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Abstract

Traffic sign classification is indispensable for road traffic systems, including automated ones. There is a fundamental difference 

in the visual appearance of traffic signs from one country to another. Each dataset has its design standards and regulations based 

on shape, color, and information content, making implementing classification and recognition techniques more difficult. This paper 

aims to assess the influence of traffic sign diversity on autonomous vehicles (AVs) by reviewing several previous studies, comparing, 

summarizing their results, and focusing on classifying and detecting traffic sign datasets based on color, shape, and deep learning 

spaces using various methods and applications. Furthermore, it covers the main challenges facing road designers and planners 

considering changes to road safety infrastructure. It will be argued that compiling and standardizing a comprehensive global database 

of traffic signs is very difficult because it is costly and complex in application. However, it is still one of the possible solutions for the 

coming decades. Recommendations for future developments are also presented in this study.
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1 Introduction
Traffic signs are visual engineering equipment located 
above or on the side of the roadways to communicate with 
road users. They are usually designed with excellent opti-
cal characteristics; accordingly, drivers can quickly notice 
and identify them. In addition, they are also one of the 
most critical elements of modern road infrastructure, 
serving to control traffic and provide guidance to driv-
ers on road conditions to improve road safety and nav-
igation (Almutairy et al., 2021; Ben-Bassat et al., 2019; 
Chen et al., 2022). The consistency and standardization 
of traffic signs became critical to the safe and efficient 
transport of all types of road users with the onset of the 
automobile industry (Almutairy et al., 2021). Nowadays, 
many different traffic sign datasets exist worldwide, such 
as European and USA traffic sign datasets. Rapid eco-
nomic growth and technology have led to an increase in 
the use of vehicles, especially in developing countries, 
and with the advent of autonomous driving systems tech-
nology that can assist or even independently complement 

the process of moving vehicles, the importance of identi-
fying and classifying traffic signs to improve road safety 
has increased. However, until now, it has been difficult for 
Advanced Driver Assistance Systems (ADAS) to classify 
them successfully due to their wide variety today (Gámez 
Serna and Ruichek, 2018).

This investigation aims to study the effects of traffic sign 
diversity on self-driving vehicles by reviewing several pre-
vious studies, comparing, summarizing their results, and 
evaluating their reach and limitations. An additional aim 
is to introduce the latest deep learning techniques from 
convolutional neural networks (CNNs) and their ability to 
identify, recognize and classify these signs. This also cov-
ers the main challenges facing road designers and plan-
ners considering changes to the road safety infrastructure. 
However, compiling and standardizing a comprehensive 
global database of traffic signs and imposing them on the 
countries of the world is problematic because it is uneco-
nomic and challenging in terms of operation; nonetheless, 
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it is one of the possible solutions for the coming decades. 
The architecture of this paper has been divided into four 
parts. The first part investigates the importance of traffic 
signs for autonomous vehicles. The second part deals with 
classifying traffic signs, while the third presents traffic 
signs' variety, detecting methods, and design challenges 
in sections four and five, respectively.

2 Traffic signs for AVs
Traffic signs are imperative for road traffic systems, includ-
ing automated driving systems. It is a means of visual com-
munication with road users, controlling traffic, and improv-
ing road safety (Ben-Bassat et al., 2019; Magnussen et al., 
2020). These signs support suitable driving conditions 
on the road by demonstrating crucial visual information 
through their categories (warning, prohibition, obligation, 
and informative) as well as by their shape, color, context, 
and location (Gámez Serna and Ruichek, 2018; Lengyel 
and Szalay, 2018a), for instance, information about driv-
able lanes, speed limits, temporary closures, restrictive 
areas, roadway directions, parking, etc. Therefore, partic-
ular attention should be paid to the physical and occlusive 
conditions surrounding these signs to be free of anoma-
lies and to make it easier for the Traffic Sign Recognition 
(TSR) systems to identify them. Since drivers receive much 
information from these signs while traveling, human driv-
ers can overcome these challenging conditions by making 
independent decisions. At the same time, recognition sys-
tems address only the problems they have been trained for 
(Lengyel and Szalay, 2018b). Therefore, comprehending 
traffic signs by the vehicle's driving control systems, espe-
cially in the case of automated vehicles, is critical to traffic 
flow and safety on the road.

