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Abstract

The real-time knowledge of the damper force is of paramount importance in controlling and diagnosing automotive suspension 

systems. This study presents a generalized H2/LPV observer for damper force estimation of a semi-active electro-rheological (ER) 

suspension system. First, an extended quarter-car model augmented with the nonlinear and dynamical model of the semi-active 

suspension system is written into the quasi-LPV formulation. Then, the damper force estimation method is developed through a 

generalized H2/LPV observer whose objective is to handle the impact of unknown road disturbances and sensor noise on the estimation 

errors of the state variables thanks to the H2 norm. The measured sprung and unsprung mass accelerations of the quarter-car system 

are used as inputs for the observer. The proposed approach is simulated with validated model of the 1/5-scaled real vehicle testbed 

of GIPSA-lab. Simulation results show the performance of the estimation method against unknown disturbances, emphasizing the 

effectiveness of the damper force estimation in real time.
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1 Introduction
Semi-active suspension systems remain an interesting 
research topic for both academia and industry thanks 
to their advantages, including lower weight and energy 
consumption compared to active and passive ones (see 
Savaresi  et  al., 2010). In their application, the real-time 
knowledge of damper (or damping) force plays a vital role 
in controlling (see Do et al. (2010); Nguyen et al. (2015); 
Poussot-Vassal  et  al. (2008; 2012) and Priyandoko  et  al. 
(2009)) and monitoring these systems (see Morato  et  al. 
(2019)). However, the direct measurement of this force 
using sensors faces some issues such as difficulty and 
expenses in installing and maintaining these sensors, 
leading to the increasing demand in adopting observers to 
estimate the damper force.

The main requirements of a damper force estimation 
approach include considering the dynamic characteris-
tics of the semi-active damper and handling the nonlin-
earity and the unknown inputs in the dynamic model, 
as well as the use of the low-cost sensors (Pham, 2020). 
According to the considered dynamic behavior of the 
semi-active damper, the estimation methodologies are 
classified into two categories. In the first one, the paral-
lel Kalman filters (Koch  et  al., 2010) and the data anal-
ysis methods (Savaresi  et  al., 2019) were developed to 
estimate the damper force, ignoring the dynamic charac-
teristics of the semi-active damper. The second category is 
developed based on the dynamic damper models (Tudon-
Martinez  et  al., 2018; Pham  et  al., 2019a; 2019b; 2019c; 
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Vela et al., 2018). From the viewpoint of the required sen-
sors, Tudon-Martinez et  al. (2018) and Vela  et  al. (2018) 
presented a H∞ observer and a linear parameter-varying 
(LPV) - H∞ filter, respectively, for damper force estima-
tion using the deflection and the deflection velocity as 
inputs. However, it is worth noting that deflection sen-
sors are also costly and difficult to install in commer-
cial cars. Therefore, based on accelerometers, some esti-
mation approaches are developed by Koch  et  al. (2010) 
and Pham et al. (2019a; 2019b;2019c; 2021). On the other 
hand, to deal with the nonlinearity and unknown input 
disturbances in the dynamic model, many LMI-based 
methods are proposed in the literature, such as Tudon-
Martinez et al. (2018); Pham et al. (2019a; 2019b; 2019c) 
and Vela et al. (2018). In particular, Tudon-Martinez et al. 
(2018) wrote the dynamic system into the LPV form with 
the nonlinearity considered as a scheduling variable and 
then used the sensors to compute the scheduling param-
eter, leading to an increase in the required input sensors.

To deal with the above issues, the authors have devel-
oped several estimation approaches using a nonlin-
ear dynamic model of the semi-active damper and the 
two accelerometers, while the nonlinearity is bounded 
by a Lipschitz condition. Using two accelerometers, 
Pham et  al. (2019a; 2019b) developed two damper force 
estimation methods based on the H∞ and unified H∞ 
observers, respectively. In these studies, the nonlinearity 
in the electro-rheological (ER) damper model is bounded 
by the Lipschitz condition. However, the results from the 
above nonlinear Lipschitz modeling can be conservative 
due to the presence of the maximum control bound in the 
LMI. To relax the conservatism, the dynamic system is 
modeled into the nonlinear parameter-varying (NLPV) 
representation, and an NLPV observer is then proposed 
to estimate the damper force by using the H∞ criterion to 
minimize the effect of unknown disturbances on the esti-
mation error (Pham et al., 2019c; 2021).

