length of front distance (55–1128 ft)

Vehicle Number Number of preceding vehicles (1–5)

Vehicle Type Type of preceding vehicles (15–60 ft) 
(light vehicle – trailer)

Table 2 The ANN analysis model components

Component Description

Input/output data pre-
processing functions

Zeromean, AbsMax, Sigmoid, 
Transigmod, PCA, Zscore, Minmax, and 

FullMinMax.

Activation function Tansig, Hardlim, Purelin, Poslin, and 
Logsig.

Number of layers 1–5 layers.

Network Topology

Feed-forward backpropagation 
networks (FFANN), cascade-forward 

backpropagation networks (CFFANN), 
feed-forward backpropagation networks 

with feedback from output to input 
(OFBANN), and Layered-Recurrent 

networks (LRANN).

Training method (Adapt 
/ Train) Adapt 

Training functions

Trainlm (Levenberg-Marquardt), 
Trainbfg (BFGS Quasi-Newton), 
Trainbr (Bayesian regularization 

backpropagation), Traincgb (Conjugate 
Gradient with Powell/Beale Restarts), 
Traincgf (Fletcher-Powell Conjugate 
Gradient), Traincgp (Polak-Ribiére 

Conjugate Gradient), Traingd (Gradient 
descent), Traingdm (Gradient Descent 
with Momentum), Traingda (Gradient 
descent with adaptive learning rate).

Momentum 0.008

MSE (Mean square error) The expected default value for the MSE 
is set to 0

Learning rate 0.001

Epoch 1000

Training time InfinityFig. 3 Graphical user interface for the DOAS
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solves the problem of no separable classification in low 
dimensionality and is linearly separable in that feature 
space (Teng et al., 2008).

SVM is intended to solve the following optimization 
problem (Boser et al., 1992; Cortes and Vapnik, 1995): 
Given a training set of attribute-target pairs ( xi, yi ), 
i = 1, 2,..., n, where x R yi

n n� � � �� �1 1, :

w b w w CT
i

n
i, , ,

min � �
1

2 1
�

��  (2)

subject to:

y w x bi
T

i i� �� � �� � � �1 ,  (3)

where ξi ≥ 0.
In this study, three kernel functions (linear kernel, 

radial basis function (RBF), and polynomial) are used to 
classify the target output of the assistance system in terms 
of whether it belongs to the "accident" or the "not acci-
dent" class, as shown in Eqs. (4), (5), and (6), respectively:

K x x x x ci
T

i, ,� � � �  (4)

K x x ei
x xi, ,� � � � �� ��  

2  (5)

K x x x ci
T

i

d
, ,� � � �� �� x  (6)

where c is set to zero in the linear kernel equation as a 
constant parameter, γ indicates the kernel parameter, and 
x represents the input vector. Selecting an RBF model as 
one of the kernel functions for conducting a classification 
model is based primarily on the results obtained from the 
developed models. In addition, there are extensive recom-
mendations in the literature to adopt the RBF as the first 
choice of the kernel (Cherkassky and Mulier, 1998).

4 DOAS model
The acquired information is used in machine learning 
to calculate the possibility of performing the overtaking 
maneuver safely. This system is based on the three phases/
stages of a context-aware system; the output is displayed 
on the driver interface via green and red lights. The green 
light represents a safe opportunity to start overtaking at 
that moment, as the available gap for overtaking is greater 
than or equal to the minimum convenient distance required 
for overtaking. The green light starts flashing whenever 
the distance approaches the minimum suitable distance for 
overtaking as discussed in Subsection 4.1. When the avail-
able distance for overtaking is less than that required, the 
red light will be displayed. These changes between green, 

flashing green, and red lights continue as long as the assis-
tance system is switched on and the vehicle is moving on 
the two-lane roadway. 

Having collected the contextual information, the DOAS 
operation steps (Overtaking Algorithm), as depicted in 
Fig. 4, is based on the following steps:

1.  Stage 1 (Sensing): This stage mainly focuses on col-
lecting and analyzing all relevant information (raw 
data) to be passed to the reasoning phase.

