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Abstract

This work aims to apply an integration between a multi-agent system and microsimulation to take advantage of the large amount 

of data generated in urban freight transport to improve the overall performance of the urban supply chain without forgetting the 

principles of autonomy that govern each of its actors, responding to the different dynamic scenarios that may arise in the operational 

context. The integration framework produces a satisfactory communication process in those modeling methods measured by two 

indexes: throughput and latency. The results of this integration show a robust response to dynamic scenarios and allow reacting to 

the different quantity of changes without dismissing the search for optimum solutions.
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1 Introduction
The design of dynamic systems that allow the capture of 
internal and external conditions and respond to different 
changes searching for a decrease in the negative impacts 
on their performance is becoming more frequent (Amo- 
rim  et  al.,  2019; Martins  et  al.,  2021; Serrano-Gar- 
cía  et  al.,  2021). The information on the changes occur-
ring in the system comes from different elements and 
actors that generate or receive such information. These 
actors are in permanent interaction producing changes 
in individual characteristics and the whole system (Men- 
donça et al., 2020).

The management of different information sources deli- 
vering online data to a system becomes a fundamental 
tool for analysis of reactions to possible events that 
affect the individual behavior of the system elements 
(Barenji et al., 2019). The supply chain is a dynamic system 
that continuously receives information from its multiple 
actors, which must be managed to improve the overall per-
formance of the entire system (Gómez-Marín et al., 2020).

Nowadays, the amount of data generated by supply 
chain stakeholders is high. Companies can be confused 
by this large volume of data (Maddikunta et al., 2022; 

Song et al., 2021; Tseng et al., 2022). In this case, modern 
tools such as Big Data and analytics support the performan- 
ce of detailed information analysis (Taniguchi et al., 2016; 
Gangwar et al., 2023). But beyond knowing the history and 
what has happened in supply chain management, it is nec-
essary to design tools that allow converting this data into 
useful information to improve the overall performance 
of the entire chain considering the different actors, their 
behaviors, and economic, environmental, social objectives.

Data-driven models such as microsimulation and agent-
based modeling make it possible to define, based on his-
torical data and rules, the future behaviors of each actor in 
response to different internal and external stimuli. But it is 
not enough to identify these possible behaviors. It is also 
necessary that supply chain models allow process optimi-
zation through different tools, considering both historical 
behaviors and collaborative processes. Using these two 
elements in modeling brings a closer representation and 
achieves an overall objective without forgetting the indi-
vidual stakeholder's goals. 

Multi-agent systems (MAS) are used when the capa-
bilities of a single agent are not sufficient to represent the 
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complexity of the problem, thus allowing to capture interac-
tions among independent actors (Anand et al., 2014). These 
interactions are mainly based on the communication skills 
of each agent, which are two of the main characteristics of 
multi-agent systems; that is, each agent needs to commu-
nicate with the system resources and with the other agents 
to cooperate, collaborate and negotiate with each other 
(Bellifemine et al., 2007). These communication acts are 
carried out through communication, coordination, and nego-
tiation protocols between agents (Kalia  and  Singh,  2015; 
Viroli et al., 2015). In a supply chain context, MAS con-
sider each of the individual objectives of the supply chain 
actors but, at the same time, share resources and capabil-
ities that seek a primary common objective (de  Souza 
Henriques, 2019; Hu et al., 2022; Serna-Urán et al., 2018).

The integration of both modeling tools could allow the 
use of multiple source data, the stakeholder’s characteriza-
tion of these data, and the coordination and collaboration 
processes among all stakeholders in the urban freight sys-
tem. The development of this integration is not very well 
studied in the literature.

This paper's objective is to present a novel proposal, 
on the one hand, on the integration between the manage-
ment of real-time information from multiple channels (col-
laborative decentralization information management) that 
permanently updates the news in a system through micro-
simulation, and on the other hand, on the coordination pro-
cess among system actors to react efficiently and timely to 
most possible number of changes to respond, by using of 
a MAS. The authors present an integration of the multi-
agent microsimulation proposal. It models the stochastic-
ity present in the different situations that occur to each 
system actor and how, through the processes of negotia-
tion and communication between these actors, results are 
reached with global optimums instead of local optimums. 
MAS consider each of the individual objectives of the sup-
ply chain but at the same time share resources and capabil-
ities that seek the common good.

