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Abstract

This paper presents the design of an active suspension control

system for an unmanned ground vehicle (UGV). The purpose is

to design an active suspension control for a low-speed (less than

1 m/s) off-road UGV in order to be able to move through rugged

terrain with the least pitch and roll motion. Classical active

suspension design methods cannot be used for minimizing pitch

and roll angles, therefore a new approach is applied. The con-

trol design is based on the LQG method. The control system uses

only pitch and roll angular rate signals, which ensures a simple

and cheap control system, but any bias error on the gyro sig-

nals cause some problems in reconstructing angles. The control

algorithm consists of an optimal state-feedback fed by an aug-

mented observer for estimating the states and the bias error of

the gyro sensors. The appropriate tuning of the observer is intro-

duced, which eliminates the bias error problem and ensures the

fast reconstruction of the states for the optimal state-feedback.

In simulations, the active suspension control system shows high

performance at minimizing pitch and roll angles.
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1 Introduction

Interest in unmanned ground vehicles (UGVs) has been

steadily growing. UGVs are spreading in search-and-rescue and

military applications as well as in civil or research projects. The

intensive development of electrical and digital computing sci-

ences has produced high-performance, reliable and cheap de-

vices, which enable the implementation of complex control sys-

tems for autonomous vehicles. UGVs, however, pose numerous

control problems, see e.g. [2, 10]

One of the main parts of the autonomous vehicle is the ac-

tive suspension system because it predetermines the motions of

the vehicle body. This paper summarizes the design process of

an active suspension control system for a low-speed (less than

1 m/s) UGV. Several methods have been proposed to solve the

automotive active suspension problem, [1, 4, 6, 8]. Automotive

active suspension control systems focus on road-holding, com-

fort and stability during manoeuvres. In contrast, a robotic off-

road vehicle can move slowly, the excitation is rugged terrain

instead of a road, and comfort is unimportant. The objective of

the active suspension control of this UGV is to keep the pitch

and roll angles of the chassis in the neighbourhood of zero, i.e.,

to minimize the absolute of these angles. Keeping the vehicle

body in horizontal position is a relevant factor in case of a very

rough terrain, or when carrying a casualty or dangerous mate-

rial. Measuring pitch and roll angles could be ideal for control

system but direct angle measurement during travel is compli-

cated or requires expensive sensors. Classical methods of active

suspension control design cannot be used for minimizing pitch

and roll angles. Therefore a new approach is applied.

The base of this robotic vehicle is a commercial small-scale

vehicle because it contains the main mechanical parts. Four

hobby servo motors are applied for actuating the four individual

suspensions. A full-car vehicle model and the LQG method are

used for control design. The control system uses pitch and roll

rate signals measured by a six-degree-of-freedom inertial sen-

sor unit with three accelerometers and three gyro sensors. Us-

ing only angular rate sensors is a simple and cheap solution but

poses some problems. On the one hand, it is necessary to recon-

struct the states for the optimal state-feedback with an observer.
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On the other hand, due to a kind of integration operation at the

reconstruction of the angle states from angular rates, any bias

error on the angular rate signals causes an endless increase (or

decrease) on the observed angle states. Therefore the observer

has to estimate sensor bias errors as well. The parameters of the

control algorithm have been tuned by MATLAB/Simulink sim-

ulations. These simulations show that the problem of the bias

errors can be eliminated, furthermore the active suspension ve-

hicle is able to move with much less pitch and roll motion than

the similar but passive suspension vehicle.

The structure of the paper is as follows. Section 2 introduces

the system model, then Section 3 details the control design pro-

cess considering the implementation problems. The results of

the simulations are discussed in Section 4.

2 System model and dynamics

The goal of the control design is to reduce the pitch and the

roll motion of the UGV chassis with using only pitch and roll

rate sensors. For handling these motions a full-vehicle model

is required. The base of the UGV has four mechanically in-

dependent suspensions. The vehicle has to be able to move

through rugged terrain, thus the suspension system must en-

able high suspension deflection. Therefore the concept is that

servo motor actuator joins serial with the original spring-damper

part, that means servo is able to actuate the upper joint of the

spring-damper element. This concept is advantageous because a

high wheel displacement can be continuously ensured with low

power consumption, in contrast to such systems, in which actu-

ators and passive elements are parallel. Using passive elements

are necessary for ensuring correct wheel-ground contact in case

of high frequency excitation or even actuator failure. This con-

cept is detailed in [9].

to a kind of integration operation at the reconstruction

of the angle states from angular rates, any bias error

on the angular rate signals causes an endless increase

(or decrease) on the observed angle states. Therefore

the observer has to estimate sensor bias errors as well.

