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Abstract

This paper presents a robust control and fault detection filter design for linearized longitudinal dynam-
ics of F-16 aircraft. The control design is based onµ synthesis method which guarantees the robust
performance requirements and takes the structured uncertainty into consideration. In case of F-16
aircraft, it is assumed that an elevator failure and a sensor failure occur during the system operation.
To ensure the safety of aircraft control system a fault detection and isolation (FDI) filter is designed.
The fault detection filter design based on geometric approach relies on the use of(C, A) invariant
subspaces which makes possible the decoupling of different types of failure. Typically, the FDI filter
design approach is elaborated for open loop model and it is applied in the closed loop. In this paper
the FDI filter designed for aircraft control system will be analyzed for a closed loop system.

Keywords: aircraft control,H∞/µ synthesis, fault detection

1. Introduction

The evolution of modern aircraft created a need for power-driven aerodynamic
control surface and automatic pilot control system. In addition, the widening per-
formance envelope created a need to augment the stability of the aircraft dynamics
over some parts of the envelope. In case of high performance military aircraft,
where the pilot may have to manoeuvre the aircraft to its performance limits and
perform tasks such as precision tracking of targets, specialized flight control system
is needed. Although the role of a fighter aircraft has changed to include launching
missiles from long range, the importance of the classical dogfight is still recog-
nized. Hence in this situation a suitable controlled variable for a pitch axis control
system is used as a pitch rate command system. When a situation requires precision
tracking of a target, by means of sighting device, it has been found that a pitch rate
command is well suited to the task. Systems have been designed [19] which blend
together the control of pitch rate and normal acceleration. The experience shows
that it is extremely difficult for a pilot to fine track a noncooperative air-to-air target
using a system with significant pitch rate overshoot. The flight test experience has
shown that the pilots prefer a system with a fast deadbeat pitch rate response for
fine tracking.
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Traditionally, classical control design based on single-input, single-output
techniques has been used to design the flight control system. The classical design
approach is aided by such tools as root locus, Bode and Nyquist plots, which enables
us to visualize how the system dynamics are being modified, however, the design
procedure becomes increasingly difficult as more loops are added [16]. These
methods do not guarantee success when the aircraft model contains some uncertainty
components or the aircraft dynamics are uncertain. Often, a low order, nominal
model, which describes the low-middle frequency range behavior of the plant is
available, but the high-frequency plant behavior is uncertain. Recently, the complex
µ synthesis has become widespread, because this method yields a compensator that
achieves nominal performance and robust stability and takes structured uncertainties
into consideration, [4, 5, 15].

In many applications the use of a reliable control system is necessary. It is
possible to increase the safety of aircraft with detection of failures in the control
loop. The fault detection and isolation problem can be characterized as a two step
procedure. The first step is to design a residual generator that produces a signal
which is zero or close to zero when no failure is present, but it is different from zero
when a component of the system fails. The residuals are examined and a decision
rule is then applied to determine if any faults have occurred. The next step is the
isolation of the fault by using a special logic to evaluate the situation.

There are various approaches to residual generation, see e.g., the geometric
approach to design detection filters as initiated by MASSOUMNIA for LTI systems
[11] and used also by BOKOR et al., for LTV systems [6]. The geometric approach
relies on the use of(C, A) invariant subspaces and provides conditions on separa-
bility (in the detector output error space) and mutual detectability of the failures.
The assignment of the effect of a particular fault to a(C, A) invariant subspace of an
observer can be solved by using(C, A) invariant subspace algorithm or eigenstruc-
ture assignment. The unknown input observer concept is used to fault detection
filter design in [2]. The inversion based approach for LTI systems that can be used
for detector design is represented as minimum order stable linear system [18]. A
complete analysis of the combined feedback controller and fault detection filter has
been given in [14, 17] for both nominal systems as well as for uncertain systems. It
has been shown that there is a complete separation between the design of feedback
controller and FDI filter in the nominal case which is not the case in uncertain
systems.