• Step 1.1: Using Hello beacon messages (peri-
odic messages used by nodes (vehicles) to the 
main purpose is to allow each node in the net-
work to inform other surrounding nodes about 
its existence and provide them with its cur-
rent situation such as its location, velocity, and 
direction) and a relevant set of sensors (e.g. 
GPS, Lidar), the DOAS collects the speed, loca-
tion, and direction of the oncoming vehicle and 
other vehicles in the vicinity. The DOAS will 
use radio access technology to communicate 
between vehicles; in this study, we used IEEE 
802.11p DSRC. This ensures reliable and effec-
tive communication between all vehicles in the 
vicinity, and with the infrastructure in the area.

• Step 1.2: The system continues updating all 
values for all variables through vehicle input 
sensors.

• Step 1.3: The assistance system measures the 
total length of the overtaking distance until the 

Fig. 4 The DOAS model
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first convenient gap occurs that would allow for 
a safe overtake. This distance includes the length 
of all preceding vehicles, in case there is more 
than one preceding, in addition to the length 
of the separating spaces between vehicles. The 
collection of this information is achieved via 
the Hello beacon messages that are exchanged 
between vehicles and through input sensors.

2.  Stage 2 (Reasoning): The machine learning algo-
rithms SVM and ANN are applied to the collected 
information from various input resources. Inferring 
functions such as the classifier (when the output is 
discrete) and the regression functions (when the out-
put is continuous) is the task of the machine learning 
from supervised training data. For any valid input 
object, the inferred function should predict the cor-
responding correct output value (Mohri et al., 2012). 
Thus, in this study, the inferring functions form the 
basis for both ANN and SVM. In particular, the 
SVM can refer to the classification method in terms 
of Support Vector Classification (SVC). This stage 
includes several steps as follows:

• Step 2.1: In this pre-processing step, the data 
from all input resources, including the com-
munication devices, sensors, and HMI need to 
be transformed into a format appropriate to the 
SVM and ANN packages. This pre-processing 
leads to improved performance and efficiency 
of the machine learning algorithms (Kantardzic 
and Srivastava, 2005; Hsu et al., 2003). Once 
the input data is processed and is ready to be 
used by the machine learning algorithms, the 
data are fed to both the SVM and ANN. The 
next step is therefore to classify the input data 
for predicting the target values of accidents.

• Step 2.2: In the classification model, the appli-
cation of the SVM and ANN algorithms is to 
predict whether the data from the input vector 
would lead to an accident. When the target value 
belongs to the "not accident" class (i.e., continu-
ing the overtaking maneuver is safe), the pro-
cess can continue to the regression model. If the 
target value belongs to the "accident" class, the 
trial for the maneuver will be canceled.

• Step 2.3: After the input vector is classified as 
"not accident", the maneuver time is predicted 
(i.e., how much time is required to overtake one 
or more preceding vehicles in any of the three 

overtaking strategies: accelerating, flying, and 
piggybacking). The prediction of the target val-
ues in the regression models is conducted using 
the ANN and SVR models. This step will be 
presented in a future paper.

3.  Stage 3 (Action): After receiving the predicted time 
required to perform the overtaking maneuver from 
the regression functions derived from the SVM or 
ANN models, the last step involves informing the 
driver about the safety of initiating the overtaking 
maneuver via an appropriate in-vehicle visual mech-
anism. During the maneuver, all other vehicles in the 
vicinity will be alerted proactively about the com-
mencement of this overtaking maneuver through the 
dissemination of a warning message. 

4.1 Measuring the overtaking distance
When overtaking two or more vehicles, the length of 
the queue of vehicles to be overtaken is a vital issue. 
Overtaking more than one vehicle is more difficult than 
just a single vehicle, as it increases the length of time the 
subject vehicle must remain in the overtaking lane. 