The parameters of the control algorithm have been tuned

by MATLAB/Simulink simulations. These simulations

show that the problem of the bias errors can be elimi-

nated, furthermore the active suspension vehicle is able

to move with much less pitch and roll motion than the

similar but passive suspension vehicle.

The structure of the paper is as follows. Section 2

introduces the system model, then Section 3 details the

control design process considering the implementation

problems. The results of the simulations are discussed

in Section 4.

2 System model and dynamics

The goal of the control design is to reduce the pitch and

the roll motion of the UGV chassis with using only pitch

and roll rate sensors. For handling these motions a full-

vehicle model is required. The base of the UGV has four

mechanically independent suspensions. The vehicle has

to be able to move through rugged terrain, thus the sus-

pension system must enable high suspension de�ection.

Therefore the concept is that servo motor actuator joins

serial with the original spring-damper part, that means

servo is able to actuate the upper joint of the spring-

damper element. This concept is advantageous because

a high wheel displacement can be continuously ensured

with low power consumption, in contrast to such sys-

tems, in which actuators and passive elements are par-

allel. Using passive elements are necessary for ensuring

correct wheel-ground contact in case of high frequency

excitation or even actuator failure. This concept is de-

tailed in [9].

A control-oriented system model is built for control

design. The model is shown in Figure 1. The full-vehicle

suspension system is represented as a linearised three-

degree-of-freedom (DOF) system. The sprung mass

(with mass m and moment of inertia around x-axis and

y-axis Jx and Jy) is free to heave (z), pitch (θ) and roll

(ϕ). For simplicity, tires are neglected because it is as-

sumed that wheels are able to track the surface with

negligible vibration at low speed. Therefore the ter-

rain excitation (wfr, wfl, wrr, wrl) is transmitted to

the sprung mass by the spring-damper parts and the

actuators. The passive elements are modelled as linear

viscous dampers (with damping coe�cients kf and kr)
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Figure 1: Model of full-vehicle system

and linear springs (with sti�ness sf and sr). Each actu-

ator realizes a de�ned displacement (dfr, dfl, drr, drl)

between the corner of the sprung mass and the upper

joint of the spring-damper element. Center of Gravity

(CoG) co-ordinate system is used for motion equations;

the concept of [7] is followed. The origin is at the vehi-

cle center-of-gravity and the co-ordinate system moves

with the vehicle during travel. Trigonometric relation-

ship, between the body corner displacements (zfr, zfl,

zrr, zrl) and the heave (z), pitch (θ) and roll (ϕ) motions

of the sprung mass can be linearised because the control

system keeps the pitch and roll angles in the neighbour-

hood of zero.

The matrix equation of the motions are

Mq̈ = Kq̇ + Sq +Bkẇ +Bsw +Bkḋ+Bsd (1)

where the vector variables are

q =

zθ
ϕ

 , w =


wfr

wfl

wrr

wrl

 , d =


dfr
dfl
drr
drl


and the constant matrices are

K =

−2(kf + kr) 2(kfa− krb) 0

2(kfa− krb) −2(kfa
2 + krb

2) 0

0 0 −2l2(kf + kr)



S =

−2(sf + sr) 2(sfa− srb) 0

2(sfa− srb) −2(sfa
2 + srb

2) 0

0 0 −2l2(sf + sr)



M =

m 0 0

0 Jy 0

0 0 Jx

 , Bk =

 kf kf kr kr
−akf −akf bkr bkr
−lkf lkf −lkr lkr


2
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A control-oriented system model is built for control design.

