
PERIODICA POLYTECHNICA SER. TRANSP. ENG. VOL. 28, NO. 1–2, PP. 39–53 (2000)

USING Z SPECIFICATION FOR RAILWAY INTERLOCKING
SAFETY1

Aleš JANOTA

Department of Information and Safety Systems
Faculty of Electrical Engineering

University of Žilina, Vel’ký diel, Žilina 010 26, Slovak Republic
Fax: +421-89-5252241
e-mail: janot@fel.utc.sk

Phone: +421-89-5133261

Received: September 29, 2000

Abstract

Formal methods involve a mature development technology that can be used to provide the highest
confidence and that is used in a wide and expanding variety of environments, especially in key areas
where the integrity of systems is critical or where there is a high intensity of use. Formal methods
allow the logical properties of a computer system to be predicted from a mathematical model of the
system by means of a logical calculation, which is a process analogous to numerical calculation. They
make it possible to calculate whether certain properties are consequences of proposed requirements or
whether requirements have been interpreted correctly in the derivation of a design. The objective of
this paper is to discuss the possible use of formal methods in the field of requirement specification of
the railway interlocking system behaviour, followed by the check of its correctness. A simple example
is used to demonstrate the use of concrete formal description (Z notation). Then the principles of
realisation of more complex solutions in the field of railway interlocking are indicated. Despite the
specific contents of the paper concerning the railway applications the conclusions can be generalised
and applied to other areas.

Keywords: formal method,Z notation, specification, interlocking.

1. Introduction

It is generally acknowledged that natural languages and similar informal notations
have many disadvantages when used for writing technical descriptions – it is dif-
ficult to write specifications with the required precision, clarity and economy of
expression and transform them systematically and reliably into a code or hardware.
Furthermore, it is impossible to carry out formal mathematical reasoning about
informally written descriptions.

Formal methods provide a framework within which people can specify, de-
velop and verify systems in a systematic rather than ad hoc manner. They give us
techniques to formally specify the functionality of a system, to verify its correctness

1This paper has been supported by the VEGA Grant Agency of the Slovak Republic, within the
project 1/5230/98 ‘Theoretical Apparatus for Safety Analysis of the System with Defined Level of
Safety’, at the University of Žilina.



40 A. JANOTA

or to develop the system gradually from an abstract specification to its implemen-
tation. All these aspects are important when designing safety-critical systems.

2. Formal Methods

There are a lot of definitions for formal methods. For the purpose of this paper let
us assume a definition given in (HEIMDAHL et al, 1998) and (NASA, 1998) – a
method consisting of a set of techniques and tools based on mathematical modelling
and formal logic that are used to specify and verify requirements and designs for
computer systems and software. Such a method must provide:

• a notation with a well-defined syntax and semantics,
• some guideline and procedures for using the notation, and
• techniques for analysing specifications expressed in the notation.

Formal methods allow defects in requirements to be detected earlier than otherwise
and can greatly reduce the incidence of mistakes in interpreting, formalising and
implementing correct requirements. They can be used to mathematically prove
that certain properties (functionality, safety etc.) hold and can be potentially ap-
plicable in all engineering disciplines, mainly for the reason that the use of formal
descriptions permits machine processing of specifications. Formal methods may
be classified according to different criteria: according to whether their primary pur-
pose is descriptive or analytic (descriptive and analytic methods), according to the
level of formality (with low, medium and high level of formality) and/or according
to the type of the used specification language (algebraic and model-oriented).

2.1. Formal Specification and Verification

Traditionally, formal methods have been used forformal specification and formal
verification. A formal specification supports formal reasoning which (because it can
be checked by machine) can be made very reliable indeed (with reduction of human
involvement) and thus it enables formal verification. In formal verification, a proof is
constructed, often with mechanical support, that the specification satisfies properties
of interest. Formal proofs, though, are usually very detailed. Even with machine
support for their construction, formal proofs are liable to require considerable efforts
to construct and check. Formal methods analysis techniques are based on deductive
rather than inductive reasoning about system descriptions. These techniques include
writing formal specifications, internal checking (e.g. parsing and type correctness),
traceability checking, specification animation, and proof of assertions. A formal
specification language typically gives a mathematical basis of a formal method.
The distinction between a specification method and a specification language is
fundamental. A method states what a specification must say. A language determines
in detail how the concepts in a specification can be expressed. The objective of a



USING Z SPECIFICATION 41

formal specification notation is to assist in the production of descriptions that are
complete, consistent and unambiguous.

