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Abstract

In the first studies on material instability two main types were distinguished: the divergence and
the flutter. While divergence was treated as strain localization the nature and physical explanation
of flutter remained an open question. In this paper by using the theory of dynamical systems both
mathematical and physical interpretations for these instability modes are proposed.
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1. Introduction

Material instability problems like the localization of plastic deformation use dif-
ferent stability definitions. Most of them are generalizations of HILL ’s concept [9]
or the DRUCKER postulate [6]. When a solid body is considered as a dynamical
system [15], [16] and a state of the body is a solution of it, the stability of this state
means the stability of the solution. In this case the obvious stability definition is
the one of the theory of dynamical systems, the so called Liapunov stability [14].
This is a kinematic definition, quite similar to the one used by ERINGEN [7].

The loss of material stability is in close connection with the singularity of
the acoustic tensor [4]. Then there is a change in the nature of the acceleration
wave speeds. One possibility is that one of them is zero, the other is the appearance
of a complex conjugate pair. In case of a zero Wave speed there is a stationary
discontinuity, and when the squares of the two wave speed are complex conjugates,
it is called a flutter [10], [11]. A similar classification is known for ways of the loss
of stability of a solution of dynamical systems [16]. It is called a static bifurcation
when the linearized part of the differential equation representing the system has a
zero eigenvalue. The case, when there is a pair of pure imaginary eigenvalues, is
the dynamic bifurcation. Now, the question is how these concepts relate to each
other.

The aim of this paper is to investigate and interpret divergence and flutter
instabilities as a loss of stability of an appropriate dynamical system.
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2. The Basic Equations of Material Instability and Plastic Localization
Problems

Denoting the position of a material point in the reference and the current configu-
rations byXJ andxi the position vectors areR = XJ GJ , andr = x j g j . As usual
the Cartesian tensor notation and the implied summation of the repeated subscripts
are used. The deformation gradientF is

Fj J = ∂x j

∂ X J
.

The equation of motion without volume force is

S j K ,K = ρü j , (1)

whereSj K is the first Piola–Kirchhoff stress tensor,Sj K ,K is the divergence of it and
u = R − r is the displacement. The classical setting of the equations of material
instability problems [5], [13] uses a simplified rate constitutive equation in the form

Ṡ j K = K j K lM ḞlM , (2)

whereFlM is the deformation gradient andKj K lM is the fourth-order tangent modu-
lus tensor. By substituting (2) into the rate form of (1) the motion of the continuum
can be described by

ρv̈ j = (
K j K lMvl,M

)
,K

. (3)

The coefficientsK j K lM are considered here as piecewise constants [13]. Now two
kinds of questions can be asked. One on the existence of strain localization and the
other on the stability of the material.

To answer the first one means to search for the condition of the existence of a
thin band in the material, in which the rate field quantities differ from the uniform
values outside [12], [13]. By denoting( )b and( )◦ the values inside and outside of
the band are (

ḞlM

)b = (
ḞlM

)◦ + qlnM , (4)

nM are the coordinates of the vector showing the orientation of the band andql is
the amplitude of the jump on the band. The rate of stress equilibrium implies

nK

((
Ṡ j K

)b − (
Ṡ j K

)◦) = 0,

that is, with (2) and (4) (
nK

(
K j K lM

)
nM

)
ql = 0. (5)

There are nonzero amplitudes in (5), if and only if

det
[
nK

(
K j K lM

)
nM

] = 0. (6)
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For the second question the stability of a state of the material should be investigated.
In dynamics a state of a system is said to be stable if its motion remains in an arbitrary
small neighbourhood of it by applying sufficiently small perturbations [14]. The
same concept of stability is used by [8] for continua. Thus for dynamic stability the
role of perturbations and the role of the propagation of disturbances are essential
ones. It means that in stability investigations one should concentrate on the wave
propagation.

Eq. (3) has a wave solution in the form

v j = q j exp(i (nK X K − ct)) , (7)

wherenK is the direction of propagation andi = √
(−1). In (7) the wave speedc

determines the stability. Whenc2 > 0 (7) is stable, whenc2 < 0 it is unstable [13].
By substituting (7) into (3)

−ρc2q j exp(i (nK X K − ct)) = (
K j K lM

)
nMnK ql exp(i (nK X K − ct))

is obtained. Hence ((
K j K lM

)
nMnK − ρc2δ j l

)
ql = 0. (8)

Thus the condition of the existence of a wave solution of nonzero amplitudes reads

det
[(

K j K lM

)
nMnK − ρc2δ j l

] = 0,

that is, the stability depends on the eigenvalues of[(
K j K lM

)
nMnK

]
.

When all of them are real
(
c2 > 0

)
, the material is in a stable state. On the one

hand the loss of stability
(
c2 = 0

)
may take place under the same conditions as the

localization and when there is at least one imaginary eigenvalue
(
c2 < 0

)
, there

is an unstable state. The loss of stability is connected with the appearance of
imaginary eigenvalues. On the other hand [13] introduces the case called flutter, in
which eigenvaluec2 gets complex values. Compared to divergence when the wave
solution stops in the body to form a stationary discontinuity flutter is somehow
mysterious. How could we imagine complex wave speeds? Introducing the theory
of dynamical systems in the next part we will show a possible explanation of such
a case.

3. Dynamical Systems

Let us introduce the notations of the theory of dynamical systems into this material
instability problem [3]. For the sake of simplicity from now on small displacements
are assumed. In an operator form (3) reads

v̈ = f (v). (9)
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Herev = (v1, v2, v3) is a vector of the coordinates of the velocity field satisfying
the boundary conditions andf (v) is a differential operator defined by the left hand
side of (3).Eq. (9) defines an infinite dimensional dynamical system. The stability
of a state of the continuum means the Liapunov stability of a solutionv(t) of (9),
that is, by perturbing the system the velocity fieldv′(t) is sufficiently close to the
unperturbed onev(t). The stability investigation of some solutions of equations
like (9) starts with a transformation into a first order equation by introducing new
variables

w1
j = v j , w2

j = v̇ j , ( j = 1, 2, 3) (10)

and with the linearization at a solution, (atv = 0 for the sake of simplicity)

ẇ = D f w.