The model is shown in Fig. 1. The full-vehicle suspension

system is represented as a linearised three-degree-of-freedom

(DOF) system. The sprung mass (with mass m and moment

of inertia around x-axis and y-axis Jx and Jy) is free to heave

(z), pitch (θ) and roll (φ). For simplicity, tires are neglected be-

cause it is assumed that wheels are able to track the surface with

negligible vibration at low speed. Therefore the terrain excita-

tion (w f r, w f l, wrr, wrl) is transmitted to the sprung mass by the

spring-damper parts and the actuators. The passive elements are

modelled as linear viscous dampers (with damping coefficients

k f and kr) and linear springs (with stiffness s f and sr). Each

actuator realizes a defined displacement (d f r, d f l, drr, drl) be-

tween the corner of the sprung mass and the upper joint of the

spring-damper element. Center of Gravity (CoG) co-ordinate

system is used for motion equations; the concept of [7] is fol-

lowed. The origin is at the vehicle center-of-gravity and the co-

ordinate system moves with the vehicle during travel. Trigono-

metric relationship, between the body corner displacements (z f r,

z f l, zrr, zrl) and the heave (z), pitch (θ) and roll (φ) motions of the

sprung mass can be linearised because the control system keeps

the pitch and roll angles in the neighbourhood of zero.

The matrix equation of the motions are

Mq̈ = Kq̇ + S q + Bkẇ + Bsw + Bkḋ + Bsd (1)

where the vector variables are
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
and the constant matrices are

K =


−2(k f + kr) 2(k f a − krb) 0

2(k f a − krb) −2(k f a
2 + krb

2) 0

0 0 −2l2(k f + kr)


S =


−2(s f + sr) 2(s f a − srb) 0

2(s f a − srb) −2(s f a
2 + srb

2) 0

0 0 −2l2(s f + sr)


M =


m 0 0

0 Jy 0

0 0 Jx

 , Bk =


k f k f kr kr

−ak f −ak f bkr bkr

−lk f lk f −lkr lkr


Bs =


s f s f sr sr

−as f −as f bsr bsr

−ls f ls f −lsr lsr

 .
The actuator (servo motor) also has dynamics which cause

some delay at the realization of the control input signals. The

installed commercial servo motors include control systems. An

abstract model of the complete servo actuator is a system which

has an input of the reference position and an output of the ac-

tual position. A first-order linear system model is applied in this
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control-oriented model because it is simple but accurate enough

to describe the main characters of the actuator. Therefore, actu-

ator dynamics is modelled with the following differential equa-

tion

ḋi = −
1

Td

di +
Ad

Td

ui (2)

where ui denotes one of the control input signal and the corre-

sponding actuator state is denoted by di; the indexes i can be f r,

f l, rr or rl. Td and Ad are the time and amplification constants.

The state of the unsprung mass can be described by the three

position (angle) and three velocity (angular rate) coordinates:

heave, pitch, roll positions and the corresponding derivatives.

Due to the dynamics of the actuators, these states must be aug-

mented by the four actuator positions for describing the complex

system. The system equation in state-space representation is

ẋ = Ax + Bu + B1ẇ + B2w (3)

where the state vector is

x =
[
ż θ̇ φ̇ z θ φ d f r d f l drr drl

]T
and the input vector is

u =
[
u f r u f l urr url

]T
.

The constant matrices are (where I and O denote the appropriate

size unit and zero matrix blocks)

A =


M−1K M−1S M−1Bk(− 1

T
)I + M−1Bs

I3×3 O3×3 O3×4

O4×3 O4×3 (− 1
T

)I4×4


B =


M−1Bk( A

T
)I

O3×4

( A
T

)I4×4

 , B1 =

M−1Bk

O7×4

 , B2 =

M−1Bs

O7×4


3 Design of output-feedback controller

The control algorithm consists of an optimal state feedback

and an optimal observer. According to the separation principle,

the optimal state feedback and the observer are designed inde-

pendently. Classical output feedback structure is followed (see

Fig. 2), i.e., an optimal observer reconstructs the states denoted

by x, and the estimated state vector xk feeds into an optimal con-

troller (−K feedback).
Bs =

 sf sf sr sr
−asf −asf bsr bsr
−lsf lsf −lsr lsr

 .

The actuator (servo motor) also has dynamics which

cause some delay at the realization of the control in-

put signals. The installed commercial servo motors in-

clude control systems. An abstract model of the com-

plete servo actuator is a system which has an input of

the reference position and an output of the actual posi-

tion. A �rst-order linear system model is applied in this

control-oriented model because it is simple but accurate

enough to describe the main characters of the actuator.