The available safety distance dsaf  in front of the preced-
ing vehicle has to be sufficient to enable the subject vehicle 
to return to its own lane, as shown in Fig. 5. Equation (7) 
can thus be adopted for measuring the distance dov in the 
DOAS for overtaking one preceding vehicle, whereas 
Eq. (8) is adopted when overtaking two or more vehicles:

d d l l dov prec sub prec saf� � � � ,  (7)

where:
• dov: overtaking distance in feet;
• dprec: distance between the subject and preceding 

vehicle before starting overtaking in feet;
• lsub: length of the subject vehicle in feet;
• lprec: length of the preceding vehicle in feet;
• dsaf  : safety distance for returning to the original lane 

in feet; 

and:

d d l l d l dov prec sub prec x x saf� � � � � � ,  (8)

Fig. 5 Overtaking distances
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where lx is the total length of all vehicles in front of the 
preceding vehicle and dx is the total length of all distances 
between vehicles in front of the preceding vehicle. 

5 Preliminaries
5.1 Model training
Due to the stochastic nature of the ANN, selecting a net-
work configuration that gives the best generalization 
result is a difficult task (Torres-Ramírez et al., 2015). 
Therefore, to achieve the best performance using ANN, 
our first step was to train and test the four adopted ANN 
architectures, 4,443 times in total. The ANN architectures 
included were the feed-forward backpropagation network 
(FFANN), the cascade-forward backpropagation network 
(CFFANN), feed-forward backpropagation networks with 
feedback from output to input (OFBANN), and the lay-
ered-recurrent network (LRANN). The training included 
1,296 networks for each of the FFANN and CFFANN, 972 
networks for OFBANN, and the remainder for LRANN. 

The main purpose of the training was to test the perfor-
mance of the majority of available network structures to 
find the optimum ANN topologies through applying differ-
ent activation functions, the number of layers (from 1 to 5), 
ranges of neurons (from 5 to 40), input and output normal-
ization methods, training methods, training functions, and 
finally learning rate and momentum.

It is worth noting that we chose the above numbers of 
layers and neurons based on two factors: first, the literature 
in different research fields, and second, the poor results we 
achieved from test experiments with more than 5 layers and 
40 neurons. Of the nine training functions used to train the 
ANN networks, the trainlm (Levenberg-Marquardt back-
propagation) and, in the second level, the trainbr (Bayesian 
regularization backpropagation) showed the best perfor-
mance and levels of generalization in training compared 
with the other functions in the classification model.

Most of the classification experiments for ANN have 
been conducted using two common activation functions of 
the sigmoid family in the hidden layers: the logistic and 
hyperbolic tangent functions. For the output neurons, some 
linear transfers were used in addition to the sigmodal func-
tions. MATLAB software (The MathWorks, Inc., 2017) 
was utilized to estimate the ANN and the SVM models.

On the other hand, the parameters used in SVM need to 
be predetermined; training includes selecting the regular-
ization parameter C and proper kernel function parameters 
such as epsilon, gamma, and order of the polynomial. Four 
kernel functions were investigated in this research, includ-
ing the linear, RBF, Gaussian RBF, and polynomial kernels.

The investigation was conducted for the SVM classi-
fication model. The results of the predictive models are 
summarized in Section 6. 

At this stage, we chose the best configuration of all pos-
sible models after training the various models considered 
and applying all possible changes to the design of the net-
work to obtain the best results. The next step included the 
performance estimation of the selected models on the test 
data (data never previously used in training the model). 
Therefore, K-fold cross-validation has been used as the 
main tool for computing estimates of the learning algo-
rithms' performances.

5.2 Evaluation of performance
Indeed, introducing the proposed prediction models with 
only one test set (generalization sets) can be inconclusive, 
impractical, and far from any of the previous studies of the 
ANN and SVM models. For this reason, K-fold cross-val-
idation has been used to give a reliable estimation of the 
model accuracy. The data set used has been partitioned into 
several disjoint folds; the entire data set is used to train the 
model except for one-fold that is used to assess the mod-
el's predictive accuracy. The implemented models for ANN 
and SVM were tested using five- and ten-fold cross-valida-
tion of 20 iterations to reveal the validity and the perfor-
mance of the models introduced. Each model was tested 
100 and 200 times, i.e., the number of folds multiplied by 
the number of iterations. The total test errors are averaged 
over the total number of test times. The results for these 
tests are listed below for the classification model.