2.2. Use, Applications and Standards

Formal methods are used in computer science mainly for improving the quality
of software or hardware or for improving confidence in the correctness of critical
systems. At present they are mostly used in applications of safety critical systems,
security systems, the definition of standards, hardware development, operating sys-
tems, transaction processing systems and others. For information on domains of
formal method applications, see e.g. (NICHOLLS, 1992) or follow relevant discus-
sion groups and computer science bibliographies on Internet. Due to the widening
range of applications the use of formal methods is increasingly recommended by
many standards (including safety ones) as a possible method of improving depend-
ability. Highlighting the domain of railways only, the railway application standard
(CENELEC, 1996) recommends formal methods (CC S, C S P, H OL, L OT OS,
O B J , Temporal Logic, V DM andZ) for development of software in a way that is
based on mathematics (this includes formal design and formal coding techniques)
and their use for writing specifications and for verifying the safety properties of
them. Similarly, relevant standards could be identified in other application do-
mains, too. Despite the given recommendations, there are several barriers that must
be overcome of putting the formal techniques in the hands of formal developers: the
notations must be more accessible and easy to use, robust tools must be produced,
education must be improved and cost-effectiveness must be demonstrated. In addi-
tion, formal specification languages and their semantics are also to be standardised.

3. Z Notation

The Z notation is one of the best known formal methods which is often declared
as a formal specification language and which is gaining widespread acceptance as
a useful means of specifying software systems. TheZ notation is a descriptive
method with a medium level of formality. It means that the method can be used
together with computer-aided tools. In the sense of a specification language it is
model oriented, based upon the set theory and mathematical logic, i.e. it is based
on model design which is given by description of the system state and operations
over this state. The representation, structure and meaning of the formal part of
specification, written in theZ notation, is defined in the draft standard (ISO, 1995).
In the Z notation there are two languages: the mathematical language and the
schema language. The former is used to describe different aspects of design: objects
and the relationships between them. The latter is used to structure and compose
descriptions: collating pieces of information, encapsulating them and naming them
for re-use (WOODCOCKand DAVIES, 1996).



42 A. JANOTA

3.1. Aspects of Z Notation

TheZ notation is based upon set theory and mathematical logic (first-order predicate
calculus). Together, they make up a mathematical language that is easy to learn and
apply. However, the language is only one aspect ofZ . Another aspect is the way in
which the mathematics can be structured. Mathematical objects and their properties
can be collected together in schemas: patterns of declaration and constraint. The
schema language can be used to describe system properties. A characteristic feature
of Z is the use of types. Every object in the mathematical language has a unique type,
represented as a maximal set in the current specification. This notion of types means
that an algorithm can be written to check the type of every object in a specification;
several type-checking tools exist to support the practical use ofZ (e.g. Z/EV E S,
Z Type Checker etc.). The third aspect is the use of natural language that helps to
relate mathematics to objects in the real world (partly by the judicious naming of
variables, partly by additional commentary). A well-written specification should be
perfectly obvious to the reader. The fourth aspect is refinement. We may develop
a system by constructing a model of a design and then refine the description by
constructing another model which respects the design decisions made, and yet is
closer to implementation. Where appropriate, this process of refinement can be
continued until an executable code is produced. Thanks to given aspects theZ
notation is a mathematical language with a powerful structuring mechanism.

3.2. Trivial Application Example

For the sake of better understanding, a trivial example ofZ specification is presented,
based on (JANOTA, 2000), to illustrate a typical process of formal specification
design:

• Giving an informal problem statement of a system: this step consists in infor-
mal specifying the system requirements, using informal means of expression
(natural language, diagrams, graphs, tables etc.).

• Making Z style of presentation:Z specification consists of many small sec-
tions, each beginning with informal descriptions followed by formal texts.
Natural order for easy understanding is from top down, from general to de-
tail, from common to exception and avoids forward referencing. If neces-
sary, larger entities can be built.Z adopts the state machine view of systems
(Fig. 1).

• Writing Z specification using aZ-based tool: in this step theZ specification
is transformed into the required computer-based format.