In this work, the extended quarter-car model is repre-
sented in a quasi-LPV form, where the nonlinearity in the 
ER damper model is defined as the scheduling parameter. 
Then, a generalized H2/LPV observer is proposed to esti-
mate the damping force in the presence of unknown road 
input and measurement noise, while the scheduling vari-
able is obtained from estimated states. The error between 
the estimated scheduling variable and the real one is con-
sidered as an unknown input, which is handled using the 
generalized H2 norm. The contributions of this paper are 
then summarized as:

•	 A generalized H2/LPV observer is developed to esti-
mate the damper force, minimizing the effect of 
unknown disturbances on the estimation error w.r.t 
the energy-to-peak gain.

•	 The proposed approach is simulated with a vali-
dated model of the 1/5-scaled testbed at GIPSA-lab 
(ANR, 2010). The simulation results demonstrate the 
effectiveness of the method.

The rest of the paper is organized as follows. Firstly, 
the quarter-car system modeling is presented in Section 2. 
The central part of this paper, observer formulation and 
design method, is detailed in Section 3. In Section 4, the 
observer is synthesized and analyzed in the frequency 
domain. To demonstrate the effectiveness of the observer, 
simulation results are given in Section 5. Finally, the con-
cluding remarks are presented in Section 6.

2 Quarter-car system modeling
2.1 Physical model
Section 2.1 shows the quarter-car model augmented with 
the semi-active ER suspension system depicted in Fig. 1. 
The dynamic model includes the sprung mass ( ms ), the 
unsprung mass ( mus ), the semi-active suspension located 
between ( ms ) and ( mus ), and the tire, which is modeled as 
a spring with stiffness kt . From Newton's second law of 
motion, the system dynamics around the equilibrium are 
given as follows:

m F F
m F F F
z
z

s s d

us s d t

s

us




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� � �

�
�
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,	 (1)

Fig. 1 1/4 car model with semi-active suspension



Pham et al.
Period. Polytech. Transp. Eng., 50(4), pp. 309–317, 2022 |311

where Fs = ks( zs − zus ) is the spring force; Ft = kt( zus − zr ) is the 
tire force; the damper force Fd is later presented in Eq. (2); 
zs and zus are the displacements of the sprung and unsprung 
masses, respectively; zr is the road displacement input.

From Pham (2020), the nonlinear dynamical model of 
semi-active ER damper is given as

F k z z c z z F

F F
f
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where Fd is the damper force; c0 , c1 , k0 , k1 , fc , and τ are con-
stant parameters. The parameters of the model in Eq. (2) 
are shown in Table 1. The control input u is the applied 
voltage that provides the electrical field to control the ER 
damper. In practice, it is the duty cycle of the PWM signal 
that controls the application (shown in Table 2).

2.2 Quasi-LPV modeling
By selecting the system states as 
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the following quasi-LPV representation
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, in which ωr  =  żr is the road profile 

derivative and ny is the sensor noises, and the system 

matrices are as follows:
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3 Observer design
3.1 Quasi-LPV observer definition
In Section 3.1, a generalized H2/LPV observer is designed 
to estimate the damper force accurately. 

According to the damper model in Eq.  (2), the esti-
mated force Fd̂  can then be obtained as

F k x c x x xd � � �� � �0 1 0 2 4 5
̂ ̂ ̂̂ ̂ .	 (4)

Therefore, the variables to be estimated are defined by 
the output vector z = [x1, x2, x3, x4, x5]

T.
Finally, the generalized H2//LPV observer for the sys-

tem in Eq. (3) is formulated as 
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Table 1 Parameters of the quarter-car model with an ER damper