Therefore, actuator dynamics is modelled with the fol-

lowing di�erential equation

ḋi = − 1

Td
di +

Ad

Td
ui (2)

where ui denotes one of the control input signal and

the corresponding actuator state is denoted by di; the

indexes i can be fr, fl, rr or rl. Td and Ad are the time

and ampli�cation constants. The state of the unsprung

mass can be described by the three position (angle) and

three velocity (angular rate) coordinates: heave, pitch,

roll positions and the corresponding derivatives. Due

to the dynamics of the actuators, these states must be

augmented by the four actuator positions for describing

the complex system. The system equation in state-space

representation is

ẋ = Ax+Bu+B1ẇ +B2w (3)

where the state vector is

x =
[
ż θ̇ ϕ̇ z θ ϕ dfr dfl drr drl

]T
and the input vector is

u =
[
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.
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appropriate size unit and zero matrix blocks)
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A
T )I

O3×4

(AT )I4×4

 , B1 =

[
M−1Bk

O7×4

]
, B2 =

[
M−1Bs

O7×4

]

3 Design of output-feedback con-

troller

The control algorithm consists of an optimal state feed-

back and an optimal observer. According to the sepa-

ration principle, the optimal state feedback and the ob-

server are designed independently. Classical output feed-

back structure is followed (see Figure 2), i.e., an optimal

observer reconstructs the states denoted by x, and the

estimated state vector xk feeds into an optimal controller

(−K feedback).

Figure 2: Structure of the output-feedback system

The objective of the control is to minimize the pitch

and the roll angles of the UGV chassis. The optimal state

feedback is calculated by the linear quadratic method.

Therefore the following objective function has to be min-

imized:

J =

∫ ∞

0

{qθθ2+qϕϕ
2+rufr+rufl+rurr+rurl} dt (4)

where qθ and qϕ are the weights corresponding to θ and θ

angles (states), and r is the weight of the control signals,

respectively. The weight factors has been tuned by sim-

ulations. The optimal feedback gain vector is calculated

by the lqr MATLAB function.

All the states are not measurable so that an observer

is required. Another problem is that pitch and roll an-

gles are not measurable directly but only pitch and roll

rates. Thus the observer does a kind of integral opera-

tion to calculate the angles from the measured angular

rates. Unfortunately real gyro sensors have some noises

and a temperature-dependent bias error which causes an

endless increase (or decrease) of the angle states because

of the integrator e�ect. To eliminate this problem, the

observer has to estimate the sensor bias errors besides re-

constructing the states from the measured signals. For

this, the state vector is augmented by the two bias errors

of the pitch and roll rate sensors: x′ =
[
xT bθ bϕ

]T
.

The equation of the augmented system is (without the

terrain excitation)

ẋ′ =

[
A 0

0 0

]
x′ +

[
B

0

]
u (5)

Pitch and roll angular rates and the four actuator states

are measured for reconstructing the states of the vehicle.

Therefore the output vector is

y =
[
θ̇ ϕ̇ dfr dfl drr drl

]T
The observation equation is

y = Cx+ b =

[
C

I2×2

O4×2

]
x′ (6)

3

Fig. 2. Structure of the output-feedback system

The objective of the control is to minimize the pitch and the

roll angles of the UGV chassis. The optimal state feedback is

calculated by the linear quadratic method. Therefore the follow-

ing objective function has to be minimized:

J =

∫ ∞
0

{qθθ
2 + qφφ

2 + ru f r + ru f l + rurr + rurl} dt (4)

where qθ and qφ are the weights corresponding to θ and θ angles

(states), and r is the weight of the control signals, respectively.

The weight factors has been tuned by simulations. The optimal

feedback gain vector is calculated by the lqr MATLAB function.

