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Abstract

Higher Order Singular Value Decomposition (HOSVD) based complexity reduction method is pro-
posed in this paper to polytopic model approximation techniques. The main motivation is that the
polytopic model has exponentially growing computational complexity with the improvement of its ap-
proximation property through, as usually practiced, increasing the density of local linear models. The
reduction technique proposed here is capable of defining the contribution of each local linear model,
which serves to remove the weakly contributing ones according to a given threshold. Reducing the
number of local models leads directly to the complexity reduction. The proposed reduction can also
be performed on TS fuzzy model approximation method. A detailed illustrative example of a non-
linear dynamic model is also discussed. The main contribution of this paper is the multi-dimensional
extension of the SVD reduction technique introduced in the preliminary work [1]. The advantage of
this extension is that the HOSVD based technique of this paper can be applied to polytopic models
varying in a multi-dimensional parameter space unlike the reduction method of [1] which is designed
for one dimensional parameter space.

Keywords: polytopic model, TS fuzzy model, complexity reduction, singular value decomposition
(SVD - HOSVD).

1. Introduction

As a result of the dramatic and continuing growth in computer power, and the ad-
vent of very powerful algorithms (and associated theory) forconvex optimisation,
we can now solve very rapidly manyconvex optimisation problems for which no
traditional ‘analytic’ or ‘closed form’ solutions are known (or likely to exist). In-
deed, the solution to manyconvex optimisation problems can now be computed in
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a time which is comparable to the time required to evaluate a ‘closed-form’ solu-
tion for a similar problem. This fact has far-reaching implications for engineers:
it changes our fundamental notion of what we should consider as a solution to a
problem. In the past, a ‘solution to a problem’ generally meant a ‘closed-form’ or
‘analytic’ solution. There are ‘analytical solutions’ to a few very special cases in the
wide variety of problems in systems and control theory, but in general non-linear
problems cannot be solved. A control engineering problem that reduces to solving
two algebraic Riccati equations is now generally regarded as ‘solved’. A control
engineering problem that reduces to solving even a large number of convex alge-
braic Riccati inequalities (a problem which has no analytic solution) should also be
regarded as “solved”, even though there is no analytic solution. A number of prob-
lems that arise in Systems and Control such as optimal matrix scaling, digital filter
realization, interpolation problems that arise in system identification, robustness
analysis and statefeedback synthesis via Lyapunov functions, can be reduced to a
handful of standardconvex andquasiconvex problems that involvematrix inequal-
ities. Extremely efficient interior point algorithms have recently been developed
for and tested on these standard problems; further developments of algorithms for
these standard problems are in an area of active research.

The notion of convex combination of a finite set of points gets considerable
relevance in the context of dynamic systems if ‘points’ become systems. Vari-
ous model approximation techniques are based on the convex combination of local
models. The combination is usually defined by basis functions which express the
local dominance of the linear local models. One of these approximation methods is
called Polytopic Model Approximation (PMA) and utilized to describe linear para-
metrically varying or, hence, linear time variant systems where the parameters vary
in time. Regarding the explicit form of PMA theTakagi-Sugeno Model Approxima-
tion (TSMA), which emerged in the field of softcomputing, was introduced in the
same fundamental form. The use of the PMA and STMA techniques is motivated
by the fact that they can easily be cast or recast asconvex optimisation problems that
involve Linear Matrix Inequalities (LMIs) and the controller design and stability
analysis can, hence, be done in this framework [19, 20]. Therefore, once the model
approximation is given in the form of PMA or TSMA then the controller design
and the Lyapunov stability analysis of a non-linear system reduces to solve an LMI
problem as outlined above.

Despite the advantage discussed above the use of PMA and TSMA is practi-
cally limited. The reason for this is that although the PMA and TSMA theoretically
have the universal approximation property achieving a good system approximation,
PMA and TSMA suffer from exponential complexity in respect to approximation
accuracy. Let a brief digression be taken here, in order to see the contradiction
between approximation accuracy and complexity. In 1900, D. Hilbert listed 23
conjectures, hypotheses concerning unsolved problems which he considered would
be the most important ones to solve by the mathematicians of the 20th century. Ac-
cording to the 13th conjecture there exist such continuous multi-variable functions,
which cannot be decomposed as the finite superposition of continuous functions
of less variables. In 1957 ARNOLD disproved this hypothesis [27], moreover, in
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the same year, KOLMOGOROV [9] proved a general representation theorem with a
constructive proof, where the functions in the decomposition were one dimensional.
KOLMOGOROV’s representation theorem was further improved by several authors
(SPRECHER[17] and LORENTZ [13]). In 1980, DE FIGUEIREDO showed that
KOLMOGOROV’s theorem could be generalized for multi-layer feedforward neural
networks, and these could, hence, be considered as universal approximators. From
the late ’80s several authors proved that different types of neural network possessed
the universal approximation property. Similar results have been established form
the early ‘90s in fuzzy theory. These results [5, 10, 26] claim that different fuzzy
reasoning methods are capable of approximating an arbitrary continuous function
on a compact domain with any specified accuracy. As a result, softcomputing
techniques were considered as universal approximators in general. Regarding the
explicit form the PMA and STMA techniques share the same advantage.

In spite of these remarkable advantages the neural network model as well as
fuzzy approximation, further PMA and TSMA have exponential complexity in terms
of the number of variables shown by KÓCZYand HIROTA (1997) [8]. It means that in
the neural network context, the number of units, or in the context of PMA and TSMA
the number of local linear models (we say building units) grows exponentially as
the approximation error tends to zero. This exponentiality cannot be eliminated, so
the universal approximation property of these uncertainty based approaches cannot
be exploited straightforwardly for practical purposes.Fig. 1 shows the relation
between the number of building units and approximation accuracy.

Complexity 

Approximation accuracy 

a 

Fig. 1. Tradeoff between complexity and approximation accuracy. ‘a’ indicates the avail-
able computation capacity in a real application.

Moreover, for some special approximation techniques (PMA and TSMA) it
is shown, that if the number of the building units is bounded, the resulting set of
functions is nowhere dense in the space of approximated functions (TIKK , 1999)
[21]. According to the opinion of some researchers [21], analogous results should
hold for most fuzzy and neural systems. The mutually contradicting results natu-
rally raise the question to what extent the model approximation should be accurate
concerning the available computational cost. From the practical point of view it is



6 P. BARANYI et al.

enough to achieve an ‘acceptably’ good approximation, where the given problem
determines the factor of acceptability in terms ofε. Hence the task is to find a
possible tradeoff between the specified accuracy and the number of building units.