Parameter Description Value Unit

ms Sprung mass 2.27 kg

mus Unsprung mass 0.25 kg

ks Spring stiffness 1396 N/m

kt Tire stiffness 12270 N/m

k0
Effective stiffness coefficient due to 

the gas pressure 170.4 N/m

c0
Viscous damping coefficient in the 

absence of control input 68.83 N s/m

k1
Hysteresis coefficient due to 

displacement 218.16 N s/m

c1
Hysteresis coefficient due to 

velocity 21 N s/m

fc Dynamic yield force of ER fluid 28.07 N

τ Time constant 43 ms

Table 2 Range of the control input value u

Control input Description Value

u Duty cycle of PWM channel [0, 1]
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where x̂ denotes the estimated states of the system's states 
x, ẑ denotes the estimated variables of z. The observer gain 
L( ρ2 ) is to be obtained through an optimization problem 
that is detailed in Section 3.2 (in the framework of qua-
dratic stability of the estimation error).

3.2 Observer design
The state estimation error e(t) is defined as

e t x t x t� � � � � � � �̂ .	 (6)

Differentiating e(t) w.r.t time and using Eq.  (3) and 
Eq. (6), one obtains
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equivalently, 
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In this work B(ρ1) − B(ρ̂ 1) is the inexact varying vari-
able, which is considered as uncertainty. From the system 
matrix B(ρ), one obtains 

B B B� � � �1 1 1 1� � � � �� � �� ��̂ ̂ ,	 (9)

where B � � �0 0 0 0 fc
T

� . Here, we assume that 
this uncertainty (ρ1 − ρ̂ 1) is bounded by a constant as

� � �1 1 1�� �� �� ��� n̂ ,	 (10)

where ∆ρ1 is a constant matrix and nρ is white noise. 
Denoting ∆B = B∆ρ1, the dynamic estimation error sys-
tem in Eq. (8) is written as 
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Defining a new unknown input �
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Since the system in Eq. (12) only depends on ρ2 we can 
choose to define the observer gain L(ρ2) in a polytopic 

form as L L� � �
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The generalized H2/LPV observer design objectives are: 
•	 the system in Eq. (12) is stable for ωn = 0;

•	
ez
n

�

�
2

 is minimized for ωn ≠ 0.

The following theorem solves the above problem fol-
lowing an LMI framework (Scherer and Weiland, 2015).

Theorem 1: Consider the system model in Eq. (3) and 
the observer in Eq. (5). If there exists a symmetric positive 
definite matrix P and matrices Yi with i = 1, 2 minimizing 
γ such that

PA A P YC YC P B PD Y D

B P I

D P YD

� � � � � � � �

� � �

� � � �

T
i i

T
i i

i
T

T T

�

�

�

�
2 1 2

2

1 2

0

0 II

P C
C I

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�

�

�
� �

0

0

,

,
z
T

z �

	

(13)

then the observer vertex matrices Li determined from 
Li = P−1Yi ensure that the objectives are attained. I is the 
identity matrix.

Proof. The proof is not detailed here since it consists in 
a simple application of the generalized H2 condition to each 
vertex of the dynamic estimation error system in Eq. (12).

4 Observer synthesis and frequency domain analysis
4.1 Observer synthesis
As previously mentioned, the scheduling variable 
�
1 1 1 1 2 4
� � �� �� �tanh k x c x x  is limited in the range of 

[−1, 1] and ρ2 = u varies in the range of [0, 1]. Therefore, 
the following values are obtained:

•	 the lower bound of ρ2 is �
2
0� ; 

•	 the upper bound of ρ2 is �
2
1� .

The Yalmip toolbox (Lofberg,  2004) and the sdpt3 
solver (Toh et al., 1999) are used to solve the optimization 
in Theorem 1. Solving Theorem 1 with the two above ver-
tices leads to the minimum L2-induced gain γ = 0.478, and 
to the observer vertex matrices
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4.2 Frequency-domain analysis
In Section 4.2, the analysis of the effects of unknown inputs 
(road profile derivative ωr and measurement noises  n) 
on the estimation error e in the frequency domain is per-
formed using the Bode diagrams.