All the states are not measurable so that an observer is re-

quired. Another problem is that pitch and roll angles are not

measurable directly but only pitch and roll rates. Thus the ob-

server does a kind of integral operation to calculate the angles

from the measured angular rates. Unfortunately real gyro sen-

sors have some noises and a temperature-dependent bias error

which causes an endless increase (or decrease) of the angle

states because of the integrator effect. To eliminate this prob-

lem, the observer has to estimate the sensor bias errors besides

reconstructing the states from the measured signals. For this,

the state vector is augmented by the two bias errors of the pitch

and roll rate sensors: x′ =
[
xT bθ bφ

]T
. The equation of the

augmented system is (without the terrain excitation)

ẋ′ =

A 0

0 0

 x′ +

B
0

 u (5)

Pitch and roll angular rates and the four actuator states are mea-

sured for reconstructing the states of the vehicle. Therefore the

output vector is

y =
[
θ̇ φ̇ d f r d f l drr drl

]T
The observation equation is

y = Cx + b =

C I2×2

O4×2

 x′ (6)

where b =
[
bθ bφ 0 0 0 0

]T
and the constant matrix C

is

C =


0 1 0 0 0 0

0 0 1 0 0 0
O2×4

04×6 I4×6

 .
The optimal feedback of the output error is calculated by the

linear quadratic method, using the dual pair of the system de-

fined by Eqs. 5 and 6. The aim is to reconstruct the states as

fast as possible and estimate the bias errors with slow dynam-

ics. Slow dynamics is necessary to keep the performance of the

optimal state-feedback in case of higher frequencies (up to 1-

2 Hz), otherwise all the terrain excitation are observed as bias

error. The objective function is

J =

∫ ∞
0

(x(t)T QOx(t) + u(t)T ROu(t)) dt (7)
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where the weight matrices are supposed as

QO = 〈q1 q1 q1 q2 q2 q2 q3 q3 q3 q3 q4 q5〉 and

RO = 〈r1 r1 r1 r1 r1 r1〉 diagonal matrices. These weights have

been tuned by simulations. It is found these assortment of the

weight factors simplified the tuning of the observer, without

reducing its performance.

4 Simulation results

Simulations are used for tuning the state-feedback and the ob-

server as well as analysing the controlled system. Implementa-

tion of the control system on the small-scale car is considered

during the design process and simulations. The measured and

identified parameters (see Table 1) of the developing UGV are

used in simulations.

Tab. 1. Measured and identified parameters of the UGV

Parameter Value

Mass (m) 1.868 kg

Inertia around y-axis (Jy) 0.02581650 kgm2

Inertia around x-axis (Jx) 0.01072268 kgm2

Front spring stiffness (s f ) 247 N/m

Rear spring stiffness (sr) 134 N/m

Front damping coeff. (k f ) 12 Ns/m

Rear damping coeff. (kr) 15 Ns/m

Half wheelbase (l) 0.104 m

Distance from CoG to Front axle (a) 0.153 m

Distance from CoG to Rear axle (b) 0.121 m

Time const. of actuator model (Td) 0.1254 s

Amp. const. of actuator model (Ad) 1

First an appropriate state-feedback is determined, assuming

that all the states are measurable. Fig. 3 shows the case when the

front right wheel of the system is excited with a bump. The body

of the active suspension vehicle has a slight pitch and roll angles

during the bump excitation (solid lines) in contrast to the passive

vehicle (dashed lines) which has the same passive elements. The

actuators stay in their working range during this example.

The next step is to tune the observer for reconstructing the

states as fast as possible. The most important states are the

pitch and the roll angles because they have the major weights

in the LQ criteria of the state-feedback. Fig. 4 shows the real

(dashed lines) and the observed pitch and roll states (solid lines)

in case of the previous bump excitation at the front right wheel

(see Fig. 3/a). The diagrams of Fig. 4/a show the case where

state-feedback is not applied, and output-feedback is shown by

the diagrams of Fig. 4/b. The difference between the real and

the observed states is negligible small in both cases (it is insen-

sible in these figures), thus working of the observer is accept-

able. The output-feedback system ensures a slight pitch and roll

angles during bump test, similar to the state-feedback system.

The problem is this observer works with only ideal sensors.

Without any reference angle value (angle measuring is compli-

cated and it requires expensive sensors), angle states have a con-

tinuous increase (or decrease) in case of any bias error on the

where b =
[
bθ bϕ 0 0 0 0

]T
and the constant ma-

trix C is

C =

 0 1 0 0 0 0

0 0 1 0 0 0
O2×4

04×6 I4×6

 .

