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Abstract

Traffic and transport researchers, policymakers, and vehicle manufacturers are interested in investigating the implications and the 

influence of autonomous vehicles (AV) because a gradual deployment of such new technologies is expected to take place in the future. 

This research investigates the impacts of the AVs emergence on traffic performance for the city of Budapest in three future traffic 

scenarios with different AV market replacement rates for the year 2030. The network was modeled using simulation-based dynamic 

traffic assignment in PTV Visum software. Four traffic performance parameters were analyzed to explore the impacts of AV's emergence 

on the network. The results showed noticeable improvements among the four investigated traffic performance parameters.
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1 Introduction
The first attempts to produce autonomous vehicles (AVs) 
were not meant for public use but for private road competi-
tions such as the DARPA challenge (Ozguner et al., 2007). 
Currently, it can be seen that the idea is well-shaped and 
known to the public, seeing many high-level automated 
cars crossing highways. Waymo's vehicles, for example, 
have crossed over 2 million miles autonomously since they 
were launched in 2009 as Google's self-driving cars proj-
ect (Muoio, 2017). Litman (2022) predicts that by 2025 
AVs will be safe and reliable to drive, and the following 
few years will be needed for testing this technology and 
setting its regulations and restrictions. Therefore, AVs are 
projected to be available to the public and legitimized by 
2030, and a transition from conventional vehicles to AVs is 
expected. Thus, it would be essential to smoothen the such 
transition to the extent that it serves the best experience 
for both users and operators.

AVs have a potential impact on influencing individual 
driving and the overall traffic network. AVs, for example, 
are expected to provide a high level of safety for road users 
(i.e., drivers, passengers, and pedestrians) and reduce vehicle 
crashes as the adverse effects of human driving will be reduced 
to the absolute minimum (Fagnant and Kockelman, 2015; 

Nadafianshahamabadi et al., 2021). Besides safety, AV inte-
gration will also benefit traffic network congestion due to 
their quick reaction time and complete comprehension of the 
surrounding environment compared to human-driven vehi-
cles. Low reaction time will result in a less following dis-
tance between vehicles, and vehicles will move closer to 
each other. So, road capacity might be improved operation-
ally without infrastructural extensions. On the other hand, 
the associated benefits of AVs will increase accessibility 
for more people (e.g., kids and people with disabilities) and 
vehicle distance traveled due to eliminating the responsibility 
of driving (Simoni et al., 2019). This increment at a certain 
level may increase congestion, raising the need for advanced 
demand management schemes e.g., dynamic road pricing 
(Shatanawi et al., 2021; 2022a; 2022b; Simoni et al., 2019).

This study investigates the change in traffic perfor-
mance resulting from different replacement rates of pri-
vately owned passenger vehicles to privately owned AVs 
in Budapest in 2030. Three replacement rates were chosen 
to reflect the uncertainty of this technology's adoption rate: 

1. relatively low private AVs uptake, 
2. relatively high share of AVs, and 
3. full AVs emergence. 
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These three scenarios were compared to the base sce-
nario of the year 2030 for Budapest and the surrounding 
area, which was forecasted, calibrated, and validated by 
the Centre of Budapest Transport (BKK). The simulations 
in this research were performed during the morning peak 
period using simulation-based dynamic traffic assignment 
(SBA) in the traffic macroscopic simulation software Visum. 
Highly but not fully automated vehicles were considered in 
this research to avoid the demand shift that would be influ-
enced from other modes of transport (e.g., conventional 
vehicles and public transport) to automated cars. 

The remainder of this paper is structured as follows: 
Section 2 covers the case study and the data used in 
this research. Section 3 describes the framework of this 
research paper, including the process of applying SBA 
to the model. Section 4 presents the results of analyzing 
the four transport performance parameters (TPPs), and 
Section 5 highlights the conclusion.