6 Results
To highlight the performance of the proposed ANNs, the 
results obtained have been compared with the SVM for 
the classification models because of the unavailability of a 
similar work to be used in the comparison. The combined 
models for data classification consist of multiple topolo-
gies that are designed using ANN and SVM. Thus, sec-
tion A presents the results of the classification models used 
for both ANN and SVM. To investigate the accuracy of 
the predictive models, four measuring metrics have been 
employed with the classification models.

6.1 Classification models
The trained ANN and SVM classifiers were tested with 
unseen data to classify between the "accident" and "not 
accident" states of the target variable. The dataset used 
was obtained from driving experiments using a micro-
scopic simulator. The results obtained from the predictive 
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models demonstrated the effectiveness and the good gen-
eralization of the networks.

The four ANN topologies consisted of two hidden layers 
and one output layer. There are different numbers of neu-
rons in the first and second hidden layers, as summarized in 
Table 3. The neuron numbers were approximately the same 
for each of the ANN topologies; the lowest number was for 
LRANN. The best performance of the activation functions 
was achieved for the sigmoid family of functions, such 
as log-sigmoid transfer function (logsig) and tan-sigmoid 
transfer function (tansig), while the linear transfer func-
tions "purelin" and "poslin" are used in the output neurons 
in addition to log-sigmoid transfer function. 

To normalize the input and output data, the perfor-
mance of the sigmoid and Z-Score functions was found 
to be better than other functions. The performance of the 
"trainlm" (Levenberg-Marquardt backpropagation) rep-
resented the best set of network training functions, fol-
lowed by the "trainbr" (Bayesian regularization backprop-
agation). Finally, the classification thresholds for the ANN 
classifier ranged between 0.7 and 0.8.

Concerning the SVM classifier, three kernel functions 
were used namely the linear, the RBF, and the polynomial, 
as shown in Table 4. To obtain the best results in predict-
ing the results from unseen data, the parameters of each 
particular kernel function need to be optimized. This opti-
mization can be achieved in terms of adjusting the optimal 
values for parameters such as the cost function, gamma, 
and the polynomial order.

7 Discussion
Before using the trained classifiers for predicting whether 
performing an overtaking maneuver will lead to an acci-
dent, an evaluation of the performance of the classification 
models is necessary.

Therefore, experiments were conducted to analyze and 
compare the performance of the four ANN topologies 
and three SVM kernel functions. We used four measur-
ing metrics (confusion matrix, percentage of error (PE), 
F-measure, Precision, and Recall) in the evaluation pro-
cess to investigate the accuracy of the predictive models. 

PE is calculated to measure the misclassification error 
for each ANN topology and SVM kernel, as in Eq. (9):

PE K L N� �� �� �/ * ,100  (9)

where PE is the percentage error, K is the total number of 
samples belonging to the "not accident" class which are clas-
sified as accidents, L is the number of "accident" samples that 
were classified as belonging to the "not accident" class, and 
N is the total number of samples. Hence, the PE is the ratio 
of incorrect predictions to the total number of predictions.

The average PEs and the average F-measure, in addition 
to the other metrics such as Precision and Recall, are listed 
in Tables 5 and 6, where the best and worst results are 
highlighted in bold. Tables 5 and 6 contain test data only 
and not the data used to train the classification models.

Tables 5 and 6 show the classification accuracy achieved 
when testing all the various ANN topologies and SVM 
kernels. These tabulated results are for both 5- and 10-fold 
cross-validation using 20 iterations. 

In Table 5, the 5-fold cross-validation for the FFANN 
performed better than other topologies in terms of the low-
est PE (1.04%) and also achieved the highest accuracy in 
terms of an F-measure, Precision, and Recall of 99.19%, 
99.69%, and 98.70%, respectively. The CFFANN was found 
to be the second-best performer. In the ten-fold cross-valida-
tion, the CFFANN was found to perform the best, followed 
by FFANN. Compared with other topologies, the LRANN, 
performed the worst for both 5- and 10-fold cross-valida-
tion with a PE of 9.87% and classification accuracies of 

Table 3 ANN topologies specification

Network layers No. of neurons Processing functions

Network type Threshold. Training function Hidden Hidden Output Hidden Hidden Output Input Output

FFANN 0.7 trainlm logsig logsig logsig 30 20 1 sigmoid sigmoid

CFFANN 0.8 trainbr tansig tansig purlin 36 18 1 Z-score Z-score

OFBANN 0.7 trainbr tansig tansig purlin 36 18 1 Z-score Z-score

LRANN 0.7 trainlm tansig tansig poslin 25 15 1 Z-score Z-score

Table 4 SVM kernel parameters

C Gamma D

LINEAR 12.00 –

RBF 20.00 1.30

gPolynomiaL 74.00 2.00 2
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92.92%, 99.89%, and 86.87% for the F-measure, Precision, 
and Recall, respectively. 