The optimal feedback of the output error is calculated

by the linear quadratic method, using the dual pair of

the system de�ned by Equation 5 and 6. The aim is to

reconstruct the states as fast as possible and estimate

the bias errors with slow dynamics. Slow dynamics is

necessary to keep the performance of the optimal state-

feedback in case of higher frequencies (up to 1-2 Hz),

otherwise all the terrain excitation are observed as bias

error. The objective function is

J =

∫ ∞

0

(x(t)TQOx(t) + u(t)TROu(t)) dt (7)

where the weight matrices are supposed as

QO = ⟨q1 q1 q1 q2 q2 q2 q3 q3 q3 q3 q4 q5⟩ and

RO = ⟨r1 r1 r1 r1 r1 r1⟩ diagonal matrices. These

weights have been tuned by simulations. It is found these

assortment of the weight factors simpli�ed the tuning of

the observer, without reducing its performance.

4 Simulation results

Simulations are used for tuning the state-feedback and

the observer as well as analysing the controlled system.

Implementation of the control system on the small-scale

car is considered during the design process and simu-

lations. The measured and identi�ed parameters (see

Table 1) of the developing UGV are used in simulations.

Table 1: Measured and identi�ed parameters of the UGV

Parameter Value

Mass (m) 1.868 kg

Inertia around y-axis (Jy) 0.02581650 kgm2

Inertia around x-axis (Jx) 0.01072268 kgm2

Front spring sti�ness (sf ) 247 N/m

Rear spring sti�ness (sr) 134 N/m

Front damping coe�. (kf ) 12 Ns/m

Rear damping coe�. (kr) 15 Ns/m

Half wheelbase (l) 0.104 m

Distance from CoG to Front axle (a) 0.153 m

Distance from CoG to Rear axle (b) 0.121 m

Time const. of actuator model (Td) 0.1254 s

Amp. const. of actuator model (Ad) 1

First an appropriate state-feedback is determined, as-

suming that all the states are measurable. Figure 3

shows the case when the front right wheel of the sys-

tem is excited with a bump. The body of the active
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(b) Pitch and roll angle states

Figure 3: Response of state-feeback system to bump ex-

citation; weights are: qθ = 104, qϕ = 104 and r = 102

suspension vehicle has a slight pitch and roll angles dur-

ing the bump excitation (solid lines) in contrast to the

passive vehicle (dashed lines) which has the same pas-

sive elements. The actuators stay in their working range

during this example.

The next step is to tune the observer for reconstructing

the states as fast as possible. The most important states

are the pitch and the roll angles because they have the

major weights in the LQ criteria of the state-feedback.

Figure 4 shows the real (dashed lines) and the observed

pitch and roll states (solid lines) in case of the previous

bump excitation at the front right wheel (see Figure 3/a).

The diagrams of Figure 4/a show the case where state-

feedback is not applied, and output-feedback is shown by

the diagrams of Figure 4/b. The di�erence between the

real and the observed states is negligible small in both

cases (it is insensible in these �gures), thus working of

the observer is acceptable. The output-feedback system

ensures a slight pitch and roll angles during bump test,

similar to the state-feedback system.

The problem is this observer works with only ideal

sensors. Without any reference angle value (angle mea-

suring is complicated and it requires expensive sensors),

angle states have a continuous increase (or decrease) in

case of any bias error on the angular rate signals because

of the integrator e�ect. For eliminating this problem,

the observer is tuned to slow dynamics for bias error

estimation. Slow dynamics ensures to keep acceptable

performance while stopping the increase of the ampli-

4

Fig. 3. Response of state-feeback system to bump excitation; weights are:

qθ = 104, qφ = 104 and r = 102

angular rate signals because of the integrator effect. For elimi-

nating this problem, the observer is tuned to slow dynamics for

bias error estimation. Slow dynamics ensures to keep acceptable

performance while stopping the increase of the amplitude of the

angle states. Fig. 5/a shows the previous bump test (excitation

is shown in Fig. 3/a) with simulated bias errors on the sensor

signals. (These errors are greater than the real sensor bias er-

rors in order to emphasize the problem.) The dotted line marks

the pitch and roll states of the passive vehicle. The dashed line is

for the system with an observer, which does not estimate the bias

errors. In this case the amplitude of the angle states are contin-

uously increasing but the state-feedback compensates well the

bump at the first section of the test. The solid line shows the

output-feedback controlled system where the observer is tuned

to fast reconstruction of the states and slow dynamics for the

sensor bias error estimation. The performance of this system is

lower than the simple observer’s, but much higher than the pas-

sive system’s. In case of steady state excitations the observer

recognises that as bias errors. Higher frequency components

(e.g. the edges of the bump) are compensated in contrast to the

passive vehicle.