2 Case study and data
Budapest is the capital of Hungary and its most populated 
city, with a population of over 1.7 million and a land area 
of 525 km2 (HCSO, 2021). The transport network of the 
city and the surrounding area, see Fig. 1, is macroscop-
ically modeled through the so-called Unified Transport 
Model (EFM) by the BKK in Visum software. It contains 
over 30,000 links with their traffic parameters (i.e., speed, 
number of lanes, permitted vehicle types, among others), 
over 15,000 nodes, and 1200 zones. The model was cre-
ated and calibrated based on an extensive analysis of the 
traffic status in 2014, considering various aspects such as 
demographical, social, and economic factors. Moreover, 
the EFM model provides a forecasted demand for 2030 
with 2.23 million daily private transport trips; this pro-
jected demand was utilized in this research's simulation 
process. To obtain this future demand, the developers of 

the model (BKK, 2020) applied the traffic forecasting 
equation, illustrated in Eq. (1): 

C s S C C et
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1
0 0

0 0 , (1)

where Ct is motorization level of a specific year; S is auto-
mobile saturation level; C0 is the level of motorization of 
the predefined base year, g0 is a growth factor, and t is the 
number of years between the forecasted and the base year. 
Moreover, the EFM model was calibrated using the data 
of over 240 cross-sections distributed throughout the city 
to imitate the actual network behavior with a modest mar-
gin of error. The Geoffrey E. Havers (GEH) function was 
utilized to define the accepted tolerance between the mod-
eled and actual flow. As the EFM model was calibrated 
on the static assignment method, new calibration was per-
formed when altering to SBA to ensure the stability of the 
model. Similar to the BKK calibration, an acceptable tol-
erance limit of value 5 in the new calibration was achieved 
according to the GEH function.

The transport and traffic network of Budapest was 
modeled in Visum software. Visum is a global traf-
fic planning software widely known and used by trans-
port professionals. It can perform a macroscopic digital 
replica of mobility, land use, and socio-demography to 
gain a deeper insight into the challenges of today and the 
future (i.e., what-if scenarios). It can also model and sim-
ulate the behavior of various advanced transport modes 
such as automated vehicles. Considering these features 
and the availability of the EFM model in Visum software, 
this study was performed using it. 

This research studies Budapest's 2030 transport net-
work and traffic demand and the surrounding areas 
during the morning peak from 05:00-10:00, containing 
36% (i.e., +800 thousand trips) of Budapest's total daily 
private transport demand. The morning peak was chosen 
as it has the highest share of the daily trips in Budapest, 
representing the worst-case scenario.

For more information about the EFM model and Visum 
Software, see (BKK, 2020; PTV Group, 2021).

3 Methodological approach
This section presents the framework to model the effect 
of various replacement rates of human-driven passenger 
cars by AVs in the mid-size city network. As AVs drive 
themselves with the ability of automated speed and tighter 
headways, a link capacity would increase (van den Berg 
and Verhoef, 2016). Therefore, capacity is considered the Fig. 1 Simulation area including Budapest network and its surroundings
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controlling factor in modeling AVs in this research via a 
simplified car-following model. The well-known four-step 
modeling was adopted in this study because it is often 
applied for predictions of long-term scenarios (Levin and 
Boyles, 2015). The fourth step of the four-step planning 
model (i.e., traffic assignment) is then defined with its con-
trolling parameters as the SBA in this research. Factors 
related to the model run (e.g., termination conditions and 
additional iterations) control the overall computing pro-
cess. After running the model and producing the results, 
analysis is performed, and findings are discussed.

3.1 Scenarios
This study investigates the impact of replacing different 
ratios of private travel demand with privately owned AVs 
on traffic performance. Because the future market share 
of AVs is still vague and will emerge gradually over time, 
a possible sequence of scenarios for introducing AVs into 
the Budapest network is adopted, according to Davidson 
and Spinoulas (2015). The three proposed scenarios rep-
resenting different possibilities of AV emergence are: 
Scenario 1 is mixed traffic with one-third of the fleet being 
AVs, Scenario 2 replaces two-thirds of human-driven cars 
with AVs, and Scenario 3 considers complete replacement 
of human-driven cars by AVs. In all scenarios, AVs as 
highly automated vehicles, are all privately owned, and 
they are not allowed to drive while unoccupied.

The demand share of AVs replacing the demand share 
of passenger cars is described in Eq. (2) and Eq. (3): 

d p dpc � �� ��1
AV total

 (2)

d p d
AV AV total
� � , (3)

where dpc and dAV are the demand assigned to human-
driven passenger cars and AVs, respectively, dtotal is the total 
demand in the network, and pAV is AV replacement rate.

