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Abstract

The main task of the article is to define the critical minimum number of tests for the dynamics of a traffic node in autonomous 

driving based on critical phenomena, i.e. the percolation theory. The critical (minimum) number of tests of a node means how we can 

represent the traffic dynamics of a node with critical, percolating path using a "state-following state" system on the graph. The test 

cases along the percolation path, i.e., those involved in the formation of the new phase, represent the entire test system and are 

minimal. In the article we show that only less than 10 of the 640 tests to be performed have to be realized and are representative for 

release processes.
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1 Introduction
Highly autonomous driving (HAD) is expected to have 
a positive impact on the global transport environment. 
According to the state of research, more than 80% of traf-
fic accidents are caused by human error. By replacing the 
human operation with a technical-mathematical solution, 
it is possible to reduce the number of accidents (Kiss and 
Berecz, 2019).

Driver-free vehicles allow, for example, the reinterpre-
tation of taxi services and the modernization of logistics. 

Nowadays, the development of autonomous vehicles 
has been in full swing for years. OEMs (car manufactur-
ers) promise to develop vehicles with a higher degree of 
autonomy in the coming years (Szabó and Bakucz, 2021).

The driver of an autonomous vehicle can be deacti-
vated, it cannot be taken into account by the operator of 
the control operations. As a result, there will be very high 
reliability requirements for safety, reliability and security 
(Derbel et al., 2012).

For a practical interpretation and implementation of the 
safety requirements for self-driving vehicles, it is neces-
sary to understand what reliable and safe behavior really 
means (Bede and Péter, 2011). For example, a HAD car 

must be able to handle traffic rules, the geometry and topol-
ogy of its surroundings, and must be able to interpret the 
meteorological system, but also rare, difficult-to-predict 
road hazards (Kiss, 2022). A strategy must then be devised 
to check that the vehicle has actually reached the required 
level of safety (Kiss, 2020). The problem in the develop-
ment of HAD in the coming years is the release of the sys-
tems: how the completed hardware-software and algorithm 
can be put on the market and how to sell the system.

The basic priority in highly automated driving is the 
testing of diverse predefined issues (Kiss, 2019; Kiss and 
Berecz, 2021). If the demand for testing is extremely high, 
the economics of implementing highly automated driving 
will be on the agenda.

In order to solve various engineering reliability tasks, 
it is essential to determine the minimum number of nec-
essary testing situations for a traffic node. In our article, 
we use the phase transition theory of theoretical physics.

We say, that the test-set is a random system, and in the 
phase transition interpreted on the graph the participating 
test cases can only be considered after the path of the new 
phase on the graph.
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Then the system is:
• "percolated";
• "a breakthrough is realized";
• "a new phase is occupied";
• "is mathematically demonstrable".

At this point, when the phase transition occurs, going 
through the critical test cases between two distinguished 
points defined in percolation theory, we arrive at the min-
imum number of test cases. 

Consequently, in this article a method is introduced to 
define the minimum number of traffic situations at a traffic 
junction based on these synonyms of percolation.

The critical traffic situation means that the geometry 
and traffic dynamics of the node are analyzed and quan-
tified using paths. The dynamics of a transport node is 
determined by discretizing the node and recording the 
movements of each traffic participant in a "state - next 
state" system.

In our process, we look for the minimal, critical path 
between "state"-to-"next state" nodes, knowing that crit-
icality in this graph can be characterized by a fractal 
dimension in Mathlab 2020b computer algebra software 
(Mathworks Inc., 2020).

In the present project, in which we present the tests 
applied in the Autonomous Driving System of the 
University of Óbuda, the corner radar sensor time series 
(Fig. 1) plays the role of the perception tasks. Due to the 
importance of HAD time series analysis, it is a challenge 
to characterize the extremal value of time series and the 
dynamics of such extremes, and to develop an efficient 
approach for embedded systems to understand the for-
mation of time series. Recently, significant progress has 
been made in understanding interfaces through the appli-
cation of fractal concepts and the development of the the-
ory of dynamic scaling. The dynamic scaling introduced 
in fractal growth has become an indispensable tool for the 
characterization and fractal-based, nonlinear analysis of 
the morphology and evolution of interfaces can also be 
applied in the theoretical study of surfaces.

In this journal article, we review the basic ideas of 
dynamic scaling and multifractal analysis, as well as how 
to characterize the maximum value of autonomous radar 
sensor time series (Hammerschmidt, 2017). To illustrate 
the application of these ideas, we used data from 13593 
autonomous radar sensors in the HAD database for a driv-
ing scenario (Fig. 2).