This paper is organized as follows. Section 2 describes the F-16 fighter aircraft
nonlinear equations of motion. Section 3 discusses the robust control design based
on theµ synthesis. Section 4 gives a very quick review of the fault detection
problem. Section 5 demonstrates the F-16 aircraft controller and FDI filter design.
A conclusion is given in Section 6.
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2. Equations of Motion

In this section the nonlinear longitudinal model of F-16 aircraft is presented. An
accurate representation of the dynamics of an aircraft can be obtained through non-
linear, rigid body equations (note that in this case the flexible modes are ignored).
References [10, 16], have complete derivations of the rigid body equations for an
airplane. The equations of motion of an aircraft can be separated in two parts.
One of them includes the translational equations and the other one the rotational
equations, respectively. For an aircraft model the rotational motion includes the
yawing, pitching and rolling motion, and the three translation motions of the center
of gravity (cg). Thus the aircraft model will be a six degrees of freedom mechan-
ical system. The nonlinear equations of motion of a rigid body aircraft could be
decoupled into two independent sets of variables. One set of them describes the
longitudinal (pitching, and translation in the symmetric plane of the aircraft) mo-
tion, and the other set determines the lateral (rolling, and sideslipping and yawing)
motion. Under the conditions of small perturbations from steady state flight, the
longitudinal aircraft equations of motion could be split into two sets. These are the
short period mode that is characterized by change in angle of attackα and pitch
attitudeθ assuming there is no speed variation and the long period mode or phugoid
that is characterized by change of potential and kinetic energy about the equilibrium
altitude and speed. The short period mode is heavily damped and it has very short
duration. In case of long period, the variation of the angle of attackα is neglected
and this motion is a lightly damped mode and it has long duration.

The longitudinal motion of the F-16 can be defined by the following variables:
total velocity VT , angle of attackα, pitch rateq, pitch angleθ . Noting that in
longitudinal motion the sideslip angleβ, roll angleφ, roll p and yawr rates are
considered to be zero. The nonlinear equations for longitudinal motion of F-16 are
given by:

V̇T = 1

m
[Fx cosα + Fz sinα], (1)

α̇ = −Fx sinα + Fz cosα + mVT q

mVT + CL α̇
q̄ S c̄

VT

, (2)

q̇ = 1

Iyy
My, (3)

θ̇ = q. (4)

wherem is the aircraft mass andIyy is the mass inertia.
The longitudinal model is affected only by aerodynamic forces along thex

andz axis, plus the pitching moment around they axis. The aerodynamic forces
and moments are modelled in terms of aero-coefficients (CD, CL , Cm), which can
be obtained from wind-tunnel experiments.D denotes the drag,L the lift force and
m the pitch moment, respectively. The aerodynamic coefficients are provided as
look-up tables function of a wide set of parameters (angle of attack, true airspeed,
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sideslip angle, altitude and others). The force and moments in body axes are given
by:

Fx = q̄ SCD + DT − mg sinθ, (5)
Fz = q̄ SCL + LT + mg cosθ, (6)

My = q̄ Sc̄

[
Cm + 1

c̄
(CL xcg − CDzcg) + c̄α̇

VT
(Cmα̇

+ x̄cg

c̄
CL α̇

]
+ MYT , (7)

whereq̄ = 1
2ρV 2

T is the dynamic pressure and is a function of Mach numberM and
altitudeh. S is the reference area,c̄ is the wing chord and̄xcg, z̄cg distances are a
measure of the possible moment arms.DT andLT are the thrust forces.CL α̇

and
Cmα̇

mean the change in lift force and pitching moment coefficient due to the rate
of change of angle of attack.