This paper is organized as follows: in Section 2, the rel-
evant literature review is presented. Section 3 presents 
the proposed framework for integration between MAS 
and microsimulation. In Section 4 a case study in urban 
freight transport is presented, this application case shows 
the integration process of these two modeling tools and 
assesses the feasibility of this integration. Conclusions 
and future research are presented in Section 5.

2 Literature review
Microsimulation is a modeling tool used to assess impacts 
on different systems. This tool is based on the simulation 
of micro study units (individuals, households, companies, 
farms, vehicles) by representing individual behaviors based 
on population data for analysis before direct interventions 
by simulating possible changes (Li and O'Donoghue, 2013). 
As a modeling tool, it has been used since the 1950s to eval-
uate public policies (Absalón  and Urzúa, 2012) from dif-
ferent areas of knowledge, such as economic and social 
sciences, and it has migrated to a  wider range of knowl-
edge fields. As a modeling method, microsimulation helps 
to better-understand systems' complexity from the popula-
tion structure, the variety of policies and their impacts, the 
behavioral responses to such policies, the dynamic compo-
nents, and the Spatio-temporal context (O'Donoghue, 2014).

Microsimulation models achieve a high detail lev- 
el by representing the system with a high resolution 
(Lang  et  al.,  2017; Reggelin et al., 2022) and individual 
activities for each unit of analysis. It implies higher com-
putational efforts that have been tackled for the increasing 
improvements in hardware, allowing for simulation, in rea-
sonable processing time, systems with millions of analysis 
units, each with individual behaviors (Gomez-Marin et al., 
2018; Petrik et al., 2020; Waddell et al., 2018).

Another modeling methodology that has been used 
to appropriately represent the dynamic interactions bet- 
ween the different actors in a system to support deci-
sion-making is agent-based modeling (Le Pira et al., 2017; 
Zheng  et  al.,  2013). This type of modeling is associated 
with the behaviors of multiple agents in a socio-economic 
system (Ballas et al., 2019). It focuses on the interactions 
between agents and the environment in which they move. 
These agents are governed by assumptions of rational 
economic models such as "perfect information", rational 
expectations, absence of centralism, etc. (Richiardi and 
Richardson, 2016).

In this modeling methodology, some researchers rep-
resent real population dynamics. Sajjad et al. (2016) and 
Singh et al. (2015) developed an agent-based simulation 
model with a Beliefs, Desires, and Intentions (BDI) archi-
tecture. The Beliefs were driven by the census microdata 
of the population that allows the development of plans 
that fulfill the Desires and Intentions, thereby align-
ing the simulation results with the actual data. However, 
this simulation does not use interaction and coordinated 



Gómez-Marín et al.
Period. Polytech. Transp. Eng., 51(4), pp. 409–416, 2023 |411

communication among agents. Berndt et al. (2017) gener-
ated a hybrid simulation between agent-based simulation 
and microsimulation to forecast the demand for health-
care services based on census data and communication 
between cognitive agents influencing their nearby social 
network. However, the communication process between 
the two modeling tools is not clarified to complete the 
feedback between the two modeling methods.

A variation of agent-based modeling is the multi-agent 
systems (MAS), in which emphasis is placed on the inter-
actions and communications between the different agents, 
their type of reasoning, as well as the architectures with 
which these virtual systems are designed to respond to the 
characteristics to be modeled (Boman and Holm, 2004; 
Wooldridge, 2002; Zheng et al., 2013). 

With MAS, it is possible to generate an architecture that 
allows actors' coordination to respond to internal and exter-
nal changes that affect a system (Serna-Urán et al., 2018). 
It takes advantage of the benefits of distributed computing to 
improve the use of resources and the speed of computational 
response to this type of NP-Hard or hard-to-solve problems.

Generally, when using MAS, an agent is dedicated to 
reproducing the behavior of one or several specific processes 
and employs exact solution methods such as linear program-
ming, which are often used in small or medium-sized prob-
lems. For larger or more complex problems, heuristics, and 
metaheuristics such as genetic algorithms, tabu search, sim-
ulated annealing, etc., and their combinations should be used 
(Miliauskas, 2022; Seyedhosseini et al., 2016).