Using the confusion matrix measure, the columns rep-
resent the actual class instances, while the rows denote 
the predicted class instances. The observations of the "not 
accident" class are labeled as positive, whilst the accidents 
class is labeled as negative. 

The terms of the confusion matrix are represented as 
follows, according to the data set used in this research:

• True Positive (TP): predicted to be not-accident and 
the actual value is also not-accident;

• False Positive (FP): predicted to be not-accident but 
the actual value is an accident;

• True Negative (TN): predicted to be an accident and 
the actual value is also accident;

• False Negative (FN): predicted to be an accident but 
the actual value is not-accident.

The test set of each fold has been carefully verified to 
avoid bias in the averaged confusion matrix. The classi-
fication accuracies used for the ANN networks for five-
fold cross-validation are given in Fig. 6. The matrices 
show both the number of samples that were classified cor-
rectly and the number of the misclassified samples for both 
classes, i.e. "accident" and "not accident". The highest 
accuracy was reached via the use of FFANN at 99.00%, 
followed by CFFANN, whereas the worst accuracy was 
returned by the LRANN.

The percentage of the true positive rate in this confusion 
matrix was 98.70%, and 99.42% for the true negative rate of 
the samples classified. According to these results, FFANN 
might be considered a straightforward type of network that 
associates inputs with outputs with no feedback (loops) as 

compared to LRANN. Thus, this type of network is ideally 
suited to modeling the relationships between a set of pre-
dictor variables and one or more response variables.

In Table 6, we see that the best classification accuracy 
for the SVM kernels was achieved by the linear kernel 
function. This kernel had the lowest classification error 
among the various options considered, at 0.77%, and it fur-
ther achieved the highest classification accuracy reached 
in the F-measure (99.40%), Precision (99.30%), and Recall 
(99.50%) metrics. Therefore, the superior performance of 
the linear kernel can give us an indication of a linear bound-
ary between the two classes "accident" and "not accident".

Table 5 Classification accuracy of ANN models

K = 5 K = 10

PE F-measure Precision Recall PE F-measure Precision Recall

FFANN 1.04 99.19 99.69 98.70 2.48 98.11 99.78 96.50

CFFANN 1.48 98.86 99.92 97.83 1.32 98.98 99.91 98.08

OFBANN 4.10 96.93 99.90 94.14 3.85 97.11 99.89 94.48

LRANN 9.87 92.92 99.89 86.87 8.11 94.11 99.86 88.99

Table 6 Classification accuracy of SVM models

K = 5 K = 10

PE F-measure Precision REcall PE F-measure Precision Recall

Linear 0.77 99.40 99.30 99.50 0.70 99.45 99.10 99.80

RBF 4.56 96.55 98.41 94.76 4.25 96.76 97.91 95.63

Poly. 2.95 97.71 97.42 98.01 2.96 97.69 96.92 98.48

Fig. 6 ANN confusion matrices of 5 folds; (a) FFANN; (b) CFFANN; 
(c) OFBANN; (d) LRANN

(a) (b)

(c) (d)
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Meanwhile, the RBF kernel had the highest PE, at 4.56%. 
It should be noted that the performance of the linear kernel 
was also found to be best for the 10-fold cross-validation.

Referring to the confusion matrices in Fig. 7, these illus-
trate that the linear kernel has the highest classification accu-
racy among the other kernels (99.2%) followed by the poly-
nomial kernel (97.0%), while the worst performance was 
found for the RBF kernel (95.4%). The matrices show a high 
percentage for the true classified samples for the "accident" 
and "not accident" classes, at 64% and 31-34%, respectively, 
compared to percentages of misclassified samples.