The linear equations of motion needed for control system design will in gen-
eral be derived by numerical methods from the nonlinear equations. The most
widespread methodology to linearize nonlinear systems is the Jacobian lineariza-
tion. It can be used to create a linear system with respect to an equilibrium point.
There is a downside due to the first order approximation used to obtain the linear
system. The first order approximation is only acceptable within a small deviation
of the trim point. This could lead to divergent behavior with respect to the nonlinear
model, for large control inputs. In the linear equations the nonlinear aerodynamic
coefficients are replaced by stability derivatives. The stability derivatives are partial
derivatives of aerodynamic coefficients with respect to the state variables.

A straight and level flight steady state trim is defined for a nonlinear F-16
aircraft model to get the linearized equations of motion by the Jacobian method. The
linearized longitudinal equations are simple, ordinary linear differential equations
with constant stability coefficients. The coefficients in the differential equations
are made up of aerodynamic stability derivatives, mass and inertia characteristics
of the aircraft. The model of longitudinal dynamics in linearized state space form
is given by[16]:

ẋ = Ax + Bu, (8a)
y = Cx + Dy, (8b)

where

x = [
V̇T α̇ θ̇ q̇

]T
, u = δel , y = [

α q an
]T

. (9)

The states are velocityVT [ft/sec], the angle of attackα [rad], the pitch angleθ
[rad], the pitch rateq [rad/sec]. The control input is elevator deflectionδel [deg].
The outputs are angle of attackα [deg], pitch rateq [deg/sec], and the normal
accelerationan [g].
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3. Robust Servo Control Design Using Complex µ Synthesis

Consider the closed-loop system which includes the feedback structure of the model
G0 and controllerK , and elements associated with the uncertainty models and
performance objectives (Fig. 1). In the diagram,r is the reference,u is the control
input, y is the output,n is the measurement noise, andze is the deviation of the
output from the required one. The structure of the controllerK may be partitioned
into two parts:K = [

Kr Ky

]
, whereKy is the feedback part of the controller and

Kr is the pre-filter part.
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Fig. 1. Closed loop interconnection structure

Often, a low order, nominal model, which describes the low-middle frequency
range behavior of the plant is available, but the high-frequency plant behavior
is uncertain. In this situation, even the dynamic order of the actual plant is not
known, and something richer than parametric uncertainty is needed to represent
the unmodeled dynamics. One common approach for this type of uncertainty is
to use a multiplicative uncertainty model. Roughly, this allows you to specify a
frequency-dependent percentage uncertainty in the actual plant behavior. In our
case an input multiplicative uncertainty is used. The uncertainties between the
nominal model and the real plant is represented byWr and
m. Wr is assumed to
be known, and it presents all a priori information about the neglected dynamics. The
transfer function
m is assumed to be stable and unknown with the norm condition,
‖
m‖∞ < 1. The precise definition of the multiplicative uncertainty is as follows:

M(G0, Wr ) :=
{

G :
∣∣∣∣G(iω) − G0(iω)

G0(iω)

∣∣∣∣ ≤ |Wr (iω)|
}

. (10)

At each frequency,|Wr (iw)| represents the maximum potential percentage differ-
ence between all of the plants represented byM(G0, Wr ) and the nominal plant
modelG0. In that sense,M(G0, Wr ) represents a ball of possible plants, centered
atG0. On a Nyquist plot, a disk of radius|Wr (iw)G0(iw)|, centered atG0(iw) is the
set of possible values that it can take on, due to the uncertainty description. Design
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models used for flight control typically exhibit good fidelity at lower frequencies,
sayω < 10−20 rad/sec, but they degrade rapidly at higher frequencies due to such
poorly modelled or neglected effects as aeroelasticity, actuator modelling error,
and so on. Such modelling errors are well-represented by complex-valued, un-
structured, multiplicative perturbations located at plant input.The complex-valued
unstructured representation is appropriate here because magnitude and phase errors
and cross channel coupling errors are all prominent at higher frequencies. The
multiplicative form is chosen for convenience because it permits the intuitive inter-
pretation of uncertainty magnitudes in terms of percent errors relative to the design
model.