The working of this observer can be examined in Fig. 5/b. The

amplitude of the observed pitch state (solid line in the first dia-

gram) is lower than the real state (dotted line) because observer

recognises a part of the excitation as bias error. The estimated

bias error (solid line) is shown in the second diagram; the dotted

line represents the simulated sensor bias error. The estimated
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(a) Reconstruction of states without any control feedback
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(b) Reconstruction of states with output-feedback

Figure 4: Working of observer with low weights for sen-

sor bias errors; weights of observer are: q1 = 109, q2 = 0,

q3 = 0, q4 = q5 = 10−15 and r1 = 10−5

tude of the angle states. Figure 5/a shows the previous

bump test (excitation is shown in Figure 3/a) with simu-

lated bias errors on the sensor signals. (These errors are

greater than the real sensor bias errors in order to em-

phasize the problem.) The dotted line marks the pitch

and roll states of the passive vehicle. The dashed line is

for the system with an observer, which does not estimate

the bias errors. In this case the amplitude of the angle

states are continuously increasing but the state-feedback

compensates well the bump at the �rst section of the test.

The solid line shows the output-feedback controlled sys-

tem where the observer is tuned to fast reconstruction of

the states and slow dynamics for the sensor bias error es-

timation. The performance of this system is lower than

the simple observer's, but much higher than the passive

system's. In case of steady state excitations the observer

recognises that as bias errors. Higher frequency compo-

nents (e.g. the edges of the bump) are compensated in

contrast to the passive vehicle.

The working of this observer can be examined in Fig-

ure 5/b. The amplitude of the observed pitch state (solid

line in the �rst diagram) is lower than the real state (dot-
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Figure 5: Bump test with simulated sensor bias errors;

weights of bias errors are: q4 = 1 and q5 = 10−2

ted line) because observer recognises a part of the excita-

tion as bias error. The estimated bias error (solid line) is

shown in the second diagram; the dotted line represents

the simulated sensor bias error. The estimated error con-

verges to the actual error in steady state. This example

shows only the pitch dynamics but the roll dynamics is

similar. In case of a step function excitation (non-zero

steady state), the vehicle adapts slowly to the terrain by

observing excitation as bias error. This problem cannot

be eliminated without any reference angle measurement.

The strength of this control system is that it is able

to keep the angle states in the neighbourhood of zero

with only gyro sensors, in case of a zero mean oscillating

terrain excitation. Figure 6 shows a test case where the

terrain excitations are zero mean oscillating signals. A

modi�ed Hac road model is used for modelling the ter-

rain pro�le, [3, 5]. Simulation shows that the objective

of the control system is performed: the pitch and roll

states are minimized and the e�ects of the sensor bias

errors are eliminated.

5

Fig. 4. Working of observer with low weights for sensor bias errors; weights

of observer are: q1 = 109, q2 = 0, q3 = 0, q4 = q5 = 10−15 and r1 = 10−5

error converges to the actual error in steady state. This example

shows only the pitch dynamics but the roll dynamics is simi-

lar. In case of a step function excitation (non-zero steady state),

the vehicle adapts slowly to the terrain by observing excitation

as bias error. This problem cannot be eliminated without any

reference angle measurement.

The strength of this control system is that it is able to keep

the angle states in the neighbourhood of zero with only gyro

sensors, in case of a zero mean oscillating terrain excitation.