• Performing tool-supported activities: a variety of activities (pretty-printing,
editing and browsing, type-checking, consistency checking, proof-obligation
generation, theorem proving, code generation) can be available, based on the
tool to be used.



USING Z SPECIFICATION 43

3.2.1. Informal Problem Statement

The task consists in developing a system (hardware or software) whose behaviour
makes substitution of electro-mechanical relay possible and whose specification is
the task. There are different ways of how to describe a system behaviour informally
– using verbal descriptions, specifying a voltage dependency that represents the
hysteresis characteristic of relay operation, writing mathematical equations, making
logical decision tables etc.

-
input

(analogous with the
exciting voltage)

SYSTEM

?

6

state

-
output

(analogous with the
state of relay contact)

Fig. 1. State machine view to the system substituting an electro-mechanical relay

Behaviour of the system inFig. 1 can be described verbally:

a) If the (internal) state of the system is analogous with the relay drop-away,
the imaginary relay pick-up will occur if the input voltage reaches the value
equivalent to or higher than the nominal (just-operate) pick-up voltage (Upn);

b) If the internal state of the system is analogous with the relay pick-up, the
imaginary drop-away will occur if the input voltage falls down to the value
equivalent to or lower than the nominal drop-away voltage (Uon).

For the particular relay type, the value can be specified e.g.Upn = 15 V and
Uon = 10 V with the input voltage range 0 to 48 V.

3.2.2. Formal Z Specification

In this section a way ofZ specification design is presented with brief explanation
of particular parts. More details aboutZ syntax and semantics are available e.g. in
(WOODCOCKand DAVIES, 1996) or (ISO, 1995).

States ::= pick_up/drop_away (1)



44 A. JANOTA

Eq. (1) is called a free-type definition, which introduces a set of all possible
states of the system containing two distinct elements. The order in which these
elements are introduced is unimportant.

voltage, Upn, Uon : Z

Upn = 15
Uon = 10 (2)

Axiomatic definition (2) introduces new symbols in its declarative (upper) part as
elements of the setZ. In the lower (predicate) part there are constraints – in our
case the nominal voltage values. Such a definition is said to be axiomatic, as the
constraint is assumed to hold whenever the symbol is used: it is an axiom for the
object.

Response ::= close/open (3)

Eq. (3) gives a free-type definition of the system response. Let’s suppose a response
analogous with the behaviour of the relay contact system (contactsclosed or open).

System

voltage ∈ 0..48

voltage: Z
state: States

(4)

The system state is described by the so-called vertical definition of the state schema
(4). The schema consists of the following parts: the name of schema (System),
declaration (expressed asname: type) and constraints. The state schema defines all
the allowable or valid system states (sometimes called cases). The system state is
allowed if all the conditions in the axiomatic part are satisfied. As an example let’s
assume a particular situation where the system is in the state close and thevoltage
is 30 V.

InitSystem

voltage = 0
state = drop_away

System

(5)



USING Z SPECIFICATION 45

The schema (5) says how the system should be initiated. The internal state is defined
as drop away together with the zero input voltage. After initiation we specify the
normal situations first. Every operation is specified using anoperational schema.

response! = close
state’ = pick_up
voltage? ≥ Upn

state = drop_away

response! : Response
voltage? : Z
�System

PickUp

(6)

Operation (6) is analogous with the relay pick-up. According to Z conven-
tions,�System indicates that the operationPickUp may modify the state. The name
state refers to the state before the operation (called thepre-state), the dashed name
state’ refers to the state after the operation (called thepost-state). Suffixes ‘?’ and
‘!’ indicate an input name and an output name, respectively. The schema (7) de-
scribes the situation analogous with the relay holding (�System indicates that the
system state is unchanged) where its output remainsclose.

response! = close
state’ = state

voltage? > Uon

state = pick_up

response! : Response
voltage? : Z
�System

Holding

(7)



46 A. JANOTA

response! = open
state’ = drop_away
voltage? ≤ Uon

state = pick_up

response! : Response
voltage? : Z
�System

DropAway

(8)

response! = open
state’ = state

voltage? < Upn

state = drop_away

response! : Response
voltage? : Z
�System

NoPickUp

(9)

Schemas (8) and (9) describe other situations. Finally, there are so-called
horizontal definitions (10) and (11). Their names correspond to states analogous
with states of the relay contact system.