The weighting functionWe chosen for tracking errors can be thought of as
penalty function. That is, weights should be large in the frequency range where
small errors are desired and small where larger errors can be tolerated. The size and
frequency response shapes of tracking error weights depend upon several consid-
erations. First, we should recognize that the errors at frequencies beyond feedback
loop bandwidth will necessarily be open loop size. Second, to achieve integral
action (i.e. zero steady state errors), weights should be large at very low frequency.
When choosing tracking performance weights for design tradeoffs, it is also impor-
tant to keep in mind the range of validity of the design model. For instance, there
is nothing to be gained by requiring integral action for an error signal when the
design model does not correctly represent low frequency characteristics. The short
period approximation of longitudinal aircraft dynamics, which neglects phugoid
modes, is a case in point.Tid is the model matching function which generally is an
ideal transfer function of the plant. The performance objective of the two degree of
freedom controller design is the

∥∥Tzer

∥∥∞ to be small for all possible‖
m‖∞ < 1.
The control inputs are limited using a performance criterionWu . Using this

weight the designer can penalize larger deflections and thereby minimize control
activity. The simplest weight on actuator deflection is constant across frequency
and has a magnitude equal to the inverse of the deflection.

Now, let us consider the role of weights for external disturbance signals.
Recall that these signals include sensor noiseWn, external disturbancesWdist and
pilot commandsWcmd . The role of weights for these signals is basically the opposite
of the role of weights for output weights discussed so far. Inputs to the weights are
signals whose frequency responses are flat and unit size. The weights themselves
contain scale factors and frequency shaping that match the size, units and frequency
content of the true inputs. Typically we have only two categories of disturbance
weights. The first category consists of simple constants that are used to model
wide band signals such as sensor noiseWn. In most flight control designs, sensor
noises are small and do not affect performance significantly. The second category of
disturbance weights consists of low pass filters that are used to model band limited
signals such as gustsWdist and pilot commandsWcmd . Typically these weights are
first order transfer functions with gains selected to produce the correct signal levels
and time constants selected to match the bandwidth of the signals.

Necessary and sufficient conditions for robust stability and robust perfor-
mance can be formulated in terms of the structured singular value denoted asµ [4].
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Now, the design setup inFig. 1 should be formalized as a standard design problem
as illustrated inFig. 2.
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Fig. 2. GeneralizedP − K structure

By applying the weighting functions and the compensator, the augmented
plant P can be formalized asEq. (11).
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where

w̃ = [
r n w

]T
, z̃ = [

ze zu
]T

. (12)

A new matrix function called linear fractional transformation (LFT) is introduced.
A lower LFT can be formally defined provided that the inverse(I − P22K )−1 exists:

Fl(P, K ) := P11 + P12K (I − P22K )−1P21. (13)

In order to analyze the performance and robustness requirements, the closed loop
system is expressed by the lower linear fractional transformation:

M = P11 + P12K (I − P22K )−1P21, (14)

[
e
z̃

]
=

[
M11 M12

M21 M22

] [
d
w̃

]
. (15)

Assume that
m is a member of the bounded subset:

B
 = {
m ∈ 
 | σ {
}m < 1}, (16)



90 I. SZÁSZI and B. KULCSÁR

where
 is defined by:


 = {diag(δc
1Ir1, · · · , δc

mc
Irmc

,
1, · · · ,
n) | δc
i ∈ C ,
 j ∈ C

m j ×m j }. (17)

where thei th repeated complex scalar block isri × ri , and the j th full block is
m j × m j .

The robust stability (RS) can be guaranteed when the closed-loop system is
internally stable. The internal stability means that from all inputs to all outputs the
created transfer function is stable. Robust stability is equivalent to:

‖M11‖∞ < 1. (18)

We restrict the set of perturbation to
 ∈ B
 and therefore condition (18) can
be arbitrarily conservative. Rather than a singular value constraint we need some
measure which takes into account the structure of the perturbations
. This is the
structured singular valueµ.