3.2 AV modeling using SBA
Budapest transport model has six private transport sys-
tems, i.e., passenger car, bicycle, and four types of cargo 
vehicles. The main focus of this study is to model AVs as a 
new transport system and examine their impact on traffic 
performance using SBA. The AV impact on transport oper-
ation is mainly described by the reduction in network sat-
uration caused by a lower following distance (Torok et al., 
2018). There are also other factors contributing to this 
impact such as level of automation, Car-to-Car (C2C) and 
Car-to-Infrastructure (C2X) communications, shorter gap 

for lane changing, and shorter walking and parking time 
(Obaid and Torok, 2021). Nevertheless, for each network 
segment, SBA can determine network saturation level, 
C2C and C2X communications, and level of automation 
compared to conventional passenger cars. In this study, 
such network segments are referred to as "AV-ready".

In SBA, loading the network is carried out by a simula-
tion with a simplified car-following model. That means the 
following behavior depends not only on the vehicle itself 
but also on the vehicle in front. This option is possible by 
the link attribute "SBA reaction time factor" in Visum. 
A human-driven car in normal circumstances will have an 
SBA reaction time factor of 1. The lower the factor value 
means that vehicles can drive close to each other because 
of the lower reaction time needed to brake. For example, 
if an SBA reaction time factor of link (A) was 0.7 for all 
its transport systems, and the SBA reaction time factor of 
a link (B) was 1.2, and both links have the same specifi-
cations (i.e., number and dimensions of lanes, speed limit, 
etc.), then the capacity of link (A) would be larger than 
the one of link (B) as vehicles drive in tighter headways. 
However, the SBA reaction time factor considers only one 
value for all transportation systems in the network. In this 
case, the more detailed link attribute "SBA is reaction time 
factor transport system dependent" is used, which allows 
for different reaction time values for different vehicle com-
binations. For example, if an AV is following another AV, 
the headway will be smaller than if the followed vehicle 
was a conventional one. 

Three different categories were adopted considering 
the different combinations of private transport systems. 
This classification was developed depending on the fact 
that the lower the SBA factor value results in a larger capac-
ity on the link. (Simoni et al., 2019) used a 1.5 capacity 
increment factor when modeling fully automated vehicles, 
in SBA, this can be interpreted into a reaction time fac-
tor using the SBA capacity equation (PTV Group, 2021), 
as shown in Eq. (4): 

C l
d

d r e
v

� � �
3600

; where , (4)

where C is capacity as calculated in SBA [veh/h], l is 
the number of lanes, d is temporal headway [s], r is fac-
tored SBA reaction time, e is factored SBA effective vehi-
cle length [m] (default value = 7 m), and v is link per-
mitted speed [m/s]. With Eq. (4), increasing the capacity 
by 1.5 times the original capacity (with the other factors 
being constant) would reduce the SBA reaction time factor 
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by 0.5. Table 1 illustrates these categories and shows that 
the SBA reaction time factor values are the lowest in 
case both combination’s vehicles are autonomous. This is 
mainly because braking requires a shorter reaction time, 
implying tighter headways and larger link capacity. If the 
leading vehicle is not autonomous, the ‚SBA reaction time 
factor' value increases to 0.65 between other transport sys-
tems (TSys) followed by AV and to 1 in case the leading 
and the following vehicle are not AV.

3.3 SBA parameters and factors
SBA models use a traffic simulator to dynamically model 
complex traffic flow, which helps design operating solu-
tions for real-time implementation. For more in-depth liter-
ature, refer to Mahmassani (2001); Matalqah et al. (2022); 
Peeta and Mahmassani (1995); Peeta and Ziliaskopoulos 
(2001) and Shatanawi and Mészáros (2022). The process 
of deploying SBA can be divided into three main parts: 
network, demand, and SBA parameters.

Network: the EFM model of Budapest is an indepen-
dent, continuously maintained, and regularly updated mac-
roscopic model that forecasts future transport changes and 
developments in Budapest and the area around it. In this 
step, all network segments were modified to be AV-ready to 
distinguish the features of each transport system separately. 

Demand: the EFM model was created based on the 
demand share of the total volumes. In other words, a per-
centage share of the total demand was specified for each 
time interval, e.g., morning peak and evening peak. From 
05:00 to 10:00 am, the morning time interval was defined as 
the analysis period (AP) in this research. This partially long 
period will provide this project with more stable results than 
choosing a shorter one. It is essential to define the AP in this 
step to be used afterward in the assignment procedure.