Developments based on integrating these two modeling 
paradigms can offer great potential for systems analysis 
and its modeling methodology (Boman and Holm, 2004; 
Parikh et al., 2017). It allows simultaneous representa-
tion of the amount of data, stochastic activities of agents, 
and their interactions, with the possibility to communi-
cate and generate coherent behaviors in which coordina-
tion between agents can improve responses to events both 
internal and external to the system.

Some researchers expose multi-agent microsimulation 
focused on behavior definition and communication pro-
cesses of agents employing rules and protocols. The gen-
eration of changes in these behaviors and communica-
tion are defined by probabilistic distribution processes 
(Kammoun et al., 2014; Kickhöfer and Nagel, 2016; Mas- 
tio et al., 2018), but so far, no studies have been found in 
the literature that combines the individualization of these 
behaviors and changes within the communication processes, 
architectures, and agent types that characterize MAS.

3 Framework for integrating multi-agent system and 
microsimulation
To integrate the multi-agent system and the microsimula-
tion, it is necessary to transmit the different micro-changes 
that occur in the real-time operation of a system (Gómez-
Marín et al., 2020) and search for efficient responses to 
these changes. For successful integration of these two 
modeling methods, an architecture that allows communi-
cation between them is proposed. This architecture uses 
two agents to perform these functions. These agents send 
and receive messages with different micro changes and the 
system responds to them.

The proposed structure for integrating these two model-
ing tools is presented in Fig. 1. This framework is divided 
into two parallel modules. The first one – the microsim-
ulation module – simulates the real-time data, represent-
ing the analysis units by individual entities, with behav-
iors from statistical data and their interactions. It simulates 
different micro-changes occurring to customers and road 
segments' travel time during the simulation. The second 
module – the multi-agent system – replicates the entities as 
decision-making agents with resources, capabilities, objec-
tives, and intentions reacting to the received information. 
Furthermore, it shows the creation of the two communi-
cator agents that connect the two modules by sending and 
receiving data from entities and agents using a FIPA com-
munication protocol, one for the microsimulation and the 

Fig. 1 Architecture for integrating multi-agent system and microsimulation
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other for the MAS. These agents transfer the required infor-
mation to the different types of MAS agents and microsim-
ulation entities. Finally, the MAS optimizes the common 
objective, updates, and records in real-time the changes in 
the operating context, the response to those changes with 
the respective index, and broadcasts these actions to the 
microsimulation module as feedback information.

The microsimulation process uses customer and urban 
road network databases with information on the demand 
and travel times. It generates the micro-changes behaviors 
to simulate the daily operation of urban freight transport on 
customer demands and road segments' travel time. These 
micro-changes are related to demand changes (new orders, 
cancellation orders, quantity changes) and time changes 
(travel time changes, service time changes). Each micro 
change is communicated to the Microsim communicator 
agent. It considers each of them and sends them to the multi-
agent system using a Subscription protocol (FIPA,  2015) 
for the message interchange between the two agents.

To receive the different micro-changes, the MAS has 
a communicator agent. This agent establishes permanent 
communication with the Microsim communicator agent 
using the same FIPA Subscription protocol to settle the 
information and send it to the agents in the MAS. Fig. 2 
shows the Subscribe Protocol used to send inter-platform 
messages, and how the different events are received and 
reported. Each agent searches related micro-changes to 
identify the different types of messages, so each micro-
change informs one message and triggers behaviors in 
a cyclic, repetitive, or one-time frequency. Fig. 3 presents 
the communicator agent's behaviors. Both agents should 
subscribe to a communication process to send and receive 
inform messages from the microsimulation entities to 
multi-agent computational agents and vice versa. Each 
inform message contains the occurring change, the entity 
affected, and the characteristics of the change.

Once the microsimulation begins, these changes are 
generated as events from the dynamic environment in the 
system. The communicator agents broadcast and receive 
the messages, and the multi-agent system reacts with dif-
ferent behaviors for each micro-change. The MAS uses 
a FIPA Brokering protocol to send messages to the differ-
ent types of agents in the system. The agents perform their 
behaviors to optimize the distribution plans and send them 
back until the microsimulation module.