Recently, several approaches have applied orthogonal transformation methods
to find the minimal number of building units in a given approximation. For instance,
in 1999 YEN and WANG [24] investigated various techniques such as orthogonal
least-squares, eigenvalue decomposition, SVD-QR with column pivoting method,
total least square method and direct SVD method. SVD based fuzzy approximation
technique was initialised by YAM in 1997 [22], which directly finds the minimal
number of building units from sampled values. Shortly after, this technique was
introduced as SVD reduction of the building units and structure decomposition
[1, 2, 3, 4, 23]. An extension of YEN and WANG’s work [24] to multi-dimensional
cases may also be conducted in a similar fashion as the higher order SVD reduction
technique proposed in the papers [1, 2, 3, 4, 22, 23]. SVD is not merely used as a
way of reduction of fuzzy rule bases. A brief enumeration of some opportunities
offered by SVD, the development of which was started by BELTARMI about 200
years ago as discussed by STEWART (1993) [14] and which became one of the most
fruitful tools in linear algebra, gives ideas about its promising role in complexity
reduction in general. The key idea of using SVD in complexity reduction is that the
singular values can be applied to decompose a given system and indicate the degree
of the significance of the decomposed parts. Reduction is conceptually obtained
by the truncation of those parts, which have weak or no contribution at all to the
output, according to the assigned singular values. This advantageous feature of
SVD is used in this paper to extract a given model approximation and discard those
local linear models, namely, building units, which have no significant role in the
overall system according to a given approximation accuracy. However, reducing
the number of building units does not imply the computational cost reduction in
all cases since the computation also depends on the number of overlapping basis
functions, see later. Therefore, as a subsequent aim, a detailed investigation is given
in the aspect of the computational time reduction in this paper.

The concept of this paper is based on the above outlined ideas [1, 2, 3, 4,
22, 23]. Presumably, the SVD technique in this paper as well as in the papers
[1, 2, 3, 4, 22, 23] can be replaced by other orthogonal techniques investigated by
YEN and WANG [24]. The present work constitutes a detailed investigation of the
preliminary approaches outlined in the work [1] and gives a possible solution to
the complexity problem analysed above. The algorithms proposed here are mostly
developed in the papers [22, 23], but are restructured in terms of tensor description
in order to facilitate further developments. Concepts of HOSVD are investigated in
tensor forms in the works of LATHAUWER et al. (2000 and 2001) [11, 12], COMON
(1994) [6] and SWAMI et al. (1996) [18].

Before starting with the discussion of the proposed method let a brief digres-
sion be taken here to outline the motivation of the above characterized reduction
technique in vehicle engineering and transportation design. Static and dynamic
stresses in commercial vehicles were outlined in the work of MICHELBERGER et
al. (1976) [15]. Shortly after the load analysis of commercial vehicles was intro-



HOSVD BASED COMPLEXITY REDUCTION 7

duced by HORVÁTH et al. in 1981 [7]. The fundamental equation of motion of
a linear system of discrete mass points and rigid bodies is given in the paper of
HORVÁTH et al. that is described by the following differential equation derived in
the paper by MICHELBERGERet al. (1976) [16]:

Mÿ + Kẏ + Sy = Gfh
v(t) + Dḟh

v (t), (1)

where matrixM is a mass matrix comprising point-like masses and adequately
transformed principal moments of inertia; matrixK indicates the damping acting
on mass points (rigid bodies);S is a stiffness matrix;D is damping matrix applied
on the road surface as constraint co-ordinates due to vehicle components (tyres);G
stiffness matrix applied likeD; y is vertical displacement of discrete mass points
(rotation of rigid bodies around the centroid);fh

v (t) is the function of excitation by
speedv of a road typeh. A sequence of equation (1) is defined for various cases
as:

Mi ÿ + Ki ẏ + Siy = G j fh
v (t) + D j ḟh

v (t), i + 1 . . . n, j = 1 . . . m.

The i-th model on the left side is assigned to thej -th model on the right side
depending on the investigated case:j = assign(i). Thus, the number of models is
mxn. Furthermore, these assigned models are combined based on the calculation
of weighted-average to form special models for various kinds of investigation:

Moÿ + Koẏ + Soy = Gofh
v (t) + Doḟh

v (t)

⇒
n∑

i=1

wm,i (p)Mi ÿ + wk,i (p)Ki ẏ + ws,i(p)Si y

=
∑

i=1...n,
j=assign(i)

wg, j(p)G j fh
v (t) + wd, j(p)D j ḟh

v (t). (2)

The target what for (2) is determined is indicated byp that is for instancep = 1 if
(2) is used for investigating the stability, orp = 2 if energy requirement is estimated
by (2), a different (2) is defined when the commercial comfort is assayed; etc. In
order to achieve good approximation the model points are usually increased (m
andn) which leads to extremely complex calculation of (2). The main goal is the
reduction of the complexity, namely, to find the minimalm andn in respect top
in order to simplify the model. Another aspect is that once the reduction is done,
which sets free further calculation capacity, we have a chance to put new model
points, in order to improve the approximation.

In conclusion the main contribution of this paper is the multi-dimensional
extension of the SVD reduction technique of [1]. Work [1] can be applied to
reduce the complexity of those polytopic or TS fuzzy models which vary in a one-
dimensional parameter space. This paper replaces the SVD with HOSVD in [1],
which leads to a reduction technique capable of operating on multi-dimensional
polytopic or TS fuzzy models.
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2. Basic Definitions

This section is devoted to introduce some elementary definitions and concepts uti-
lized in the further developments. Before starting with the definitions, some com-
ments are enumerated on the notation to be utilized. To facilitate the distinction
between the types of given quantities, they will be reflected by their representation:
scalar values are denoted by lower-case letters{a, b, . . .}; column vectors and matri-
ces are given by bold-face letters as{a, b, . . .}and{A, B, . . .} respectively. Tensors
correspond to capital letters as{A, B, . . .}, tensor 1 contains values 1 only. The
transpose of matrixA is denoted asAT. Subscript is consistently used for a lower
order of a given structure. E.g. an element of matrixA is defined by row-column
numberi, j symbolized as(A)i, j = ai, j . Systematically, thei-th column vector
of A is denoted asai , i.e. A = [a1 a2 · · · ]. To enhance the overall readability
charactersi, j, . . . are in the meaning of indices (counters),I, J, . . . are reserved to
denote the index upper bounds, unless stated otherwise.
I1×I2×...×IN is the vector
space of real valued(I1 × I2 × . . . × IN )-tensors. LetterN serves to denote the
number of variables of the space where the coefficient matrices of the model are
approximated.