The eigenvalues of the linear operatorD f show the stability properties. Unfor-
tunately, an equation like (9) cannot even give strict results for stability, because
the set of eigenvalues consists of pairs±√

λ and whenλ > 0 there is instability,
and whenλ < 0 the real part of the eigenvalues is zero. For conservative or linear
systems this would imply stability but even the nonlinearities can ruin it. Moreover,
(9) is not structurally stable in the sense of [1], that is, any small perturbations can
cause qualitative changes of the solutions. To get structural stability, as the simplest
possibility for small strains, a strain rate dependent material is used instead of (2).
In a general form [2], [7]

σ j k = K 1
j klmεlm + K 2

j klm ε̇lm, (11)

where the coefficientsK1
j klm , K 2

j klm are considered to be piecewise constants. Then
the equation of motion is

ρv̈ j = Knjklvk,ln + Lnjkl v̇k,ln,

where

K 1
njkl = 1

2

(
Knjkl + Knjlk

)
and K 2

njkl = 1

2

(
Lnjkl + Lnjlk

)
.

Introducing new variables from (10) the equation of motion is

ẇ1
j = w2

j ,

ẇ2
j = 1

ρ

(
Knjklw

1
k,ln + Lnjklw

2
k,ln

)
.

By defining linear differential operators

K̂ jkvk = Knjkl
∂2

∂xn∂xl
vk, L̂ jkvk = Lnjkl

∂2

∂xn∂xl
vk
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and

L
[
w1

j , w
2
j

] :=
[
w2

j ,
1

ρ

(
K̂ jkw

1
k + L̂ jkw

2
k

)]
the equation of motion is [

ẇ1
j , ẇ

2
j

] = L
[
w1

j , w
2
j

]
. (12)

The Liapunov stability depends on the real part of the eigenvaluesλ of the linear
operatorL. The eigenvalue equation is

L
[
w1

j , w
2
j

] = λ
[
w1

j , w
2
j

]
. (13)

When an eigenvector [
w1

j , w
2
j

]
is substituted into the equation of motion (12)[

ẇ
1
j , ẇ

2
j

]
= λ

[
w1

j , w
2
j

]
is obtained with the eigenvalueλ. The solution of it is[

w01
j , w02

j

]
exp

(
λt

)
. (14)

Having all the eigenvalues and eigenvectors, a solution of the equation of motion
can be given as a linear combination of functions (14), thus the stability requires
negative real parts for all eigenvalues. From (13)

w02
j = λw01

j ,

1

ρ

(
K̂ jkw

01
k + L̂ jkw

02
k

) = λw02
j ,

then by substituting the first group of equations into the second one and using (10)(
ρλ2v0

j − K̂ jkv
0
k − λL̂ jkv

0
k

) = 0 (15)

is obtained being a system of second order partial differential equations with bound-
ary conditions. Thus the state of the material is stable, when for all values ofλ,
at which there exist nontrivial solutions of (15),�λ < 0. Case�λ = 0 is called
the stability boundary. Then the state of the material under consideration may lose
stability by either a static (�λ = 0) or dynamic (�λ = 0) bifurcation types of loss
of stability. The relation between the classification above and the one used earlier
into groups divergence and flutter can be studied by omitting the dissipation in (11)(

K 2
i j klm = 0

)
. Then after proper rearrangementEq. (15) reads

(
K̂ jk − ρλ2δ j k

)
v0

k = 0. (16)
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Let us substitute harmonic functions

v0
j = q j exp(i (nmxm)) (17)

into (16) then equation ((
K jklm

)
nmnk + ρλ2δ j l

)
ql = 0 (18)

can be obtained. FromEq. (8) and (18)c2 = −λ2.
Then at divergencec2 = 0 implies static bifurcationλ = 0, while for flutter

c2 complex we get−λ2 complex, that is,λ1,2,3,4 = ±α ± iβ, whereα, β > 0,
which indicates an unstable behavior, too.

Fig. 1. Eigenvalues at flutter

At the end of this part we may state that divergence is identic to the loss
of stability by losing also the uniqueness of the state of the material and a new
localized solution can be detected. Let us now consider the onset of flutter, when
an 0< α << 1 appears and the critical eigenvalue moves off from the imaginary
axis (Fig. 1) causing a special dynamic bifurcation.

Now (14) can be written as[
w01

j , w02
j

]
exp(αt) exp(iβt) ,

thus (17) implies

v0
j = q j exp(αt) exp(i (nmxm + βt)) .

Thus at flutter we obtain waves with exponentially increasing amplitudes as physical
interpretation.
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4. Summary

The loss of (Liapunov) stability of a dynamical system can be performed on two
basic ways. It can be a static or a dynamic bifurcation. The classical setting of
material instability uses divergence and flutter modes. Unfortunately, in the rate
independent case the dynamical system defined by the basic equations of the solid
body shows nongeneric behaviour and coexistent static and dynamic bifurcations
occur. By introducing dissipative terms into the constitutive equation the stability
investigation can be performed as a generic stability investigation. That is, we can
now study the real parts of the eigenvalues of differential operators defined by the
fundamental equations of the continuum.

The results show that divergence (or localization) means a static bifurcation
instability. We also found interpretation for the flutter type of loss of stability in
terms of dynamical systems theory. The appropriate physical phenomenon is the
presence of a wave with increasing amplitude.
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