To implement the proposed integration framework, 
we  use two existing programming tools developed in 
Java. The microsimulation platform Jas-Mine allowed us 
to characterize each different behavior using distribution 
probabilities and interact with multiple events from an 
internal event generator engine. The platform Jade for the 
Multi-agent system allowed the creation of the different 
agent types with their behaviors and the use of the commu-
nications protocols. These platforms were chosen because 
of their available documentation and the academic com-
munities that use them.

4 Results and discussion
4.1 Architecture integration in urban freight transport
The microsimulation module starts the simulation by cre-
ating the customer and road segment entities according to 
the statistical data from the database. Depending on the 
instances, the number of initial customers varies. In this 
initialization, all agents (customers and vehicles) are gen-
erated in the MAS, including communicator agents. Once 
the simulation is running, this module generates micro-
changes using the Jasmine microsimulation engine.

Each time a micro-change appears, the Microsim com-
municator agent sends an inform message with the type 
of change to the MAS communicator agent. This agent 
searches for the receiver agent and sends the message. Fig. 2 Subscribe protocol between communicator agents of simulation 

platforms

Fig. 3 Communicator agent's behaviors
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Table 1 Cross-platform communication instances

Instance Description

B1-40-160 40 initial customers – 160 possible new customers

B2-50-150 50 initial customers – 150 possible new customers

B3-60-140 60 initial customers – 140 possible new customers

B4-70-130 70 initial customers – 130 possible new customers

B5-80-120 80 initial customers – 120 possible new customers

B6-90-110 90 initial customers – 110 possible new customers

B7-100-100 100 initial customers – 100 possible new customers

B8-110-90 110 initial customers – 90 possible new customers

B6-120-80 120 initial customers – 80 possible new customers

B7-130-70 130 initial customers – 70 possible new customers

B8-140-60 140 initial customers – 60 possible new customers

The  type of change triggers the behaviors in the MAS 
optimization searching for the best distribution plan that 
accomplishes the micro-change.

4.2 Benchmark instances generation
The operating context for the benchmark is the city of Med- 
ellín, Colombia. The authors use an Open Street Map API to 
obtain the road network distances and travel time. The sce-
narios have a homogeneous fleet of vehicles. An  individu-
alized probability distribution sets each customer's demand 
behaviors and possible travel and service time changes.

The following instances were generated based on the 
above features to test the multi-agent microsimulation 
integration process. Instance nomenclature identifies the 
number of total customers and the level of dynamism mea-
sured as the number of initially known customers and the 
number of potential new customers requesting a service. 
In all instances, the number of total customers is 200.

The initial Benchmark Instance (B1-40-160) has 
40  known customers, and the maximum number of 
new customers is 160. The number of initial customers 
changes with an increase of 10 customers per instance 
while reducing the number of potential new customers. 
Table 1 presents instances where the communication tests 
between the platforms take place.

4.3 Simulation results
Each instance was simulated 30 times for a total of 330 sim-
ulations. From these simulations, Throughput and Latency 
are calculated as the indicators of interest for integrating 
these simulation tools. Throughput determines the time 
a response to an event takes in the communication pro-
cesses between the agents. Latency measures the time 
delay between the occurrence of an event and the system's 
response to it.

Every time an event occurs in the urban freight trans-
port process, the Microsim communicator agent trans-
mits it, then the MAS communicator agent receives and 
processes it. When an event occurs, the procedure calcu-
lates the Throughput and Latency values; at the end of the 
30 runs, the average of these variables is calculated.

The authors decided to use throughput (message/mil-
lisecond) and latency (milliseconds) metrics to verify the 
impact on message transmission between MAS agents and 
the microsimulation engine. In the literature, other authors 
evaluated latency and throughput as metrics to show the 
impact of their proposals on a specific process e.g., comp- 
lex event processing (Dantas et al., 2020; Jang et al., 2020; 
Jayaram et al., 2013).