DEFINITION 1 (n- mode matrix of tensor A) Assume anN-th order tensorA ∈

I1×I2×...×IN . Then-mode matrixA(n) ∈ 
In×J , J = ∏

k Il contains all the vectors
in then-th dimension of tensorA. The ordering of the vectors is arbitrary inA(n),
this ordering shall, however, be consistently used later on.(A(n)) j is called aj -th
n-mode vector.

Note that any matrix the columns of which are given byn-mode vectors
(A(n)) j can evidently be restored to be tensorA. The restoring can be executed
even in case when some rows ofA(n) are discarded since the value ofIn has no role
in the ordering of(A(n)) j [11, 12].

DEFINITION 2 (n-mode sub-tensor of tensor A) Assume anN-th order tensorA ∈

I1×I2×...×IN . Then-mode sub-tensorAin =α contains elementsai1 ,i2,...,in−1,α,in+1,...,iN .

DEFINITION 3 (n-mode tensor partition) Assume anN-th order tensorA ∈

I1×I2×...×IN . n-mode partitions of tensorA are Bl ∈ 
I1×I2...×In−1×Jl×In+1×...IN

denoted asA = [ B1 B2 BL ]n, whereIn = ∑
l Jl .

DEFINITION 4 (Scalar product) The scalar product〈A, B〉 of two tensorsA, B ∈

I1×I2×...×IN is defined as〈A, B〉 def= ∑

i1

∑
i2

. . .
∑

iN
bi1i2...iN ai1i2...iN .

DEFINITION 5 (Orthogonality) Tensors the scalar product of which equals 0 are
mutually orthogonal.

DEFINITION 6 (Frobenius norm) The Frobenius norm of a tensorA is given by

‖A‖ def= √〈A, A〉.
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DEFINITION 7 (n-mode matrix-tensor product) The n-mode product of tensor
A ∈ 
I1×I2×...×IN by a matrix U ∈ 
J×In , denoted byA ×n U is an(I1 × I2 × . . .×
In−1 × J × In+1 × . . . × IN )-tensor the entries of which are given byA ×n U = B,
where B(n) = U · A(n). Let A ×1 U1 ×2 U2 . . . ×N UN be noted for brevity as
A ⊗

n=1
Un.

THEOREM 1 (Matrix singular value decomposition (SVD)) Every real valued
(I1 × I2)- matrix F can be written as the product of F = U · S · VT = S ×1 U ×2 V,
in which

1. U = [
u1 u2 · · · uI1

]
is a unitary (I1 × I1)-matrix,

2. V = [
v1 v2 · · · vI2

]
is a unitary (I2 × I2)-matrix,

3. S is an (I1 × I2)-matrix with the properties of
(i) pseudodiagonality:

S = diag(σ1, σ2, . . . , σmin(I1,I2))

(ii) ordering: σ1 ≥ σ2 ≥ . . . ≥ σmin(I1,I2) ≥ 0.

The σi are singular values of F and the vectors Ui and Vi are respectively an i-th
left and an i-th right singular vector.

There are major differences between matrices and higher-order tensors when
rank properties are concerned. These differences directly affect the way an SVD
generalization could look like. As a matter of fact, there is no unique way to
generalize the rank concept. In this paper we restrict the description ton-mode
rank only.

DEFINITION 8 (n-mode rank of tensor) Then-mode rank ofA, denoted byRn =
rankn(A), is the dimension of the vector space spanned by then-mode vectors as
rankn(A) = rank(A(n)).

THEOREM 2 (Higher Order SVD (HOSVD)) Every tensor A ∈ 
I1×I2×...×IN can
be written as the product A = S ⊗

n=1
Un, in which

1. Un = [
u1,n u2,n . . . uIN ,n

]
is a unitary (IN × IN )-matrix called n-mode

singular matrix.
2. tensor S ∈ 
I1×I2×...×IN whose subtensors Sin=α have the properties of
(i) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all

possible values of n, α and β : 〈Sin=α, Sin=β

〉 = 0 when α �= β,

(ii) ordering:
∥∥Sin=1

∥∥ ≥ ∥∥Sin=2

∥∥ ≥ . . . ≥ ∥∥Sin=In

∥∥ ≥ 0 for all possible values
of n.

The Frobenius norm
∥∥Sin=i

∥∥, symbolized by σ
(n)
i , are n-mode singular values

of A and the vector ui,n is an i-th singular vector. S is called as core tensor.

More detailed discussion of matrix SVD and HOSVD is given in [11, 12].
A detailed algorithm of HOSVD is given in papers [1, 2, 3, 4, 22, 23]. Graphical
illustrations of the above definitions are given in [11, 23].
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Fig. 2. Mass-spring-damper system

3. Polytopic and TS Model Approximation

This section is intended to discuss the fundamental form of PMA and TSMA.
Consider a parametrically varying dynamical system

dx
dt

(t) = A(p)x(t) + B(p)u(t),

y(t) = C(p)x(t) + D(p)u(t)

with input u(t), outputy(t) and statex(t). Suppose that its system matrix

S(p) =
(

A(p) B(p)
C(p) D(p)

)
(3)

is a parametrically varying object which for any parameterp can be written as
a convex combination of the V system matricesS1, . . . , SV (as a matter of fact,
p may depend on the state vector as well,S(p) can hence be viewed as a time
varying object ifp is considered asp(t)). This means that there exists a function
αv : 
 → [0, 1] such that for anyp we have that

S(p) =
V∑

v=1

αv(p)Sv,

where
∑V

v αv(p) = 1 and

Sv =
(

Av Bv

Cv Dv

)
are constant system matrices. In particular, this implies that the system matrices
S(p) belong to convex hull ofS1, . . . , SV , i.e. S(p) ∈ co(S1, . . . , SV ). Such models
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are called polytopic linear differential inclusions and arise in the wide variety of
modelling problems. Consequently, the system is approximated by a model, which
consists of a number of local linear models assigned to regions defined by basis
functionsαv(p). In the case of TSMAαv(p) represent the membership functions
of the antecedent fuzzy sets. In multi-variable case, when the system is varying
in a multi-dimensional vector spaceP, rectangular griding is utilized to define the
local linear models and the corresponding basis functions. The system matrixS(p),
wherep ∈ 
N , is approximated as:

Ŝ(p) =
V1∑

v1=1

V2∑
v2=2

· · ·
VN∑

vN =1

N∏
n=1

αn,vn(pn)Sv1,v2,...,vN , (4)

wherepn are the elements of vectorp. Along in the same line as above

∀n, v : αn,v(pn) ∈ [0, 1] (5)

and∀n : ∑Vn
v=1 αn,v(pn) = 1 which implies that

1 =
V1∑

v1=1

V2∑
v2=2

· · ·
VN∑

vN =1

N∏
n=1

αn,vn(pn). (6)

In order to have a general technique to mixed problems with various performance
specifications, let a multi-channel system description be discussed, where the system
is given as:


ẋ
v1
...

vq
y


 =




A(p) B1(p) · · · B2(p) B(p)
C1(p) D1(p) · · · D1q(p) E1(p)

...
...