In Section 2 we are dealing with fractal dynamic scal-
ing, with the first-order consideration of radar extremities. 

The methods for multifractal analysis are described in 
Section 3. This is followed in Section 4 by the first results 
on corner radar, and in Section 5 by a summary of past 
and future work.

Fig. 1 Corner radar sensor test (Source: own research)

Fig. 2 Minimum number of study sites (Source: own research)



10|Kiss et al.
Period. Polytech. Transp. Eng., 51(1), pp. 8–14, 2023

2 Critical phenomena, the applied method
Few indicators of HAD deal with time series and their non-
linear properties in many systems (Anderson et al., 2016).

The corner radar sensor ultimately measures distance, 
but taking into account the parameters shown in Fig. 1, it is 
an essential part of sensor detection accuracy. In our Óbuda 
University Autonomous Driving research project, we look 
for the critical (minimum) number of testing scenarios to be 
necessarily in the corner radar release issues.

In certain applications, the goal is to produce a time 
series with a specific physical or technical property, but 
time series are often inherent in industrial and natural 
processes. In fact, Mandelbrot pointed out that some time 
series are best approximated by a fractal geometry system 
(Mandelbrot, 1982). This recognition led to the develop-
ment of a dynamic scaling system that describes not only 
a given morphology but also the internal dynamics of time 
series, including extremes (Bianchi et al., 1992). In this 
approach, we consider the time evolution of time series 
in a d-dimensional space, starting from an initial corner 
radar time series.

The essence of the method is the physical experience 
that growing surface-instabilities with the same scal-
ing factor are physically identical, i.e. they can be scaled 
together (Grassberger and Proccacia, 1983).

Our article is engaged with minimum problem, where 
an m × n grid of nodes is given as shown above (Bakucz 
and Kiss, 2021). The nodes are arranged, grid-like, into 
m rows and n columns. Each node is either "a car is pres-
ent à 1" or "a car is not present à 0" with probability p. 
Clearly, if p is small (close to 0), then few nodes will be 
"on" whereas if p is large (close to 1) then most nodes will 
be "on" (Abraham et al., 1986).

A vertical percolation path is a path from a node in the 
top row to a node in the bottom row consisting entirely of 
"on" nodes (Farmer and Sidorowich, 1987). Then, a verti-
cal percolation is said to occur if there is a vertical perco-
lation path (Fig. 2).

Fig. 2 determination of the minimum number of possi-
ble testing situations in a traffic node, based on percola-
tion. Black dots represent tests (vehicle movement) from 
the vertically marked position to the horizontally marked 
position (see Fig. 3).

If we can "just" pass from the top down, percolation 
takes place, a new phase is created, and this state completely 
characterizes the vehicle tests interpreted in the node. It is 
sufficient to perform only these "percolating" tests.

A percolation of test cases exists if either a vertical 
or horizontal percolation exists then the new phase has 
emerged, i.e. the phase transition took place, and it is at 
this point, by the breakthrough, that the shape on which the 
percolation takes place is a fractal shape (Arizmendi et al., 
1995; Goldberg et al., 1988). This condition is characteris-
tic of the test system as a whole, and the execution of the 
tests associated with the breakthrough shape characterizes 
the entire test system (Figs. 3 and 4).

Notation of Fig. 2: The "o" means occupied by a car. 
The "x" indicates ("one of") the next positions. In the vec-
tor notation the symbol "o" has position 5,4 and 1 indicates 
occupied. For the symbol "x" the x,y coordinates are 6,4 
and 0 indicates one of the next position. We collect the 
possible "from" "to" scenes, which is represented in a sys-
tem where the coordinates "from where?" are displayed 
on the vertical axis and the coordinates "to where?" on the 
horizontal axis (see in Fig. 4).

Collecting the possible "from" "to" scenes, which is rep-
resented in a system where the coordinates "from where" 
are displayed on the vertical axis and the coordinates "to 
where" on the horizontal axis. The "o" means occupied by 
a car. The "x" indicates (one) the next positions. Slowly 
filling the system (left side) with blue dots (test cases) 
when we reach the criticality of the system, i.e. when per-
colation takes place, the tests along the critical path (or 
forming the critical path) represent the entire test system.

Thus, if we generate a random grid (that is, we create a 
grid and then turn nodes "on" according to probability p), 
then there may or may not be a percolation path (Fig. 5) 
(Peitgen et al., 1992).