Thus, the expectation is that throughput decreases as the 
number of available clients increases. Likewise, an inverse 
behavior is expected from latency i.e., latency increases as 
the number of available clients also increases. Since the 
authors expect both metrics to behave this way, what is 
interesting is to know the trend of these metrics. This will 
let us know how fast throughput decreases and how fast 
latency grows concerning the number of available clients. 

When a simulation begins, the communicating agents 
of the two platforms send a message using a Subscribe 
Protocol (Fig. 2). With this protocol the communicator's 
agents interact with an event communicator agent that man-
ages the subscription to the communication process between 
both agents, Jade and Jas-Mine, this allows sharing of infor-
mation about each event in the simulation. Table 2 shows 
the Throughput and Latency data for each of the instances.

With the throughput and latency results from different 
simulation runs, a linear regression statistical analysis is 

Table 2 Mean throughput and latency in simulations

Instance

Throughput 
(message/millisecond) Latency (milliseconds)

Mean Standard 
deviation Mean Standard 

deviation

B1-40-160 0.01395 0.02729 0.02072 0.05879

B2-50-150 0.01420 0.02663 0.01271 0.02446

B3-60-140 0.01438 0.02770 0.02057 0.04445

B4-70-130 0.01264 0.02575 0.01665 0.03213

B5-80-120 0.01266 0.02443 0.02612 0.07226

B6-90-110 0.01422 0.02872 0.02517 0.07157

B7-100-100 0.01270 0.02435 0.02257 0.06820

B8-110-90 0.01274 0.02476 0.02440 0.06972

B6-120-80 0.01193 0.02223 0.02242 0.05223

B7-130-70 0.01124 0.01685 0.02851 0.05353

B8-140-60 0.01044 0.01492 0.02800 0.05151
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performed to identify how these values are explained based 
on the instance's number of initial customers. Figs. 4 and 5 
show the behavior of these two variables and their coefficient 
of determination of their linear regressions. The 72.97% of 
the throughput values can be predicted by the number of ini-
tial customers and possibly new customers entering the simu-
lation when sending requests to the urban distribution system.

In the case of latency, this coefficient of determina-
tion has a lower value. It assumes that latency can only 
be explained by 54.86% by the number of initial custom-
ers and possibly new customers. The metrics behave as 
expected: throughput decreases as the number of initial 
customers increases, while latency increases as the num-
ber of initial customers also increases.

Additionally, following the results of the linear regres-
sions, the throughput decreases with a negative slope of 
0.0613 (i.e., for each new customer considered in the micro-
simulation, the throughput is expected to reduce by 0.0613 
messages/milliseconds), having a confidence of 72.97%. 
Similarly, latency increases with a slope of 0.00011 (i.e., for 
each new client considered, latency is expected to grow by 
0.00011 milliseconds), with a confidence of 54.86%.

For the first approximation to this kind of integra-
tion, the goodness of fit of these two regressions could be 
a good initial result. The other 45.14% in latency and the 
27.3% in throughput of the results could be justified by 
the types of changes in the dynamic context. Each type of 
change could affect these differently, in this case, latency 
is affected more than throughput.

5 Conclusions
A multi-agent system and microsimulation integration 
takes advantage of large data amounts from the urban 
freight transport actors and operations, sharing this infor-
mation to achieve the higher overall performance of the 
urban supply chain and the principles of autonomy from 
each actor, responding to an operational context with dif-
ferent dynamic scenarios.

The proposed integration framework produces a satis-
factory communication process between multi-agent sys-
tems and microsimulation as modeling methods. The inte-
gration is measured by throughput for the capacity to share 
different micro-changes and latency for the time that the 
system takes to react to the shared events. The integration 
allows reacting appropriately regardless of the number of 
requests due to dynamic context conditions. The appli-
cation of this integration to urban freight transport was 
successfully implemented showing it is possible to apply 
in a dynamic context. These conditions make it possible 
to characterize this integration framework for its robust 
results in the different responses to dynamic scenarios and 
the possibility to react to the different changes while it also 
searches for optimum solutions. In future research, it is 
possible to extend the integration to another dynamic con-
text in a different context.

Fig. 4 Throughput results

Fig. 5 Latency results
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