In the past decades, the importance of traffic signs 
increased with the advent of autonomous vehicles. While 
the automotive industry has moved to the production of 
automated vehicles, and with the rapid development of 
automotive vehicle systems, such as the ADAS, high-
way designers and planners have had to consider changes 
in road safety infrastructure, including traffic signs and 
how to recognize them (Gámez Serna and Ruichek, 2018; 
Mohammed and Horváth, 2021). Consequently, traffic sign 
recognition is a challenging real-world problem faced by 
autonomous vehicle designers due to the tremendous vari-
ety in the visual appearance of traffic signs, making it dif-
ficult for recognition systems to classify them successfully 
(Almutairy et al., 2021; Gámez Serna and Ruichek, 2018). 
However, there could also be drastic modifications to the 

content and physicality of these signs in the future to facil-
itate their quick identification by the machine learning 
algorithms of autonomous vehicles.

3 Classification of traffic signs
Meanwhile, since autonomous vehicles will coexist in traf-
fic with regular cars, traffic signs are inevitable for mod-
ern road infrastructure. Consequently, categorizing traffic 
signs is essential for autonomous driving systems (Gámez 
Serna and Ruichek, 2018; Lengyel and Szalay, 2018a; 
Zhu et al., 2016). Various classes of traffic signs have been 
studied in a wide range of literature depending on their 
importance and priority. De la Escalera et al. (1997) dis-
cussed that there are four different kinds of traffic signs in 
the traffic system based on their color and shape design:

• Warning signs: Designed in the shape of an equilat-
eral triangle with one vertex upward with a white 
background and bounded by a red border.

• Prohibition signs: Designed in the shape of circles 
with a white or blue background and bounded by 
a red border.

• Obligation signs: They are circular with a blue 
background.

• Informative signs: Rectangular panels with a blue or 
green background indicating public places and facil-
ities (Mohammed and Horváth, 2021).

Although the octagonal stop signs and yield signs, 
which have an inverted triangle shape, are essential traf-
fic signs, the authors pointed out them as exceptions that 
do not fall into the above categories. Similarly, the clas-
sification of traffic signs used by many European coun-
tries is based on the Vienna Road Traffic Sign Convention 
(Convention on Road Signs and Signals 1968 was men-
tioned in the document of United Nations Economic 
Commission for Europe Tansport Division (2006)), which 
divides classes into four primary groups and subclasses, 
as shown in Table 1. At the same time, the Manual on 
Uniform Traffic Control Devices (MUTCD) (Federal 
Highway Administration, 2009), along with the Standard 
Highway Signs and Markings (SHSM) (Federal Highway 
Administration, 2012), is the guideline that standardizes 
the design and installation of traffic signs in the USA 
(Almutairy et al., 2021). Besides, the MUTCD has an 
impact on many nations in North and South America, as 
well as many countries worldwide, that have adopted rules 
similar to those described in the MUTCD (for example, 
Japan, Australia, New Zealand, Indonesia, Thailand, and 
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Malaysia) (Almutairy et al., 2021). However, there is a sub-
stantial difference in the visual appearance of traffic signs 
from country to country; each type has a distinctive shape 
and color depending on the sign's category; the standards 
and regulations for their design differ from one country 
to another, making the implementation of classification 
schemes more difficult (Ben-Bassat et al., 2019; Gámez 
Serna and Ruichek, 2018; Lu et al., 2022).