Fig. 3 Vector position of the car (Source: own research)

Fig. 4 Possible vehicle positions (Source: own research)
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Let Q be the probability that a percolation is found. 
Since this depends on the seed probability p, we'll write 
this as Q(p). Your goal is to plot the graph Q(p) vs. p for a 
6 × 6 mesh. We have to estimate this function using a suf-
ficiently large number of samples (repeated simulations).

We use the percolation, which is a model of a porous 
medium, and is a paradigm model of critical phenomena 
in statistical physics. Think of the bonds in an infinite 
graph that are not removed as indicating whether water 
can flow through this part of the medium. Then, the inter-
esting question is whether water can percolate, or, alterna-
tively, whether there is an infinite connected component 
of bonds that are kept. As it turns out, the answer to this 
question depends sensitively on the fraction of bonds that 
are kept. When we keep most bonds, then the kept or occu-
pied bonds form most of the original graph. In particu-
lar, an infinite connected component may exist, and if this 
happens, we say that the system percolates. On the other 
hand, when most bonds are removed or vacant, then the 
connected components tend to be small and insignificant.

Thus, percolation admits a phase transition. Despite the 
simplicity of the model, the results obtained up to date are 
far from complete, and many aspects of percolation, par-
ticularly of its critical behavior, are ill understood. 

The key challenge in percolation is to uncover the rela-
tion between the percolation critical behavior and the 
properties of the underlying graph from which we obtain 
percolation by removing edges.

While in percolation the random network under con-
sideration naturally lives on an infinite graph, in ran-
dom graph theory one considers random finite graphs 
(Peters, 1991). Thus, all random graphs are obtained by 
removing edges from the complete graph, or by adding 
edges to an empty graph. An important example of a ran-
dom graph is obtained by independently removing bonds 

from a finite graph, which makes it clear that there is 
a strong link to percolation. However, other mechanisms 
are possible to generate a random graph (Schroeder, 1991).

We shall discuss some of the basics of random graph 
theory, focusing on the phase transition of the largest con-
nected component and the distances in random graphs. 
The random graph models studied here are inspired by 
applications, and we shall highlight real-world networks 
that these random graphs aim to model to some extent.

We now start by introducing some notation.
Let G = (V,E) be a graph, where V is the vertex set and 

E ⊆ V × V is the edge set.
In our case we define testcases on the traffic junction 

and the blue dots (Fig. 6) represent the "from cell (state)" 
to the "to cell (state)" testing experiments. 

For percolation, the number of vertices, denoted by |V |, 
is naturally infinite, while for random graphs, |V | is natu-
rally finite. 

A random network is obtained by a certain rule that 
determines which subset of the edges E is occupied, the 
remaining edges being vacant. 

Let v ∈ V, and denote by C(v) the set of vertices which 
can be reached from v by occupied edges (Eq. (1)). More 
precisely, for u ∈ V, we say that u ←→ v when there exists a 
path of occupied edges that connects u and v, and we write 

C v u V u v� � � � ��� �: . (1)

The central answer in the study of minimum test cases 
involves the cluster size distributions, i.e., for percolation 
whether there exists an infinite connected component, and 
for random graphs what the distribution of the largest con-
nected component is.

3 Algorithm, results
The new procedure can be described by the following steps: 

• A à A traffic node dynamics is given, where the 
movement of vehicles with the given initial and 
boundary conditions (topology of the junction, 
cyclists, pedestrians, traffic light) is received by a 
radar system and released for self-driving.

• B à Discretization of the node with rectangles is 
necessary in order to carry out the percolation pro-
cess. Percolation is a perturbation scheme interpreted 
on a square cell element. The elements of the square 
cell are either loaded or unloaded, i.e. where move-
ment can occur or where it cannot. It is most simply 
described as a seepage process in soil, where the gap 
is where the fluid can flow and the grain is where it Fig. 5 Increase the number of test cases (Source: own research)
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cannot. In our case, the loaded cell is where trans-
port can get space (pavement) ("o" occupied) and the 
unloaded cell is where it cannot (pavement, divider). 