SBA parameters: the SBA assignment procedure in 
Visum consists of various fundamental parameters and 
factors that control the results of the assignment. At first, 
the "Termination conditions" define when the assignment 

stops. There are two main conditions; once one of them is 
achieved, the assignment will end, namely the Maximum 
number of iterations and maximum gap. The higher the 
iteration number, the more statistically reliable the results; 
however, it is a trade-off with the computational time. 
The maximum gap, on the other hand, is a well-known 
approach that defines the level of tolerance. The reliabil-
ity of a solution obtained using an SBA model is calcu-
lated by determining the deviation in volume pattern 
in each iteration and comparing it to a predefined toler-
ance rate (Ahmed, 2015). The tolerance threshold deter-
mines the amount of error tolerated in the final solution. 
While a lower tolerance level is optimal, it will signifi-
cantly increase the computational time. In this research, 
a maximum gap of 0.03 was used. If the maximum gap 
was reached, but not all cars could leave the network, the 
termination condition might not be fulfilled. Therefore, 
and in addition to the two main termination conditions, 
the maximum number of additional iterations can be pre-
defined and calculated to guarantee that all vehicles exited 
the network if any were left after the last iteration. 

The Assignment Time Interval parameter is defined 
to determine which time slot should be calculated in the 
assignment. Peak hours are often investigated as they pro-
vide the worst-case scenario; as mentioned earlier, this 
study adopted the period from 05:00 to 10:00 am.

4 Results
This section discusses and compares the impact of 
AVs emergence on four traffic performance parameters 
(TPPs) in the different proposed future traffic scenarios. 
The investigated TPPs are delay, traffic density, queue 
length, and link speed.

4.1 Delay
In SBA, the delay is calculated from the travel time in 
the network without volume ( t0 ), taking SBA length and 
first-in-first-out (FIFO) t0 functions into account, and from 
travel times with volume ( tCur ) calculated from the FIFO 
tCur functions that are intersected to the analysis time inter-
vals (PTV Group, 2021). A total delay reduction of 6.5% 
occurred when replacing 33.3% of the human-driven vehi-
cles with AVs and further decreased by nearly six times 
when AVs replacing 67.7% of Budapest's private cars 
fleet. Moreover, a full AV replacement rate (i.e., 100%) 
eliminated 58.7% of the total delays. Fig. 2 illustrates the 
total reduction in delay distributed between the different 

Table 1 Categories of SBA reaction time factor

Category 
No.

Transport system combination SBA reaction 
time factorLeading vehicle Following vehicle

1 AV AV 0.5

2 Other TSys AV 0.65

3 Other TSys Other TSys 1
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transport systems in the city due to the integration of AVs 
into the Budapest network. 

The delay for different transport systems showed that 
the reduction in the total delay follows an S-shaped curve 
depending on the AV replacement rate applied, which is 
divided into three stages: 

1. slow increment in the reduced delay percentages with 
increasing AV replacement rate from 0% to 33.3%, 

2. fast increase in the reduction percentage of the total 
delay while altering AV replacement rate from 33.3% 
to 67.7%, and 

3. slower growth in the delay compared with stage 2 
between 67.7% and 100% replacement rates of AVs.

4.2 Traffic density
SBA density in Visum is the average number of vehi-
cles per km per lane [veh/km]. The five-hour simulation 
time interval was divided into 30-minutes subintervals to 
explore the dynamic influence of AVs on the average den-
sity as they enter the network. As illustrated in Fig. 3, the 
average traffic density in all scenarios continued to rise 
during the investigated period to reach 31 [veh/km] in the 
base scenario; however, the increment pace was lower 

when the fleet consisted of AVs. Increasing the AV replace-
ment rate up to 33.3%, the average density decreased by 
more than 4%. Moreover, 67.7% and 100% share of AVs 
would reduce the average density by approximately 16% 
and 30%, respectively, compared to the base scenario. 

4.3 Queue length
One of the advantages of dynamic assignments is that 
queue lengths can be examined and, thus, compared with 
other scenarios. SBA is able to handle queues dynamically 
and pass on congestion to the next time interval (or if it 
was the last ATI, the queue will dissolve using the exten-
sion time interval) and provide a better way to estimate 
the total delay. 