Almutairy et al. (2021) claim that an inadequate number 
of USA traffic sign datasets have been made publicly avail-
able in the past decade. They need to be more comprehen-
sive to include all basic types of road signs. Only two open-
source datasets are available for TSR tasks: Telanav.AI and 
LISA. Although the Telenav.AI dataset covers the most sig-
nificant quantity of images, it contains only a small number 
of traffic sign classes. It concentrates on traffic lights, speed 
limit signs, give-way signs, turn restrictions, and stop 
signs. In comparison, the LISA dataset covers more types 
than Telenav.AI. Nevertheless, it contains slightly fewer 
images in the areas covered by both. In addition to the two 
dataset categories mentioned, the authors have introduced 
the Automotive Traffic Signs Repository (ARTS), a new 
dataset for USA Traffic Signs that covers a wide range of 
sign types, including warning, guiding, regulatory, and 
temporary signs as definite in the (MUTCD).

There are several public benchmarks for TSR world-
wide and applying TSR approaches created for a specific 
country in other countries is challenging because traffic 
signs are usually different. The available datasets assist as 
comparison points. These publicly accessible datasets are 
listed below and summarized in Table 2.

• The GTSDB dataset (Saadna and Behloul, 2017) is 
the German Traffic Sign Detection Benchmark. It is 
a single-image sign detection system divided into 
three categories: mandatory, warning, and prohib-
itive. It contains 900 images with a resolution of 

1360 × 800 pixels, divided into 600 training images 
and 300 evaluation images.

• The BTSD (Liu et al., 2019) is the Belgium Traffic 
Sign dataset. It is divided into three categories: 
mandatory, cautionary, and prohibitive, consist-
ing of more than 10,000 annotations, and includes 
four Belgian videos that can be used in tracking 
investigations.

• LISA dataset (Møgelmose et al., 2015) from the 
Laboratory for Intelligent and Safe Automobiles. 
It consists of 7855 photos with 47 types of traffic 
signs, only 6610 of which are annotated, and images 
ranging in size from 640 × 480 to 1024 × 522. It also 
includes videos and annotated frames.

• Swedish Traffic Signs Dataset (Saadna and Behloul, 
2017) (STSD Dataset): A sequence of approximately 
20,000 images was compiled using recordings made 
on more than 350 km of Swedish roads and manually 
annotated on every fifth frame from the series.

• Data Set of Italian Traffic Signs or DITS data 
(Saadna and Behloul, 2017) is a dataset consist-
ing of 43,289 images taken from 14 hours of video 
(1280 × 720 at 10 frames per second) recorded in 
Italy under various conditions. The detection dataset 
consists of 471 test images and 1416 training images.

• Mapping and Assessment of the State of Traffic 
Infrastructure (MASTIF) dataset (Zang et al., 2018). 
The dataset contains video frames from vehicle cam-
eras recorded in Croatia and includes three datasets 
of TS2009, TS2010, and TS2011; there are 6430 traf-
fic sign images in the TS2009, the TS2010 dataset 
contains annotated video of 3891 traffic signs, and 
the TS2011 dataset contains four annotated videos of 
1015 traffic signs.