. . .
...

...
Cq(p) D1q(p) · · · Dqq(p) Eq(p)
C(p) F1(p) · · · Fq(p) D(p)







x
w1
...

wq
u


 , (7)

wherew j → v j are the channels on which we want to impose certain robustness
and/or performance objectives. To facilitate the further development let the notation
of (7) be simplified in a systematic form as:




z1
z2
...

zK


 =




B1,1(p) B1,2(p) · · · B1,L(p)
B2,1(p) B2,2(p) · · · B2,L(p)

...
...

. . .
...

BK ,1(p) BK ,2(p) · · · BK ,L(p)






x1
x1
...

xL


 = S(p)




x1
x1
...

xL


 ,

(8)
whereK denotes the number of rows in the model (8) (i.e. the number of equations
describing the model), andL indicates how many terms are in the rows of the
equations, for instance, these are 2 in (3). Vectorxl ∈ 
Il consists of the model
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input and state vectors, whereIl denotes the number of ‘input’ elements inxl .
Vectorzk ∈ 
Ok contains the output values of thek-th row in (8), whereOk denotes
the number of ‘output’ values inzk . This implies that the size ofBk,l(p) is Ok × Il.
For example, describing (3) by (8) results in: x1(t) = x(t), x2(t) = u(t) and
the outputs of the model arez1(t) = ẋ(t) andz2(t) = y(t). Coefficient matrices
become:B1,1(p) = A(p), B1,2(p) = B(p), B2,1(p) = C(p) andB2,2(p) = D(p).
Let (8) be substituted into (4), then we obtain:

B̂k,l(p) =
V1∑

v1=1

V2∑
v2=2

· · ·
VN∑

vN =1

N∏
n=1

αn,vn(pn)Bv1,v2,...,vN,k,l ,

which can be reformulated in terms of tensors as:

B̂k,l(p) =
(

Bk,l ⊗
n

mn(pn)

)
(N+1)

or S(p) =
(

S ⊗
n

mn(pn)

)
(N+1)

,

where row vectormn(pn) ∈ 
Vn contains basis functionsαn,vn (pn) and theN + 2-
dimensional coefficient tensorBk,l ∈ 
V1×V2×...×VN ×Ok×Il is constructed from ma-
tricesBv1,v2,...,vN,k,l ∈ 
Ok×Il . TensorS ∈ 
V1×V2×...×VN ×∑

k Ok×∑
l Il is constructed

from system matricesSv1,v2,...,vN . The firstN dimensions ofBk,l are assigned to the
dimensions of the parameter spaceP. The next two ones are assigned to the output
and input vectors, respectively.

4. Complexity Investigation

This section investigates the computation complexity of PMA and TSMA. The
output values are calculated by (8) as:

zk =
(∑

l

[
Bk,l ⊗

n
mn(pn)

]
×N+2 xT

l

)
(N+1)

. (9)

LEMMA 1 (Complexity explosion) The computational complexity of PMA and
TSMA techniques grows exponentially with the number of basis functions, dimension
of the parameter space and the size of the model coefficients. Considering the
number of multiplications the computational requirement is characterised as:

P =
∏

n

Vn

(∑
k

∑
l

Ok Il +
∑

k

Ok

)
+ Cp

∑
n

Vn, (10)

where Cp indicates the number of multiplications during the calculation of a basis
function.
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To arrive at (10), one notes that calculating the output of one linear local model
to a given input needs

∑
k

∑
l Ok Il multiplications. The number of the local linear

models is
∏

n Vn. The outputs of the
∏

n Vn local linear models are weighted by the
basis functions, which implies

∏
n Vn · ∑k Ok further multiplications.Cp

∑
n Vn

indicates the calculation of the basis functions, whereCp represents the number of
multiplications in the calculation of one basis function. Consequently, (10) shows
that increasing the density of the basis functions in pursue of good approximation
leads to the explosion of the number of local linear models (building units) fully
according to the paper by KÓCZY and HIROTA (1997) [8].

5. Key Concept of HOSVD Based Reduction

This section briefly discusses the fundamentals of HOSVD in the sense of complex-
ity reduction. Many reduction properties of the HOSVD of higher-order tensors
are investigated in the related literature. Let us briefly summarize those, which
have prominent roles in this paper. In multi-linear algebra as well as in matrix
algebra, the FROBENIUSnorm is unitary invariant. As a consequence, the fact, that
the squared FROBENIUS norm of a matrix equals the sum of its squared singular
values, can be generalized.

PROPERTY1 (Approximation) Let the HOSVD of A be given as in Theorem 2 and
let the n-mode rank of A be equal to Rn. Define a tensor Â by discarding singular
values σ

(n)

I ′
n+1, σ

(n)

I ′
n+2, · · · , σ

(n)
Rn

for given values of I ′
n, i.e. set the corresponding parts

of S equal to zero. Then we have:

∥∥∥A − Â
∥∥∥2 ≤

N∑
n=1


 Rn∑

in=I ′
n+1

(σ
(n)
in

)2


 . (11)

This property is the higher-order equivalent of the link between the SVD of a matrix
and its best approximation in a least-squares sense, by a matrix of lower rank. The
situation is, however, quite different for tensors. By discarding the smallestn-mode
singular values, one obtains a tensorÂ with n-mode rank ofI ′

n. Unfortunately, this
tensor is, in general, not the best possible approximation under the givenn-mode
rank constraints [11]. Nevertheless, the ordering implies that the main components
of A are mainly concentrated in the part corresponding to low values of the indices.
Consequently, ifσ(n)

I ′
n

>> σ
(n)

I ′
n+1

, where actuallyI ′
n corresponds to the numerical rank

of A then the smallern-mode singular values are not significant, which implies their
discarding. In this case, the obtainedÂ is still considered as a good approximation
of A. According to the special terms in this topic the following naming has emerged
[22, 23]:



14 P. BARANYI et al.

DEFINITION 9 (Exact/non-exact reduction) Assume anN-th order tensorA ∈

I1×I2×...×IN . Exact reduced formA = Ar ⊗

n
Un, where ‘r ’ denotes ‘reduced’, is de-

fined by tensorAr ∈ 
I r
1×I r

2 ×...×I r
N andn-mode singular matricesUn ∈ 
In×I r

n ,∀n :
I r

n ≤ In which are the results of Theorem 2, where only the zero singular values
and the corresponding singular vectors are discarded.Non-exact reduced form
Â = Ar ⊗

n
Un is obtained if not only zero singular values and the corresponding

singular vectors are discarded.