An examination of the average and summation of 
queues in each scenario is illustrated in Fig. 4. It can be 
noticed that the greater the AV replacement rate is, the 
lower the average queue length would be. The reduction in 
queue length is not linear; when replacing AVs at a 33.3% 
rate in the Budapest network, the average queue length was 
reduced by 2.4% compared to the base scenario. However, 
between AV33.3% and AV67.7% scenarios, the total reduc-
tion in average queue lengths was 9%, and 20% reduction 
was observed between AV67.7% and AV100% scenarios. 
The full emergence of AVs into the Budapest transport 
network would eliminate approximately 430 km of total 
queues in the city, resulting in a less congested area. 

A visualization of queues is presented in Fig. 5, show-
ing the distribution of queues in the AV100% scenario 
(blue color) during the 08:00-08:30 subinterval. The con-
gestion is distributed across the network in different links; 
however, no congested area (several links in a place) was 
spotted. Fig. 5 also compared queue lengths between 
AV100% and base scenarios. The width of the green bars 
represents the length of the eliminated queues because of 
AV emergence, while the red color means that the queue 

Fig. 2 Total reduction in network delay and total delay for each 
transport system during the analysis period

Fig. 3 Average density over the 5-hour time interval Fig. 4 Average and summation of queues across the four scenarios
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length has increased. The green color is dominant; how-
ever, it is also seen that the red color is mainly observed in 
the downtown area more than outside, yet in small values 
and only a few links experienced long queues compared to 
the base scenario.

4.4 Link speed
Link speed ( Vcur ) mainly depends on density and vol-
ume. Once a link has a high volume, then the density will 
increase, resulting in a decrement in travel speed accord-
ing to the fundamental equation of traffic stream flow. 

The impact of integrating AVs on the network has a posi-
tive influence in general (e.g., density and delays), meaning 
that travel speed is also expected to be positively affected. 
In Budapest, the deployment of AVs with different replace-
ment rates increased travel speed whenever the AV's mar-
ket share went up. Fig. 6 represents a visualization that 
compared the travel speed between AV100% and AV67.7% 
scenarios. It is noticeable that the purple color is dominant, 
meaning that the increment in travel speed is higher in the 
AV100% scenario. On the other hand, the downtown area 
of Budapest is experiencing an increment in queue length, 
resulting in a decrement in average link speed.

Fig. 7 reveals the differences between AV100% and 
AV33.3% in terms of AV travel speed. The average travel 
speed in the AV33.3% scenario for automated cars was 

spotted at 31.00 [km/h], while in AV100% is expected to 
reach 31.18 [km/h]. Furthermore, comparing Fig. 6 and 
Fig. 7 showed that the variation in speed between the 
AV100%–AV33.3% is greater than between AV100%–
AV67.7%, which means that increasing the percent-
age of AVs in the network would result in higher speed 
until reaching a point where the supply cannot serve the 
demand, causing an opposite effect to the network. 

5 Conclusion
This research deployed SBA to incorporate AVs into the 
Budapest traffic network to predict the impact of AVs on 
TPPs. It can be concluded that cities with similar factors 
as this study's case can benefit from AVs to improve traffic 
performance. This study also illustrated that using the reac-
tion time factor in simulation-based dynamic traffic assign-
ment for implementing AVs would primarily control (i.e., 
increase) link capacity, which in return would decrease traf-
fic congestion. Table 2 summarizes the differences in these 
attributes among the four developed scenarios in this paper.
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Fig. 5 Visualization of queue length in AV100% scenario and the 
difference with AV0.0%

Table 2 Summary of traffic performance parameters TPPs

Reduction in 
total delay

Reduction 
in density

Reduction in 
queue length

Change in 
AV speed

Compared 
with Base scenario Previous 

scenario

AV0.0% - - - -

AV33.3% 6.5% 4.44% 2.40% -

AV67.7% 40% 16.47% 11.37% +0.59%

AV100% 58.7% 29.93% 29.14% +4.10%Fig. 6 AV travel speed difference between AV100% and AV67.7% 
scenarios

Fig. 7 AV travel speed difference between AV100% and AV33.3% 
scenarios
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