Finally, the results obtained show that both classifi-
ers, ANN and SVM, demonstrated outstanding general-
ization abilities when dealing with the unseen data. Thus, 
in terms of the accuracy category, the linear kernels and 
FFANN topology might be considered excellent models 
as they show the lowest PEs of 0.70% and 1.04%, respec-
tively, whereas the CFFANN and polynomial kernels 
might be considered good models, with PEs of 1.48% and 
2.95%, respectively. The OFBANN and RBF kernel group 
might be considered acceptable models, with PEs of 4.10% 
and 4.56%, respectively. 

The worst-performing classifier was the LRANN topol-
ogy, which had the highest classification error of 9.87%. Both 
the SVM and the ANN classifiers emerged as promising 
in terms of DOAS classification. Overall, the linear kernel 
function is promising for application in the proposed model 
as it showed superior results compared to other models.

8 Conclusion
The general objective of the work in this research is to 
present a thoroughly researched DOAS system to provide 
drivers with a realistic solution for an accurate predictor 
of overtaking maneuvers on two-lane rural roads. The sys-
tem is designed to consider the most influential variables 
when performing this maneuver to improve performance 
and provide a much safer driving environment.

Reliable results can provide crucial assistance in avoid-
ing accidents and introduce a better understanding of the 
relationship between accident factors, i.e., driver char-
acteristics, road conditions, the vehicles involved in the 
maneuver, and finally the environmental conditions.

This work has validated the performance of the pro-
posed DOAS in classifying "accident" and "not accident" 
situations and in predicting the time required to perform 
an overtaking maneuver. The accuracy of the outcome 
from the DOAS is a vital step that is of particular impor-
tance to this type of dangerous maneuver.

Based on the experiments carried out in this study, dif-
ferent ANN topologies and SVM kernel functions have 
been used to perform the training and testing experiments, 
namely FANN, CFFANN, OFBANN, and LRANN, while 
the SVM kernels used were the linear, RGB, Gaussian 
RGB, and polynomial. 

The final output showed promising results in classi-
fying between accidents and predicting the success of 
the maneuver. In the classification model, the linear ker-
nel and the FFANN topology showed the most attractive 
performance of those considered for each. Whereas, the 
worst-performing classifier was the LRANN topology, 
which had the highest classification error. Both the SVM 
and the ANN classifiers emerged as promising in terms of 
DOAS classification. Overall, the linear kernel function 
is promising for application in the proposed model as it 
showed superior results compared to other models.

9 Limitation
In this research, the data was collected via labora-
tory experiments using a microscopic driving simulator 
STISIM Drive®. Field data is difficult to obtain from real-
world experiments due to the heightened risk associated 
with the overtaking maneuver, in addition to which the 
maneuver can be performed on any section of the road. 
Thus, there are many advantages of using the driving sim-
ulator for gathering the dataset that is used for validat-
ing the proposed work in this research. The behavior of 
participants using the simulators might be different from 

Fig. 7 SVM confusion matrices; (a) Linear; (b) RBF; (c) Polynomial

(a) (b)

(c)



412|Fadhil and Al-Bayatti
Period. Polytech. Transp. Eng., 50(4), pp. 400–413, 2022

performing experiments in real driving conditions and 
this might add some effects to the obtained results and to 
the level of realism (Godley et al., 2002). 

Also, the maneuver might lead to a hazardous situa-
tion while overtaking. Three hazardous situations have 
been identified in DOAS before and during an overtak-
ing maneuver. This includes communication difficulties, 
unexpected component failures, or when the driving speed 
of the preceding and the oncoming vehicles change while 
performing the maneuver. Using context-aware uncertain 
reasoning provides dynamism i.e. aborting the maneuver 

and continuing to examine the road situation for further 
overtaking opportunities.

10 Future work
Implementing the second stage of the DOAS model is the 
regression model. The purpose of this model is to predict 
the maneuver time, i.e., the time required to complete one 
overtaking maneuver starting from crossing the center-
line when moving to the opposite driving lane until the 
moment of fully crossing the centerline to return to the 
original driving lane.
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