Close
∧= PickUp ∨ Holding (10)

Open
∧= NoPickUp ∨ DropAway (11)

Let’s consider the specification definitive though it could be developed and
refined.

3.2.3. Machine Processing of the Specification

The computer-based format of the specification is given by requirements of the
tool used to check syntax correctness (alphabet of symbols and grammar rules



USING Z SPECIFICATION 47

which define well-formed formulations) and semantics (mathematical proof of the
contents correctness). A particular semantic construction is a model of a particular
Z specification (or predicate) if the relationship between terms in the specification
also holds in the model (if it makes the predicate true). A predicate is logically valid
if it holds in all models. It is logically valid relative to a specification if it holds
in all models of that specification. Logic forZ is a collection of axioms and rules
of inference written using theZ notation. These rules and axioms may be used
inductively to define which predicates are logical consequences of others. Those,
which are the logical consequence of the empty set of predicates (or, equivalently,
the logical consequence of only the axioms of the logic), are known as theorems.
A logic for Z may be proven sound in some model by showing that each of its
theorems is logically valid. It is traditional to ask whether a logic is also complete,
i. e. whether every logically valid predicate is also a theorem. More details on
distinguishing between the different philosophies of proof inZ are available in
(MARTIN, 1999).

All the specifications presented in this paper were transformed to the format
required by the software packageZ/EVES ver. 2.1 by ORA Canada, running under
MS Windows 98. The tool uses its own file format (∗.zev, ∗.zcs) or can import
the files in LATEX2e format (∗.tex). Z/EVES has two parts: a server that checks
paragraphs and executes proof commands, and a GUI that manages specifications,
sends commands to the server, and displays results. An example display of the
specification window is given inFig. 2 and relates to the contents of Section 4.

Fig. 2. Example of aZ/EVES specification window



48 A. JANOTA

The status of each paragraph is shown in two columns to the left of the
paragraph. The leftmost column shows one of three symbols:

• ‘?’ indicates that the paragraph has not been checked,
• ‘Y’ indicates that the paragraph has been checked and has no syntax or type

errors,
• ‘N’ indicates that the paragraph has been checked and has errors.

The next column shows the proof status for the paragraph, using one of three
symbols:

• ‘?’ indicates that the paragraph has not been successfully checked (so proof
status cannot be determined),

• ‘N’ indicates that the paragraph has unproved goals,
• ‘Y’ indicates that the paragraph has no unproved goals.

4. The Use of Formal Specification in Railway Interlocking

Modern computer interlocking systems typically consist of hardware and software
where the software generally consists of:

• Generic programmes, common for different installations,
• Geographic programmes, considering local data.

Correctness of requirement specification must be assured in order to achieve
functional safety of the interlocking system. Due to its high complexity it is apparent
that verification of functional dependencies is an extremely complex task. Since
the internal state has extremely many possible configurations there is an effort to
perform the automatic analysis of the safety features of programmes with local
(geographic) data. This task can be solved with the help of formal specification and
verification methods.

4.1. Starting Points of Formal Analysis

Following the methodology introduced in the previous section the first step consists
in informal problem definition. Any railway authority defines own regulations and
standards concerning the rules for railway vehicle movement. Under conditions of
ŽSR (Slovak National Railways) the relevant requirements are given in the form of
government and technical standards (mainly of the series TNŽ 34 26xx) and other
relevant regulations. Developing a concrete application these rules are applied to
the given railway topology. This results in the table form containing all the possible
operational situations. From our viewpoint this can be considered to be an informal
requirements specification for the interlocking under specific local conditions. Not
all railways use such table forms, some substitute them with alternative descriptions



USING Z SPECIFICATION 49

of possible situations through rules or logical equations for route settings (with final
document called User Case). However, the final specification is a product of manual
activity of the staff and is subjected to strict validation and certification process.
This process may be automated with the use of formal methods.

4.2. State of an Interlocking System

The state of an interlocking system is generally defined by combination of particular
states of its components. These include mainly the following (physical) objects:

• Track circuits, dividing the track into sections and detecting their states (oc-
cupied or clear),

• Points, steering trains across junctions and finding themselves in one of de-
fined positions (controlled plus, controlled minus or undefined),

• Signals, allowing or refusing the entry of the railway vehicle onto particular
sections of the track and situated in advance of the section which they control.