6. SVD Based Complexity Reduction of PMA and TSMA

The main objective of the complexity reduction proposed in this section is twofold,
which is introduced via two methods. Method 1 is aimed to minimize valuesVn,
which means the decrease of the size of tensorBk,l in the first N dimensions.
This leads to the minimal number of local linear models. The reduction conducts
HOSVD on tensorBk,l to root out linear dependences by truncating zero or small
singular values. First an exact reduction is discussed in this section. Increasing the
effectiveness of the reduction by discarding non-zero singular values in HOSVD,
reduction error is obtained which will be bounded in Remark 2 at the end of this
section. A further aim of the reduction to be treated in Method 2 is to decrease
valuesOk and Il which also appear in the dominant term of (10). The numbers of
input and output values are defined by the application at hand, which implies thatOk
andIl cannot be directly decreased. Similarly to [1] the key idea of reducing these
values can be viewed as the transformation of the whole approximation to a smaller
computational space. The input values are also projected in each state step of the
modelled system and the output values are calculated in the reduced computational
space. Finally, the output values are transformed back to the original space. The
reduction is based on executing SVD reduction to the coefficient matrices. As
a matter of fact exact reduction cannot be obtained in this step if the coefficient
matrices are full in rank, which is usually guaranteed by modelling processes. Non-
exact reduction is, however, still possible at the price of reduction error. Note that in
this case the approximated coefficient matrices will not be in full rank, which is not
acceptable in various theorems of control design. In order to have a completed view,
both reduction possibilities are discussed in the next part. First let us characterise
the concept and the goal of the reduction by the following Theorem 3:

THEOREM 3 (complexity reduction) Eq. (9) can always be transformed into the
following form:

zk =
(∑

l

[
Br

k,l ⊗
n

mr
n(pn)

]
×N+1 Ak ×N+2 xT

l Cl

)
(N+1)

,
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which is equivalent to

zk = Ak

(∑
l

[
Br

k,l ⊗
n

mr
n(pn)

]
×N+2 xT

l Cl

)
(N+1)

, (12)

where the size of Br
k,l ∈ 
V r

1 ×V r
2 ×...×V r

N ×Or
k ×I r

l may be reduced as ∀n : Vr
n ≤

Vn, Or
k ≤ Ok and I r

l ≤ Il .

mr
n(pn) ∈ 
V r

n consists of the new basis functions. The number of the basis func-
tions on then-th universe isVr

n . Ak ∈ 
Ok×Or
k and Cl ∈ 
Il×I r

l are applied to
transform the inputs and the outputs between the reduced and the original compu-
tational space, see later at Method 2.

The proof of the Theorem 3 can readily be derived from the following Methods
1 and 2. Before starting with the introduction of the methods, let us have a brief
digression and represent the calculation of valueszk of PMA in respect toxl in
two different ways, similarly to [1]. Let tensorGk ∈ 
V1×V2×...×VN ×Ok×(

∑
l Il) be

given by the form ofGk = [
Bk,1 Bk,2 . . . Bk,L

]
N+2. The output valuezk of the

approximation in respect toxk is:

zk =
([

Gk ⊗
n

mn(pn)

]
×N+2

[
xT

1 xT
2 . . . xT

L

])
(N+1)

.

The second way utilizes matrixHl ∈ 
V1×V2×...×VN ×(
∑

k Ok)×Il constructed byHl =[
B1,l B2,l . . . BK ,l

]
N+1. The output of the TS fuzzy model is:




z1
z2
...

zK


 =

([
[ H1 H2 . . . HL ]N+2 ⊗

n
mn(pn)

]
×N+2

[
xT

1 xT
2 xT

L

])
(N+1)

. (13)

The first method shows how to find the minimal number of local linear models.

Method 1 (Determination of the minimal values of V1, V2, . . . , VN )

Applying HOSVD (Theorem 2) to theN + 2-dimensional system tensor
S (S = [G1 G2 . . . GK ]N+1 in such a way that the SVD is executed only on
dimensions 1. . . N yields:

S = Sr ⊗
n

Tn, (14)

where ‘r ’ denotes ‘reduced’. TensorsBr
k,l ∈ 
V r

1 ×V r
2 ×...×V r

N ×Ol×Il are found as the
partitions ofSr (Sr = [

Gr
1 Gr

2 . . . Gr
K

]
N+1 andGr

k = [
Br

k,1 Br
k,2 . . . Br

k,L

]
N+2

).

If singular values are discarded then the size ofBr
k,l ∈ 
V r

1 ×V r
2 ×...×V r

N ×Ol×Il is less
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than the size ofBk,l ∈ 
V1×V2×...×VN ×Ol×Il , so,∀n : V r
n ≤ Vn, which is the key

point of the reduction. Thus for (14) we obtain

Bk,l = Br
k,l ⊗

n
Tn. (15)

The new basis functions are constructed as

mr
n(pn) = mn(pn)Tn. (16)

Consequently, (9) can be written in the reduced form by substituting (15) and (16)
into (9) which yields:

zk =
(∑

l

[
Br

k,l ⊗
n

mr
n(pn)

]
×N+2 xT

l

)
(N+1)

,

which is in full accordance with the Theorem 3 of complexity reduction. The
objective of Method 2 is to decreaseOk and Il.

Method 2 (Determination of the minimal computational space)

1. Determination of matricesAk, namely, the reduction ofOk .
Let Rk = (Gk)(1). Applying SVD, with discarding zero singular values, to
Rk yields:

Rk = Ak · Dk · Vk = A·
kR′

k .

Matrix R′
k ∈ 
Or

l ×∏
n Vn ·∑l Il can be restored to tensor

G ′
k ∈ 
V1×V2×...×VN ×Or

k ×(
∑

l Il).