The structured singular value can be defined as

µ
(M) = 1

min
(σ {
} : 
 ∈ 
, det(I + 
M) = 0)
, (19)

unless no
 ∈ 
 makesI − M
 singular, in which caseµ
(M) = 0. Thus
1/µ
(M) is the "size" of the smallest perturbation
, measured by its maximum
singular value, which makes det(I − M
) = 0.

From the definition ofµ, the robust stability can be reformulated as:

sup
ω

µ(M11) < 1 ⇐⇒ ‖µ(M11)‖∞ < 1. (20)

The main goal of our synthesis is to guarantee robust performance (RP). The closed-
loop system achieves robust performance if the performance objective is met:

sup
ω

µ(M) < 1 ⇐⇒ ‖µ(M)‖∞ < 1. (21)

Usingµ it is possible to test for both robust stability and robust performance in a
non-conservative manner.

UnfortunatelyEq. (19) is not suitable for computingµ since the implied
optimization problem may have multiple local maxima. However, tight upper and
lower bounds forµ may be effectively computed for complex perturbation sets.
Algorithms for computing these bounds have been documented in several papers,
see e.g. [5].

Define

D =
{

diag
[
D1, . . . , Dmc , d1Im1, . . . , dn Imn−1, Imn

] :
Di ∈ C ri ×ri , Di = D∗

i > 0

}
. (22)
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The upper bound can be formulated as a convex optimization problem, so the global
minimum can be found. For a constant matrixM and complex uncertainty structure

, an upper bound forµ
(M) is as follows:

µ
(M) ≤ inf
D∈D

σ
{

D−1M D
}
. (23)

The aim of theµ synthesis is to minimize the peak value ofµ
(.) of the closed-loop
M for all stabilizing controllersK .

Using the upper bound the optimization problem can be formulated as:

min
K

sup
ω

inf
D(ω)∈D

σ
{

D−1(ω)Fl(P, K )D(ω)
}
. (24)

Unfortunately, it is not known how to solve (24). However, an approximation
to complexµ synthesis can be made by the following iterative scheme. For a
fixed controllerK (s), the problem of findingD(ω) is just the complexµ upper
bound problem which is a convex problem with known solution. Having found
these scalings we may fit stable minimum phase transfer function matricesD(s)
to D(ω) such that the interconnectionD(s)M(s)D(s)−1 is stable. For given scal-
ings D(s) the problem of finding a controllerK (s) which minimizes the norm∥∥Fl(D(s)M(s)D−1(s), K (s))

∥∥∞ will be reduced to a standardH∞ problem. Re-
peating this procedure, denotedD − K iteration, several times yields the complex
µ optimal controller provided the algorithm converges.

4. Detection Filter Problem

Consider a system with additive actuator and sensor fault model:

ẋ = Ax + Bu +
k∑

i=1

Liνi , (25a)

y = Cx +
q∑

j=1

e jµ j . (25b)

In Eq. (25), x ∈ X is the state variable,u ∈ U is the known control input,y ∈ Y is
the known output, the arbitrary time-varying functionsνi ∈ V andµ j ∈ M are the
unknown failure modes. The failure modes are zero when there is no failure. The
mapsLi : Vi → X are the failure signatures. A failure modeνi models the time
varying amplitude of a failure while a failure signatureLi models the directional
characteristics of a failure.νi can represent the actuator fault. For example, the
effect of failure in thei th actuator can be represented byLi = Bi whereBi is the
i th column ofB. µi can model the sensor fault.ej are the unit vector. E.g., the
effect of failure in thei th sensor can be represented byei where thei th element of
ei is the unit element and the other elements ofei are equal to zero.
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Design an observer in the form:

˙̂x = Ax̂ + Bu + D(y − ŷ), x̂(0) = x(0), (26a)
ŷ = Cx̂ . (26b)

We refer toD : Y → X as the output injection map or the observer gain matrix. Let
the state estimation error beε = x − x̂ and the residualr = y − Cx̂ , respectively.
The error system is as follows:

ε̇ = (A − DC) ε +
k∑

i=1

Liνi − d jµ j , (27a)

r = T


Cε +

q∑
j=1

e jµ j


 , (27b)

wheredj is the j th column of the detection filter gain matrix. The presence ofdj
in (27a) is a potential difficulty since the detection gain is not known a priori. The
objective of the design procedure for a sensor failure is to determine two a priori
directions associated with a failure in thej th sensor such that the output errors lie
somewhere in the plane defined byCdj andej . The closed loop error system of
(27) can be replaced by a system of the form

ε̇ = (A − DC) ε +
k∑

i=1

Liνi +
q∑

j=1

l∗
j µ j +

q∑
j=1

l jµ j , (28a)

r = T Cε, (28b)

wherel j is any direction such thatej = Cl j andl∗j = Al j .
Eq. (28) can be reformulated as follows:

ε̇ = (A − DC) ε +
k+q∑
i=1

Fi fi , (29a)

r = T Cε, (29b)

where fi contains bothνi andµ j failure modes, moreoverFi consists of all failure
signatures.

The detection filter problem can be stated in geometric language as follows.
Given A, Fi (i = k + q) andC, find a compatible and output separable family of
(C, A)-invariant subspaces{Wi , i ∈ k + q} such thatFi ⊆ Wi . In other words,
find {Wi , i ∈ k + q} such that there exists aD with

(A − DC)Wi ⊆ Wi , (30)
Fi ⊆ Wi , (31)

CWi ∩
∑
i �= j

CWi = 0. (32)
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Note that if there exists a family of subspaces{Wi, i ∈ k + q} and an observer
gain D such that the conditions in (30) and (31) are satisfied, then the errorε
due to a nonzerofi remains insideWi which contains the reachable subspace of
(A − DC, Fi ). Also (32) requires the subspacesCWi to be independent so that the
residual vector due to the different failures is confined to independent subspaces
of the output space. The fault is identified by projectingr onto each of the output
subspacesCWi usingT projection matrix. If the initial errorε(0) is not zero, then
naturally we should add a stability requirement (33) to the problem statement so
that the initial observation error dies away and the residual stays close to zero when
no failure is present.

λi((A − DC) |Wi) < 0 ∀i. (33)

To ensure stability, instead of the minimal(C, A)-invariant subspacesW∗
i , a set of

mutually detectable, minimal unobservability subspaces or detection subspacesIi
are usually chosen. TheI∗

i the smallest unobservability subspaces (UOS) contain-
ing Fi and the largest UOS in KerC satisfy the conditions. Moreover,I∗

i has the
additional property that the spectrum of(A − DC) is arbitrarily assignable.W∗

i ,
andI∗

i can be computed byCAISA andUOSA algorithms, respectively [20].

C AI S A :
{
W0 = 0,
Wk+1 = F + A(KerC ∩Wk),

(34)

U OS A :
{
S0 = X ,

Sk+1 = W∗ + (A−1Sk) ∩ KerC.
(35)

5. H∞/µ Controller and FDI Filter Design

This section presents the design of a controller for the longitudinal axis F-16 aircraft
model usingH∞/µ control technique and an FDI filter based on(C, A) invariant
subspace algorithm, respectively.

First, the objective is to design a linear, robust, multivariable controller which
achieves good pitch rate command tracking. The aircraft dynamics of F-16 are
linearized for a straight and level flight condition at sea level and 0.45 M for a four
state model that includes only the longitudinal dynamics.

The state space matrices of the linearized longitudinal motion of F-16 are as
follows:

A =




−0.0193 8.8157 −32.1700 −0.5749
−0.0002 −1.0189 0 0.0506

0 0 0 1
0.0000 0.8222 0 −1.0774


 , B =




0.1737
−0.0021

0
−0.1755


 (36)

C =

 0 57.2957 0 0

0 0 0 57.2957
0.0039 15.8800 0 1.4810


 , D =


 0

0
0.0333


 . (37)
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The elevator actuator dynamics is a first order transfer functionGel = 25
s+25.