Apart from the previous (physical) objects there are also so-called logical
objects:

• Routes as sections of track between two signals, which proceed from an entry
signal to an exit signal (the route set or unset),

• Sub-routes as subsections of routes that are associated with specific track
circuits. The concept of the route as a set of sub-routes is typical for several
computer interlockings. The sub-route can be locked or free.

The process of defining the local dependencies (based on geographic railway
topology) most often concentrates on the following invariant conditions (SIMPSON,
1998):

• For every track circuit, no more than one of the sub-routes passing over it
should be locked for a route at any time,

• If a sub-route over a track section containing points is locked for a route, then
the points are correctly aligned with that sub-route,

• If a route is set, then all of its sub-routes are locked,
• If a track circuit containing points is occupied, than the points are locked,
• If a sub-route is locked for a route, then all sub-routes ahead of it on that route

are also locked.

If any of these invariants are not satisfied, then there is an error in the geo-
graphic data. The task defined in the way above enables to automate the process of
relevant data model design (geographic database) and verify its safety.



50 A. JANOTA

4.3. Concept of Z Representation

Within the first step the sets of particular components are defined. In theZ notation,
there are several ways of defining an object – declaration, abbreviation, generic ab-
breviation, axiomatic definition and generic definition (WOODCOCKand DAVIES,
1996). We use the first way, declaration, to define new basic types, representing
components of the interlocking:

[TCircuit, Points, Signal, Route, Subroute] (12)

The schemaComponents describes the sets of track circuits, points, signals,
routes and sub-routes with which a particular interlocking is concerned.

Components

D : P Subroute
R : P Route

S : P Signal
P : P Points
T : P TCircuit

(13)

Relationship among different components of an interlocking is specified by
the schema (14).

Structure

minus: Points −→ P Subroute

plus: Points −→ P Subroute
sroutes: Route� seqSubroute
tcircuit: Subroute� TCircuit
berth: Points −→ P TCircuit
sroute: TCircuit� P Subroute
locks: Route −→ P Points

(14)

Components and Structure together describe the layout of an interlocking.
Points can be in one of two positions: controlled plus (cp) or controlled minus
(cn). Therefore, we introduce the free typepoints_position (16). A point can be
controlled free to go plus (c f p) or controlled free to go minus (c f m) or both at any
time. Thus, the free typepoints_state is introduced by (17).

The free typetcircuit_state, route_state andsroute_state are introduced sim-
ilarly. Track sections, with train detection devices, inform the interlocking if a



USING Z SPECIFICATION 51

section is occupied (o) or clear (c), (18). A route may be in one of two states (19):
set (s) or unset (us). Sub-routes are subsections of routes, which are associated
with specific track circuits. They may be in one of two states (20): locked (l) or
free (f ).

Interlocking

domminus = P ∧ ∪ (ranminus) ⊆ D
domplus = P ∧ ∪ (ranplus) ⊆ D
domsroutes = R∧ ran (∪ (ransroutes)) ⊆ D
dom tcircuit = D∧ ran tcircuit = T

domberth = P ∧ ∪ (ranberth) ⊆ T
domsroute = T ∧ ∪ (ransroute) ⊆ D
dom locks = R ∧ ∪ (ran locks) ⊆ P

Structure

Components

(15)

points_position ::= cp | cm (16)
points_state ::= c f p | c f m (17)
tcircuit_state ::= c | o (18)
route_state ::= s | us (19)
sroute_state ::= f | l (20)

To formalise the structure of a route setting rule, a number of entities must be
concerned: the route which is to be set (r), a set of conditions on points which must
be satisfied before the route can be set (p1), a set of point movements form part of
the setting process for the route (p2), a set of sub-routes which must be free before
the route can be set (d1), and a set of sub-routes which must be locked when the
route is set (d2). Then the route setting rule can be specified (21).

RouteRule

d2 : P Subroute
d1 : P Subroute
p2 : P (Points × points_position)
p1 : P (Points × points_state)
r : Route

(21)



52 A. JANOTA

The schema (21) describes a sub-route release rule. This involves a set of
track circuits which are required to be clear, a (possibly empty) set of sub-routes
which are required to be free, and a (possibly empty) set of routes which are required
to be unset.