• C à The interpretation of each element (cell) in the 
dissociated node is following the notation of Fig. 3. 
The "o" means occupied by a car. The "x" indicates 
("one of") the next positions. For the symbol "x" the 
x,y coordinates are 6,4 and 0 indicates one of the next 
possible positions. We collect the possible "from" "to" 
scenes (see later), which is represented in a system 
where the coordinates "from where" are displayed on 
the vertical axis and the coordinates "to where" on the 
horizontal axis. In the cellular system, the transport 
dynamics of a node are interpreted as creating a "from 
where to where" system. This is interpreted in Fig. 6, as 
indicating the "from where" state (coordinates) on the 
left and the "to where" state (coordinates) on the right.
In the squares on the left and in these cells are the 
starting coordinates of the vehicle. We need to test 
this vehicle unit (e.g. radar). That is, we can imagine 

the whole test process by breaking down the vehicle 
movements to be tested into elements, atoms, from 
the initial position (the squares on the left) to the 
„where” positions on the right. For example, given 
4000 test tasks, we can break each of them down 
into atoms and write down the initial position and the 
final position. The point is that mathematically the 
4000 tests are redundant and there is a subset repre-
senting the 4000 tests. This subset is searched by the 
critical path definition band using percolation theory.

• D à We want to represent the "from where to where" 
system with bubbles to apply percolation theory. To do 
this, however, the two cooordinates (e.g. 4,5 from 
which a test car starts) need to be downdimensional-
ized, and this transformation is done in step D à the 
test coordinates are transformed into a single num-
ber. For example, (5,6) to 1 and (8,2) to 2 can be used 
to indicate the tests to be performed. Interpreting the 
"from where to where" system in a figure, the test-co-
ordinates (from where to where) are shown on the 

Fig. 6 Óbuda University Autonomous Driving Software Radar analysis: determination of possible minimum number of testing situation based on 
percolation theory (Source: own research)
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horizontal axis (from where) and the coordinates on 
the vertical axis (to where). Characterized by blue 
dots, which are interpreted as necessary tests in the 
original system of requirements.

• E à In the dot system, we are now in the classic per-
colation theory backstage. We can wander around 
on the blue dots. As percolation theory dictates, we 
increase the number of dots (the number of tests) 
then there exists a critical path between the left and 
right side of the system when we just achieve the 
breakthrough, we get percolation and we reach the 
critical number of tests. By increasing the test cases, 
placing the percolation network at the appropriate 
coordinates becomes visible. By indicating the test 
cases in the system (the blue dots) and increasing 
their number, there is a state when the path marked 
in red appears in Fig. 5, i.e. we can go from the left 
side of Fig. 5 to the right side of the path marked in 
red. Then the new phase is said to appear, and in 
this state the whole test system can be represented 
by performing the tests belonging to the line, i.e. it 
is not necessary to perform the sometimes hundreds 
of thousands of tests, but it is sufficient to perform 
only these few tests.

• F à If the percolation breakthrough has taken place 
on the blue dots, then in the coordinate system of 
the test experiments the tests (the coordinates) along 
the percolation path will be selected and these will 
be the elements of the minimum number of tests 
selected on the basis of the critical phenomena.

4 Used test data-base
The tests are defined by the customer in the requirements. 
The possible tests were recorded with the dSpace auton-
omous driving simulation environment (dSpace (2022) 

is an Autonomous DrivingSimulation Tool develoded by 
dSpace GmbH, in Paderborn, Germany). In total, for the 
radar experiments, more than 4000 experiments were 
defined and virtually tested and decomposed into elemen-
tary units for a given approach situation (Fig. 7).

5 Conclusion
Determination of critical traffic tests based on percola-
tion theory is an important application area. However, the 
exact determination of the reliability of traffic nodes based 
on percolation paths is not well established in the litera-
ture (Kratmüller, 2010).

The advantages of the method are the following: 
1. The percolation path method defines a minimum 

number of critical test experiments that replaces the 
entire testing system mathematically in a completely 
exact and derivable way.

2. With help of dynamic scaling if r = 124 (ms) then 
c(124,t) = 82 and then when t → ∞

� �
� �
� �

�
lg

lg
.

124

2 82
0 5269  (2)

then the extreme value is w = 129.1 constantly 
[Radar_unit].

The next phase of the project is the fixed-point 
Matlab C++ Code Generation and its testing with real 
data (Sun et al., 2020).

6 Future work
Within the framework of the Self-Driving Automotive 
Platform Project running at the University of Óbuda, we 
analyzed nonlinear methods for predicting the probable 
maximums, the so-called extremes of autonomous driv-
ing vibration signal of the corner radar sensor time series.

Fig. 7 Óbuda University Autonomous Driving Software Radar analysis in dSpace simulation environment in August 2022 (dSpace, 2022)
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The first conclusions are the following:
• Determining the extreme values of a radar signal can 

be significantly simplified by nonlinear time series 
analysis, thereby making it embeddable.

• The need for testing can be reduced if collisions can 
be predicted by analyzing the extreme values of the 
radar. sensor parameters.

• New test results can be integrated into the system.
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