The sensor models represent the sensor dynamics. Theα andq sensors are
taken as unity, andan sensor is chosen as a second order system:

Sα = 1, (38)
Sq = 1, (39)

San = 39.272

s2 + 2 · 0.7 · 39.27s + 39.272
. (40)

TheWr weight describes model uncertainty at the model input

Wr = 2
s + 2

s + 20
. (41)

This choice indicates in case of elevator uncertainty weight that at frequencies
below 2 rad/sec, we expect 20% model error. For frequencies above 2 rad/sec, the
model uncertainty grows until the pole at 20 rad/sec, which is needed to make the
weighting function realizable. The longitudinal models are generally reliable out
to between 2 and 10 rad/sec. But, our weighting function is chosen to indicate that
the model loses fidelity beyond 2 rad/sec. By increasing model uncertainty beyond
2 rad/sec, the optimization keeps bandwidth roughly between 2 and 20 rad/sec (see
Fig. 3).

For this example, optimal performance is measured in terms of model tracking
errors. The pilot input is the stick and the reference signal is the pitch rateq.

First, the weighting functions have to be selected for a design method. The
Wcmd weight takes a unit-norm signal as input and produces a signal with size
and frequency content consistent with pilot commands. For example, in a flight
control problem, fighter pilots can generate stick input reference commands up to
a bandwidth of about 2Hz. Say the stick has a maximum travel of 3 inches. Pilot
commands would then be modelled as normalized signals passed through a first
order filter:

Wcmd = 0.001
s + 100

s + 0.1
. (42)

TheWe transfer function weight is the difference between the idealizedq response
and the actual aircraft responses

We = 4
s + 2.5 · 10−3

(s + 0.1) · (s + 0.1)
. (43)

We is chosen in such a way that the short period modes are emphasized for tracking
performance. Therefore the weight has a peak in the middle frequency range which
is the short period approximation.Fig. 3 shows the robust (dashed) and tracking
performance (solid) weighting functions.
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Tid represents a desired ideal model for the closed-loop system from the pilot
stick to output. The ideal response is given by the handling quality (HQ) description.
For good command tracking response we might desire our closed-loop system to
respond as a first-order system. The model matching function is given by:

Tid = 2.5

s + 2.5
. (44)

The Wdist scales unit norm signals to have proper size and frequency content for
disturbance input. For this example the disturbance is a dynamic gust disturbance
model, which is evaluated from the formulas and graphs in the MIL-F-8785-C for
0.45 M [12]:

Wdist = 0.975s + 0.25

s2 + 0.88s + 0.19
. (45)

The Wu weight is used to shape the penalty on control signal usage. The weights
penalize the deflection limits response of the control signal, in the face of the tracking
and disturbance rejection objectives already defined. The elevator limit is defined
as±25 deg for deflection

Wu = 1

25
. (46)

Wn represents the frequency content of sensor noise. The weights are derived from
laboratory experiments or based on manufacturer measurements. Noises weights
are given by:

W α
n = 0.1, (47)

W q
n = 0.1, (48)

W an
n = 0.01g. (49)
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The sensor noise forα andq channel is 0.1 deg and 0.1 deg/sec, respectively. There
is a 0.01g measurement noise for the acceleration sensor.

Using the weighting functions of the nominal performance and the robust
stability specifications, the optimalH∞ controller is designed using the standard
gamma iteration. The gamma value achieved is 1.709. TheM11 and M22 transfer
functions associated with robust stability and nominal performance may be evalu-
ated separately. The controlled system achieves robust stability, however, it does
not achieve nominal performance. This conclusion follows from the singular value
plots as it is shown inFig. 4(a). It is observed that the nominal performance in-
creases above 1 in the low frequency range.
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Fig. 4. Robust stability, nominal performance and robust performance

In the next step, the D-K iteration is performed. The results of Step 4 of the
D-K iteration are shown inFig. 4(b).