2. Determination of matricesCl, namely, the reduction ofIl .
Let tensorH ′

k ∈ 
V1×V2×...×VN ×∑
k Ok×Il be constructed as

H ′
l = [

B ′
1,l B ′

2,l . . . B ′
K ,l

]
N+1

,

where tensorsB′
k,l are defined according to the result

G ′
k = [

B ′
k,1 B ′

k,2 . . . B ′
k,L

]
N+2

by step 1. Then letMl = (H ′
l )(N+2) whereupon executing SVD yields (where

zero singular values are discarded):

Ml = Cl · D′
l · V′

l = Cl · M′
l.
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Matrix M′
l defines tensorsBr

k,l ∈ 
V1×V2×...×VN ×Or
k ×I r

l according toM′
l =

(H ′′
l )(N+2) andH ′′

l = [
Br

1,l Br
2,l . . . Br

K ,l

]
N+1

.
The results of Method 2 areAk andCl . Cl is applied to transform the input

valuesxl to a reduced space as:xr
l = CT

l ·xl . The output is calculated in the reduced
computational space as:

zr
k =

(∑
l

[
Br

k,l ⊗
n

mn(pn)

]
×N+2

(
xr

l

)T

)
(N+1)

.

The outputzr
k is projected to the original space byz=k A·

kzr
k , which is in full accordance

with the Theorem 3 of complexity reduction.
The ordering of executing Method 1 and 2 is arbitrary. In the following, some

important issues and interpretability problems of the results are discussed.

Remark 1 The functions in (16) obtained by Method 1 may not be interpretable
as basis functions, which satisfy (5), since the transformation using matrixTn may
result in functions with negative values. Another crucial point is that the resulted
basis functions do not guarantee the normality, which means that (6) may not be
equal to 1. This fact would destroy the whole reduction concept since calculat-
ing (6) with the new basis may get far from 1. However, if only the saving of
computational cost of final implementation is in purpose and the conditions (5)
and (6) of the basis do not have to be accommodated, then (12) is directly appli-
cable. If the reduced form is for further studies in fuzzy theory and/or Lyapunov
stability analysis, then the reduced basis functions should accommodate additional
characterization pertaining to specific operations. This may require further trans-
formations. To obtain matricesTn in such a way that the reduced basis functions are
bounded by[0, 1] and hold (6), Non-Negativeness (NN) andSum-Normalisation
(SN) transformation techniques are developed by YAM in [22, 23]. If the SVD is
accompanied by these transformations then the resulted functions fulfil (5) and (6),
and remain interpretable as antecedent fuzzy sets in the case of TSMA. This leads
to the theoretically correct use of (9) and (8).

Remark 2 An advantage of the proposed algorithm is that it has error controllable
property, i.e. if the HOSVD is executed in non-exact mode then the original and the
reduced approximation differ and the difference can be estimated during executing
the reduction technique. In Section 5 it is shown that discarding non-zero singular
values results in reduction error, which can be bounded by (11). Works [1, 2, 3, 4,
22, 23] bound the maximum reduction error by the sum of the discarded singular
values. As a matter of fact, the reduction errors of the proposed methods also depend
on the basis functions applied. In this regard various cases of basis functions are
discussed in [2]. Generally speaking, it can be said that if the original basis holds
(6) then the maximum final model approximation error is the sum of the discarded
singular values, which can be controlled during executing Methods 1 and 2. For
more details about the error bound of SVD reduction see works [1, 2, 3, 4, 22, 23].
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Remark 3 Method 1 may result in basis functions, which cannot be analytically
simplified and hence their shapes are rather complicated and their computational
loads may be greater than that of the original ones. Observing (10) it is concluded
that Cp is not in the dominant part of (10) which implies that this computational
increase of the new basis is dispensable in comparison to the exponential feature
of the dominant term. In the worst case, the original functions are calculated first,
after this the values of the reduced basis are simply determined by (16) in each step
of the system. Therefore, the worst case is bounded by

P =
∏

n

V r
n

(∑
k

∑
l

Or
k I r

k +
∑

k

Or
k

)

+Cp

∑
n

Vn +
∑

n

Vn V r
n +

∑
k

Ok Or
k +

∑
l

Il I
r
l , (17)

where the extra termVnV r
n indicates the extra computational load of calculating

the values of the basis functions on then-th universe.
∑

k Ok Or
k and

∑
l Il I r

l are
from the computation requirement of the transformation between the original and
the reduced computational spaces. Consequently, the effectiveness of the reduction
is

η =
∏

n V r
n

(∑
k
∑

l Or
k I r

k + ∑
k Or

k

) + Cp
∑

n Vn + ∑
n VnV r

n + ∑
k Ok Or

k + ∑
l Il I r

l∏
n Vn

(∑
k

∑
l Ok Ik + ∑

k Ok
) + Cp

∑
n Vn

.

In the case of a dense griding or higher dimensional parameter space its dominant
expresses the effectiveness of the reduction in the sense of computational complex-
ity:

η ≈
∏

n V r
n

(∑
k

∑
l Or

k I r
k + ∑

k Or
k

)
∏

n Vn

(∑
k

∑
l Ok Ik + ∑

k Ok

) .

Remark 4 Method 1 could be modified in such a way that the reduction results
in one approximation for each row or column of (2) like in [1]. Furthermore, one
basis system could be resulted for each coefficient tensorBk,l. The advantage of the
separately executed reduction of eachBk,l in Method 1 is that the size of someBr

k,l
may become less, while computing (14) the sizes of all partitionsBk,l of Srare the
same in the firstN dimensions. This is due to the fact that then-mode rank of tensor
Bk,l is less than or equal to then-mode rank of tensorS in (14). In the worst case its
maximum could be min(

∑
k,l rankn(Bk,l), rows((S)(n)). Consequently, replacingS

in (14) with Bk,l , the following is obtained:

Bk,l = Br
k,l ⊗

n
Tn,k,l

and according to (16) the new basis systems are:mr
n,k,l(pn) = mn(pn)Tn,k,l , where

the basis defined bymr
n,k,l(pn) is assigned to the approximation ofBk,l. Again, the
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benefit is that the size of eachBr
k,l in the present modified case is less than or equal

to the common size ofBr
k,l resulted by Method 1. As a matter of fact, the calculation

cost of the basis may increase since one basis system should be calculated for each
Bk,l, however, this extra calculation is not included in the exponentially dominant
part of (10) and (17). This pin-pointing of the reduction is burdened by the fact,
that one has to check, whether performing the reduction for each coefficient tensor
separately would yield a better computational reduction or not.