Fig. 6 shows a test case where the terrain excitations are zero

mean oscillating signals. A modified Hac road model is used

for modelling the terrain profile, [3, 5]. Simulation shows that

the objective of the control system is performed: the pitch and

roll states are minimized and the effects of the sensor bias errors

are eliminated.
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(a) Reconstruction of states without any control feedback
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(b) Reconstruction of states with output-feedback

Figure 4: Working of observer with low weights for sen-

sor bias errors; weights of observer are: q1 = 109, q2 = 0,

q3 = 0, q4 = q5 = 10−15 and r1 = 10−5

tude of the angle states. Figure 5/a shows the previous

bump test (excitation is shown in Figure 3/a) with simu-

lated bias errors on the sensor signals. (These errors are

greater than the real sensor bias errors in order to em-

phasize the problem.) The dotted line marks the pitch

and roll states of the passive vehicle. The dashed line is

for the system with an observer, which does not estimate

the bias errors. In this case the amplitude of the angle

states are continuously increasing but the state-feedback

compensates well the bump at the �rst section of the test.

The solid line shows the output-feedback controlled sys-

tem where the observer is tuned to fast reconstruction of

the states and slow dynamics for the sensor bias error es-

timation. The performance of this system is lower than

the simple observer's, but much higher than the passive

system's. In case of steady state excitations the observer

recognises that as bias errors. Higher frequency compo-

nents (e.g. the edges of the bump) are compensated in

contrast to the passive vehicle.

The working of this observer can be examined in Fig-

ure 5/b. The amplitude of the observed pitch state (solid

line in the �rst diagram) is lower than the real state (dot-
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Figure 5: Bump test with simulated sensor bias errors;

weights of bias errors are: q4 = 1 and q5 = 10−2

ted line) because observer recognises a part of the excita-

tion as bias error. The estimated bias error (solid line) is

shown in the second diagram; the dotted line represents

the simulated sensor bias error. The estimated error con-

verges to the actual error in steady state. This example

shows only the pitch dynamics but the roll dynamics is

similar. In case of a step function excitation (non-zero

steady state), the vehicle adapts slowly to the terrain by

observing excitation as bias error. This problem cannot

be eliminated without any reference angle measurement.

The strength of this control system is that it is able

to keep the angle states in the neighbourhood of zero

with only gyro sensors, in case of a zero mean oscillating

terrain excitation. Figure 6 shows a test case where the

terrain excitations are zero mean oscillating signals. A

modi�ed Hac road model is used for modelling the ter-

rain pro�le, [3, 5]. Simulation shows that the objective

of the control system is performed: the pitch and roll

states are minimized and the e�ects of the sensor bias

errors are eliminated.

5

Fig. 5. Bump test with simulated sensor bias errors; weights of bias errors

are: q4 = 1 and q5 = 10−2

5 Conclusion

This paper presents the design of an active suspension con-

trol system for an UGV. The vehicle is modelled by a three-

dimensional linearised full-car model for control design. The

control algorithm consists of an optimal state-feedback and an

optimal observer calculated by the linear quadratic method. The

objective of the control system is to minimize the pitch and the

roll angles of the vehicle with only two angular rate sensors. The

observer does a kind of integration operation for reconstructing

the angle states, which cause endless increase of the observed

angles. This problem is eliminated by augmenting the observer

with the two bias error states. An appropriate tuning of the ob-

server is introduced, which ensures acceptable performance and

eliminates the problem of the sensor bias errors. Simulations

show that the active suspension vehicle has slight pitch and roll

amplitudes during moving through rugged terrain, in contrast to

the similar but passive vehicle.
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Figure 6: Comparison of active and passive systems,

with a zero mean oscillating excitation (rugged terrain)

5 Conclusion

This paper presents the design of an active suspension

control system for an UGV. The vehicle is modelled by

a three-dimensional linearised full-car model for control

design. The control algorithm consists of an optimal

state-feedback and an optimal observer calculated by

the linear quadratic method. The objective of the con-

trol system is to minimize the pitch and the roll angles

of the vehicle with only two angular rate sensors. The

observer does a kind of integration operation for recon-

structing the angle states, which cause endless increase of

the observed angles. This problem is eliminated by aug-

menting the observer with the two bias error states. An

appropriate tuning of the observer is introduced, which

ensures acceptable performance and eliminates the prob-

lem of the sensor bias errors. Simulations show that the

active suspension vehicle has slight pitch and roll ampli-

tudes during moving through rugged terrain, in contrast

to the similar but passive vehicle.
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