It is claimed that both the nominal performance and the robust stability re-
quirements are fulfilled. Moreover, robust performance is also achieved, because
the value ofµ is under 1. The important values of the steps of the D-K iterations
are shown inTable 1. The controller order is selected 21. No attempt was made to
reduce the state order of the controller.

Next an FDI problem is considered for open loop using the geometric approach
for fault in elevator actuator and pitch rate sensor fault, respectively [11]. The fault
detection filter is studied in linear closed loop simulation, and it is reported to
perform well in the presence of sensor noise.

Our system can be described by the following linear time invariant model:

ẋ = Ax + Bu + belν, (50a)
y = Cx + eqµ. (50b)

The actuator failure can be modeled as an additive term in the state equation where



ROBUST CONTROL 97

Table 1. Iteration summary

Iteration #1 #2 #3 #4
Controller order 13 17 19 21
D-scale order 0 4 6 8
Gamma achieved 2.344 1.963 1.380 1.063
Peakµ value 1.419 1.918 1.362 0.974

the failure signaturebel is the same as the first column of theB matrix, which repre-
sents the elevator actuator direction. The sensor failure can be modeled similarly to
actuator fault as an additive term in the measurement equation. The sensor failure
signature is a unit vector. Theeq means that the arbitrary time-varying real scalar
µ has only effect on the pitch rate sensor.Eq. (50) can be reformulated in such
form where all faults are modeled only in the state equation. Therefore the sensor
failure has to be modeled as a pseudo-actuator failure. As explained in Section2.the
eq failure signature is equivalent to a two dimensional faultFq . The modified fault
model is as follows:

ẋ = Ax + Bu + Fδν + Fqµ, (51a)
y = Cx, (51b)

where

Fδ = bel, Fq = [
F1

q F2
q

]
(52)

and the directionsF1
q andF2

q are given by

eq = C F1
q , F2

q = AF1
q . (53)

Now let us apply the geometric approach based on(C, A)-invariant concept to
(51). Considering the actuator and sensor failure, the error system is given in the
following way:

ε̇ = (A − DC) ε + Fδν + Fqµ, (54a)
r = T Cε. (54b)

The designed detection filter based on open loop will be applied to closed loop. In
case of closed loop analysis the filter inputs are the controlled outputs moreover the
controller output which is the elevator deflectionδe. A 1 deg step actuator failure
is simulated occurring at 20 sec and a 0.2 deg/sec doublet sensor failure occurring
between 10 sec and 25 sec, respectively. The FDI filter is tested during an aircraft
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manoeuvre. The responses of 1 deg/sec doublet command in pitch rate are plotted
in Fig. 5. It is observed that for a 1 deg/sec doublet command in pitch rate, the pitch
rate response has a settling time of 2 sec. The effect of the two failures appears
only in pitch rate and in normal acceleration, but it dies out with small deviation.
The required control inputs can be seen inFig.6. The elevator deflection is within
acceptable limits.
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Fig. 5. 1 deg/sec doublet command in pitch rate channel

The simulation result of the FDI filter in case of closed loop can be seen
in Fig. 7. The first residual shows the actuator fault and the second residual the
sensor fault. The two types of failure are decoupled and the residuals give an exact
estimation of elevator fault and sensor fault, respectively. The effect of pitch rate
command on residuals is negligible.
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Fig. 7. 1 deg step elevator fault and 0.2 deg/sec doublet sensor fault

6. Conclusion

In this paper, anH∞/µ control and an FDI filter design based on(C, A) invariant
subspace concept has been presented through the application of LTI F-16 longi-
tudinal model. The designedH∞ controller fulfils the predefined robust stability
requirement, however, it does not fulfil the predefined performance requirement.
Applying D-K iteration in theµ synthesis, the designed controller guarantees not
only the nominal performance but also the robust performance. The FDI filter de-
sign can be independently performed from control design in nominal case. In many
cases one designs an FDI filter for open loop and it will be applied to closed loop.
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