7. Example

This example, taken from [28] and [1], is a design for a simple non-linear mass-
spring-damper mechanical system depicted inFig.2. The main goal of this example
is to approximate the mass-spring-damper mechanical system (like a dynamically
unknown one) by PMA or TSMA over a dense approximation grid. The reason for
applying dense approximation grid is the goal of achieving a small approximation
error. Then the example performs the proposed reduction technique to find the
minimal number of local linear models. The differential equations of the mechanical
system are analytically derived into the minimal form of PMA or TSMA, as well,
in order to evaluate the effectiveness of the proposed reduction technique. The
goal here is to show that the minimal form resulted by the proposed methods from
training data is the same, in the sense of complexity, as the analytically derived
PMA or TSMA model.
First let us discuss the dynamic model from the example of [28]. It is assumed that
the stiffness coefficient of the spring, the damping coefficient of the damper, and
the input term have non-linearity or uncertainty

m · ẍ + g(x, ẋ) + k(x) = φ(ẋ) · u, (18)

wherem is the mass andu stands for the force.k(x) is the non-linear or uncertain
term with respect to the spring.g(x, ẋ) is the non-linear or uncertain term with
respect to the damper.φ(ẋ) is the non-linear term with respect to the input term.
Assume thatg(x, ẋ) = d(c1x + c2ẋ3), k(x) = c3x + c4x3, andφ(ẋ) = 1 + c5ẋ3.
Furthermore, assume thatx ∈ [−a, a], ẋ ∈ [−b, b] and a, b > 0. The above
parameters are set as follows [25]: m = 1, d = 1, c1 = 0.01,c2 = 0.1, c3 = 0.01,
c4 = 0.67,c5 = 0, a = 1.5, andb = 1.5. Eq. (18) then becomes:

ẍ = −0.1ẋ3 − 0.02x − 0.67x3 + u. (19)

The non-linear terms are−0.1ẋ3 and−0.67x3. Let us proceed further in the same
way as done in [28] and give a PMA or TSMA of (19) with minimal number of
basis functions.x andẋ have the following conditions:{ −1.5075x ≤ −0.67x3 ≤ 0 · x x ≥ 0

0 · x ≤ −0.67x3 ≤ −1.5075x x < 0
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and { −0.225ẋ ≤ −0.1ẋ3 ≤ ẋ · 0 x ≥ 0
0 · ẋ ≤ −0.1ẋ3 ≤ −0.225ẋ x < 0.

This fact means that the non-linear term can be represented by the upper
and the lower bounds:−0.67x3 = f1,1(x)x · 0 − (1 − f1,1(x)) · 1.5075x and
−0.1ẋ3 = f2,1(ẋ)ẋ · 0 − (1 − f2,1(ẋ)) · 0.225ẋ , where fn,vn(ẋ) ∈ [0, 1], Vn = 2.
This leads to basis functionsf a

1,1(x) = 1 − x2

2.25, (‘a’ means that the function is

obtained analytically),f a
1,2(x) = x2

2.25; f a
2,1(ẋ) = 1 − ẋ2

2.25; f a
2,2(ẋ) = ẋ2

2.25. The
basis functions are depicted inFig.4. Thus, the following assignments are obtained
analytically:

ẍ = −0.1ẋ3 − 0.02x − 0.67x3 + u =
2∑

i=1

2∑
j=1

f a
1,i(x) f a

2, j (ẋ)φi, j ,

whereφ1,1 = −0.02x + u, φ1,2 = −0.225ẋ − 0.02x + u, φ2,1 = −1.5275x + u
andφ2,2 = −0.225ẋ − 1.5275x + u. This approximation in matrix representation
takes the form:

A(x, ẋ) =
2∑

i=1

2∑
j=1

f a
1,i(x) f a

2, j (ẋ)Aa
i, j ; B(x, ẋ) =

2∑
i=1

2∑
j=1

f a
1,i(x) f a

2, j (ẋ)Ba
i, j ,

(20)
where

Aa
1,1 =

[
0 −0.02
1 0

]
, Ba

1,1 =
[

1
0

]
, Aa

1,2 =
[ −0.225 −0.02

1 0

]
,

Ba
1,2 =

[
1
0

]
, Aa

2,1 =
[

0 −1.5275
1 0

]
, Ba

2,1 =
[

1
0

]
,

Aa
2,2 =

[ −0.225 −1.5275
1 0

]
, Ba

2,2 =
[

1
0

]
.

The analytically obtained PMA, consisting of four local linear models, exactly rep-
resents the non-linear system. The model has two basis functions in each parameter
dimension, which is sufficient for the approximation. The next step is to approxi-
mate the model (18) with a dense approximation grid, after which we can assume
that (18) is unknown and then go about generating a minimum sized PMA by the
present reduction technique. Let intervalsẋ, x ∈ [−1.5, 1.5] be divided by 400
triangular shaped basis functions (or, in other words, by first order B-spline basis),
seeFig. 3.

Therefore the approximation is computed as:

Â(x, ẋ) =
400∑
i=1

400∑
j=1

f1,i(x) f2, j (ẋ)Ai, j ; B̂(x, ẋ) =
400∑
i=1

400∑
j=1

f1,i(x) f2, j (ẋ)Bi, j .

(21)
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1.5-1.5

)(xft � ,

)(xft

x� , x

)(1,2 xf � , )(1,1 xf )(400,2 xf �

)(400,1 xf

0.003

Fig. 3. Dense basis to achieve a good approximation

We sample the dynamic system over the approximation grid points defined by
xi = −1.5+(i −1)3/400 andẋ j = −1.5+( j −1)3/400, which imitates the result
of an identification algorithm like in [1]. Thus the dense approximation becomes

ẍ =
400∑
i=1

400∑
j=1

f1,i(x) f2, j (ẋ)(ai, j ẋ + bi, j x + ci, j u), (22)

whereai, j = −0.1(−1.5 + ( j − 1)3/400)2, bi, j = −0.02− 0.67(−1.5 + (i − 1)

3/400)2, andci, j = 1. The matrix form in (21) can easily be generated from (22).
Executing Method 2 on matricesAi, j , namely, on tensorA ∈ 
400×400×2×2 (note
that matricesBi, j are constant) results in two non-zero singular values to the first
dimension such as 461.6404. . . and 156.5663. . . and after performing SN and NN
transformation (see Remark 1) two non-zero singular values are obtained to the
second dimension, such as 100.8708. . . and 1.8970. . ..

Ar
1,1 =

[ −169.5952205449. . . −2.871864441639. . .
1 0

]
,

Ar
1,2 =

[
338.965358635779. . . −2.871864441665. . .