Finally, we can also represent the rule for points (23) wherep is the point
with which we are concerned,t1 is the set of track circuits associated with the free
to go plus condition,t2 is the set of track circuits associated with the free to minus
position,d1 is the set of sub-routes associated with the free to go plus condition,
andd2 is the set of sub-routes associated with the free to go minus condition.

SubrouteRule

d2 : P Subroute
r : P Route
t : P TCircuit
d1 : Subroute

(22)

PointsRule

d2 : P Subroute
d1 : P Subroute
t2 : P TCircuit
t1 : P TCircuit
p : Points

(23)

With restriction to the three types of rules with which we are concerned, the overall
structure of a geographic database may be represented by the schema (24). This
contains three schemas, which specify detailed conditions (constraints) for each
rule and are not specified here.

Database

PointsRulesConstraints
SubrouteRulesConstraints
RouteRulesConstraints

(24)

5. Conclusions

There are different reasons for applying formal techniques: an effort to improve
quality of the whole development process, to improve integrity, reliability or other



USING Z SPECIFICATION 53

characteristics of the system, to reduce specification errors, to improve requirements
definition and documentation, to provide a firmer foundation for maintenance and
enhancement and a more rational basis for choosing test data, to explore properties of
a design architecture, to be as certain as possible that the design and implementation
are error-free, to meet particular customer or standard requirements. The model-
based approach results in a model of the system that acts as a specification and is
constructed using well-understood mathematical entities. Setting out pre and post
conditions for the function can specify functions. However, this approach does not
scale up to large or medium sized systems. Thus, theZ notation is not intended for
the description of non-functional properties, such as usability, performance, size and
reliability. Neither is it intended for the description of timed or concurrent behaviour.
This brings certain limitations when using it for formal specification of railway
interlocking systems. However, there are other formal methods that may be used in
combination withZ to relate state and state-change information to complementary
aspects of design. For such purpose there are often usedCommunicating Sequential
Processes (C S P). This formalism is able to describe concurrent behaviour of more
objects or processes through interaction with their environment. More details about
the way of modelling a geographic database using this formalism and checking it by
F DR2 (Failures-Divergences Refinement2) can be found e.g. in (SIMPSON, 1998).
Despite all discussed limitations, the functional view of usingZ is widely accepted,
and combined with the behavioural view supported by other formal techniques
rather than used independently.

References

[1] CENELEC European Committee for Electro-technical Standardisation, Railway Applications:
Software for Railway Control and Protection Systems. Draft prEN50128, August 1996.

[2] HEIMDAHL , Mats P. E. – HEITMEYER, Constance L., Formal Methods for Developing High
Assurance Computer Systems: Working Group Report,Proc. 2nd IEEE Workshop on Industrial-
strength Formal Techniques (WIFT’98), Boca Raton, FL. October 19, 1998.

[3] ISO SC22 Working Group 19,Z Notation. Technical report, ISO/IEC JTCS1, SC22 N1970. ISO
CD 13568, Committee Draft of the proposedZ standard, 1995.

[4] JANOTA, A., Formal Specification of a Railway Interlocking System.Studies of the Faculty of
Electrical Engineering, University of Žilina,26 (2000), pp. 13–25. (In Slovak).

[5] M ARTIN, A., Relating Z and First-Order Logic. In: J. Wing, J. Woodcock, J. Davis (Eds.):Proc.
FM’99, II (1999), LNCS 1709, pp. 1266–1280.

[6] NASA/TP-98-208193, NASA Formal Methods Specification and Verification Guidebook for
Software and Computer Systems, Vol. I: Planning and Technology Insertion. 88 p, 1998.

[7] NICHOLLS, J. E., Domains of Applications for Formal Methods.Proc. of Z User Workshop,
University of York, Workshops in Computing, Springer-Verlag, 1992.

[8] SIMPSON, A. C., Model Checking for Interlocking Safety.Proc. FMERail Workshop, Vol. 2 of
2nd FMERail Seminar, Parks Road, Oxford OX1 3QD, England, October 1998, ESSI Project
26538.

[9] WOODCOCK, J. C. P. – DAVIES, J., UsingZ : Specification, Refinement and Proof. Prentice
Hall International Series in Computer Science, 1996.