The transfer functions from ωr and n to the estima-
tion error ez are shown on the left and right sides of Fig. 2. 
As shown, the Bode diagrams of the polytopic at the frozen 
values of two vertices ( �

2
0�  (red line) and �

2
1�  (green 

dash-dot dot)) emphasizes the satisfactory attenuation 
level of the unknown disturbances on the estimation error.

5 Simulation results
In Section 5, simulations with different scenarios are per-
formed to validate the designed observer in the time domain.

5.1 Simulation scenario 1
This simulation scenario is as follows:

•	 The road profile input is a chirp signal with an ampli-
tude of 7 × 10−3 m and various frequencies from 0 Hz 
to 10 Hz (shown in Fig. 3).

•	 The scheduling parameter ρ2 (ρ2  =  u) is obtained 
from a Skyhook controller (see Fig. 4).

The estimated scheduling variable ρ̂ 1 is shown in Fig. 5. 
Fig. 6 shows the simulated force in the solid red line and 
the estimated force in the blue dotted line, respectively. 
The estimation error is shown in Fig. 7. We can see that the 
estimation error converges to 0 after 1 second. Therefore, 
the proposed method is stable with the various frequencies 
of road profile disturbance.

5.2 Simulation scenario 2
In the second simulation scenario, the proposed observer 
is validated with more realistic road profile.

Fig. 3 Simulation scenario 1: Road profile

Fig. 4 Simulation scenario 1: Scheduling parameter ρ2

Fig. 2 Bode diagram w.r.t road profile derivative (left) and 
measurement noise (right)

Fig. 5 Simulation scenario 1: Estimated scheduling parameter ρ̂ 1
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The second simulation is designed as follows:
•	 A realistic road profile (ISO type C) is used (shown 

in Fig. 8).
•	 The scheduling parameter ρ2 (ρ2 = u) comes from a 

Skyhook controller (shown in Fig. 9).

The estimated scheduling parameter ρ̂ 1 is shown in 
Fig. 10. The simulation results of this scenario are shown 
in Figs. 11 and 12. The results show the stability of the pro-
posed schemes e → 0 in a realistic case. It is worth noting 
that the observer must work when the sensors are affected 

Fig. 7 Simulation scenario 1: Estimation error

Fig. 8 Simulation scenario 2: ISO road profile (Type C)

Fig. 9 Simulation scenario 2: Scheduling parameter ρ2

Fig. 10 Simulation scenario 2: Estimated scheduling parameter ρ̂ 1

Fig. 11 Simulation scenario 2: Real and estimated damper force

Fig. 12 Simulation scenario 2: Estimation error

Fig. 6 Simulation scenario 1: Real and estimated damper force
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by noises in the real application. Therefore, to assess the 
effectiveness of the observer affected by noises, a more 
realistic scenario is presented in Section 5.3.

5.3 Simulation scenario 3
This scenario is designed by adding the noises into the 
measurement outputs, detailed as follows:

•	 A sinusoidal road profile is considered in this sce-
nario (shown in Fig. 13).

•	 The scheduling parameter ρ2 is obtained from a 
Skyhook controller (Fig. 14).

•	 The sensors are affected by noises (shown in Figs. 15 
and 16).

The estimated scheduling parameter ρ̂ 1 is presented 
in Fig. 17. The damper estimation results of this scenario 
are shown in Fig. 18 while the estimation error is seen in 
Fig. 19. The results present the robustness of the proposed 
approaches in the presence of the sensor noises.

6 Conclusion
This paper presents a generalized H2/LPV observer to esti-
mate the damper force. For this purpose, the quarter-car 
system is formulated in a quasi-LPV form. A generalized 
H2/LPV observer using accelerometer measurements as 
input is developed, providing an accurate estimation of Fig. 13 Simulation scenario 3: road profile

Fig. 14 Simulation scenario 3: Scheduling parameter ρ2

Fig. 15 Simulation scenario 3: Sprung mass acceleration 
affected by noise

Fig. 16 Simulation scenario 3: Unsprung mass acceleration 
affected by noise

Fig. 17 Simulation scenario 3: Estimated scheduling parameter ρ̂ 1

Fig. 18 Simulation scenario 3: damper force
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