1 0

]
,

(23)

Ar
2,1 =

[ −169.595220544832. . . 3.895957360524. . .
1 0

]
,

Ar
2,2 =

[
338.965358635644. . . 3.895957360558. . .

1 0

]
.

This means that two basis functions on each dimension are sufficient for the same
approximation, which is in full accordance with the analytical polytopic model de-
sign. Further the resulted basis functions maintain (5) and (6). The main conclusion
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Fig. 4. Basis functions of the original approximation via analytical derivation and the basis
extracted from training data by HOSVD reduction.

is that the PDC design (or any further LMI analysis) can be restricted to the resulted
four linear local models. Let us proceed further and determine the basis functions.
The new membership functions inherit the piece-wise linear property of the original
triangular shaped membership functions. We approximate the break points of the
pieces, (which are actually the elements in the columns ofTn [2], by a polynomial
fitting, which results in:

f r
1,1(x) = α1 + β1x2, f r

1,2(x) = 1 − f r
1,1(x),

f r
2,1(ẋ) = α2 + β2ẋ2, f r

2,2(ẋ) = 1 − f r
2,1(ẋ),

(24)

where α1 = 0.57861413538877. . ., β1 = 0.09899787842876. . ., α2 =
0.66651913756641. . . andβ2 = 1.966334082795784· 10−4. The membership
functions are depicted inFig. 4. Let us take a brief digression here and show via
linear transformations that the model obtained in (24) is a variant form of (20). The
analytically derived basis functions can be transformed to the reduced basis as (in
the following steps the equivalency is understood in numerical sense):

mr
1 = ma

1T1 and mr
2 = ma

2T2,

where mr
1(x) = ⌊

f r
1,1(x) f r

1,2(x)
⌋
, mr

2(ẋ) = ⌊
f r
2,1(ẋ) f r

2,2(ẋ)
⌋
, ma

1(x) =
= ⌊

f a
1,1(x) f a

1,2(x)
⌋

and ma
2(ẋ) = ⌊

f a
2,1(ẋ) f a

2,2(ẋ)
⌋
. The transformation matri-

ces are:

T1 =
[

0.57861413538877. . . 0.42138586461123. . .
0.80135936185347. . . 0.19864063814653. . .

]

T2 =
[

0.66651913756641. . . 0.33348086243359. . .
0.66696156273504. . . 0.33303843726497. . .

]
.
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In the same wayAr = Aa ×1 T−1
1 ×2 T−1

2 , where coefficient tensorsAr ∈ 
2×2×2×2

andAa ∈ 
2×2×2×2 are respectively constructed from matricesAr
i, j andAa

i, j . Con-
sequently,

Ar ×1 fr
1(x) ×2 fr

2(x) = Aa ×1 T−1
1 ×2 T−1

2 ×1 (fa
1 (x)T1) ×2 (fa

2 (x)T2)

= Aa ×1 (fa
1 (x)T1T−1

1 ) ×2 (fa
2 (x)T2T−1

2 ) = Aa ×1 fa
1 (x) ×2 fa

2 (x).

We can conclude that the two models are equivalent to the model given by differential
equations. Equivalency of the models is understood here in numerical sense i.e. the
difference between the outputs of the models to the same inputs is underε < 10−12.
Fig. 5 shows the response of the analytically derived and the reduced rule base in
the case of step change. We can observe that the output signals are equivalent.

In conclusion let the above outlined example be summarised inFig.6. Block
1 illustrates the model given by differential equations. Block 2 is achieved via
an analytical derivation of the differential equations of Block 1. Block 2 shows a
polytopic model consisting of four linear local models and the corresponding basis
functions. Having the polytopic model the frameworks of LMI based approaches
to solve Lyapunov criteria can be applied. This way between Block 1 and Block
2 cannot, however, be done easily in a general case. It may need accurate and
complicated mathematical solutions including human intuition. In the present ex-
ample we have chosen a simple model, in order to show the derivation via simple
analytical solution as well. Another way, which is proposed in this paper, is to
go and generate an approximation of the analytically given model of Block 1 by a
universal approximation technique such as tensor product based polytopic method,
the determination of which does not need human intuition, but computation power
only. In a general case the polytopic model tends to have the universal property
while its complexity goes to infinity. Consequently, Block 3 represents a polytopic
model approximation of the differential equations of Block 1 with acceptable small
approximation error. The price to pay for the acceptable approximation accuracy
is the extremely high complexity explosion of the polytopic model (160000 linear
local models in the present example), which may burden the use of LMI based
controller design frameworks (in order to design a controller in the present simple
example already 160000 equations should be solved by LMI). The complexity re-
duction of the model is, hence, highly desired. Block 4 is a polytopic model which
is the reduced form of the polytopic model of Block 3. This contains only four rules
fully according to the result in Block 2, which shows that four models should be
enough. The reduction is done by the proposed HOSVD reduction technique. This
model has the same approximation error as the model in Block 3. Block 2 shows
that there exists a solution for polytopic model that is exactly the same as the differ-
ential equations in Block 1. The final polytopic model in Block 5 is generated from
the reduced model via approximating the reduced basis functions by polynomials.
This final step is motivated by the result in Block 2.
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a)

b)

Fig. 5. Response of the reduced (depicted by solid line) and the analytically derived (de-
picted by dash dotted line) models to step change (depicted by dashed line). Figures
a) and b) respectively shoẇx andx . The curves of the reduced and the analytically
derived models precisely cover each other in both figures.

8. Conclusion

In this paper we have argued that the identification of PMA and TSMA models
from training data needs consideration of an important feature between data fitness
and model complexity. We emphasize the importance of these features by pointing
out that PMA and TSMA models with large number of local models may encounter
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Block 1

Differential equ.
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Polytopic model

4 local models

Block 3

Polytopic model

160000 local models

Block 4

Polytopic model

4 local models

Analytic 

derivation

Approxi-

mation 

HOSVD

Block 5

Polytopic model

4 local models

Equivalent

Approximating the basis

Fig. 6. Structure of the example

the risk of having an approximation capable of fitting training data well, but in-
capable of running on satisfactorily low computational cost. In order to help the
developments of PMA and TSMA models to strive for balance between the two
conflicting modelling objectives, we introduce a HOSVD based PMA and TSMA
model reduction technique. Using the proposed method, we have demonstrated the
application of HOSVD to a dynamic system approximation. The main contribution
of this paper is that the proposed approach is the expounded form of the single
variable SVD based reduction technique of [1] to multi-variable cases.
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