Table 1 European traffic signs' main category and subcategories

Traffic signs classes

Primary Subclasses

Danger/warning

Regulatory

Priority

Prohibitory

Mandatory

Special regulation

Informative

Information 

Direction 

Additional panels

Others

Table 2 Publicly available traffic sign datasets

Traffic sign 
dataset Objective Total image Country

GTSDB Detection 900 Germany

GTSRB Recognition +50000 Germany

BTSD Detection 25634 Belgium

BTSC Recognition 7125 Belgium

LISA Detection and Recognition 7855 USA

STSD Detection and Recognition 20000 Sweden

DITS Detection and Recognition 1887 Italy

MASTIF Detection and Recognition 1000 Croatia

ETSD Detection and Recognition 82476 Europe

RUG Detection and Recognition 48 Netherland

TT100K Detection and Recognition 100000 China
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4 Traffic signs diversity
There is a wide variety of traffic sign systems in the 
world. Despite efforts to standardize them, such as the 
Vienna Convention on Road Signs and Signals (United 
Nations Economic Commission for Europe Tansport 
Division, 2006), this disparity in specific traffic sign cat-
egories between countries is still a significant problem 
(Aggar et al., 2021; Gámez Serna and Ruichek, 2018). 
The USA standard is a diamond-shaped sign with a black 
border and a yellow background for warning signs, while 
a triangle with a red border and a white or yellow back-
ground is the European standard (Ben-Bassat et al., 2019), 
as shown in Fig. 1. Even in countries that have agreed to 
a standard convention for traffic signs and signals, such as 
common sizes, shapes, and shared colors, as in Europe, 
there is an apparent variation in the inscriptions and sym-
bols of traffic signs, where each country is allowed to use its 
own marks (Gámez Serna and Ruichek, 2018). Fig. 2 illus-
trates a few examples of intra-class diversity, demonstrat-
ing that symbols differ between countries and within each 
of them. In Germany, two different mandatory pass-right 

characters are used. At the same time, France utilizes two 
symbols in the danger category for pedestrian crossings, 
with yellow and white colors for danger and prohibitory 
signs, although other countries use only one. There are 
speed limit signs in Belgium with and without the notation 
Km (Gámez Serna and Ruichek, 2018). This distinction is 
more evident in no-parking signs, which are blue round 
ones with a red diagonal line in most European coun-
tries. Nevertheless, some countries add a white borderline 
(e.g., Ukraine and Italy). Together, in Ireland, the central 
emblem is the letter P and white background with a red 
diagonal line, as shown in Fig. 3 (Ben-Bassat et al., 2019).

While in the USA, distinctions in text, rather than 
shape, color, or character, are used to separate sign types 
(Almutairy et al., 2021). Warning signs in the USA are 
often diamond-shaped, octagonal signs indicate a com-
plete stop, and several regulatory and instructional signs 
are rectangular, with color used to identify their functions. 
Speed limit signs in the USA are rectangular in shape, 
but in most of Europe, they are circular. Fig. 1 empha-
sizes these similarities and differences. Thus, it is difficult 
for traffic sign detectors in European countries to deter-
mine the type of sign used in countries that use the USA 
guide. Therefore, they must be retrained if the same sen-
sor is used in the USA. To conclude, due to the significant 
development in the autonomous vehicle industry in recent 
times and international travel in general, there must be as 
few differences as possible among the traffic signs regula-
tions in various countries of the world. Achieving this will 
require breaking many barriers, to overcome many politi-
cal obstacles, and to resolve some uncertainties that must 
be achieved through further research.

5 Traffic signs detection approaches
Traffic sign recognition (TSR) technology is crucial for 
driver assistance systems and potentially autonomous 
driving in identifying and tracking road signs and expos-
ing information about them in the vehicle. In Japan, the 
initial study on road sign recognition was conducted 
in 1984, and subsequently, numerous proposals have been 
made to address the problem using various techniques 
(Gámez Serna and Ruichek, 2018). However, investigating 

(a)

(b)

Fig. 1 Examples of differences between (a) the U.S. signs and  
(b) the European signs, adapted from (Horak et al., 2016)

Fig. 2 Example of different intraclass of European traffic signs, 
adapted from (Wikipedia contributors, 2022)

Fig. 3 Examples of no parking signs in different European countries, 
adapted from (Wikipedia contributors, 2022)
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traffic signs classification and recognition works can only 
be compared after proposing the (GTSRB) and (GTSDB) 
Benchmarks (Gámez Serna and Ruichek, 2018). This sec-
tion presents various methods and applications that have 
been widely discussed by researchers in the essential areas 
to understand the detection, recognition, and classification 
process of different traffic sign classes.

In the SLAIN project, European Road Assessment 
Programme (EuroRAP) (2021) measured the readiness 
of European roads for connected and automated vehicles 
(CAVs) in line markings and signage. The investigation 
included 2,000 km of roads among four countries (Italy, 
Croatia, Spain, and Greece). They evaluated the CAV read-
ability of traffic signs focusing on Greek and Croatian road 
segments. The method adopted was to examine TomTom’s 
MN-R database of sign locations and how many signs had 
been detected using CAV-compatible computer vision 
techniques by TomTom vehicles.  Approximately 5.4% and 
10.6% of the five key sign types (primarily speed signs) 
were not detected in Greece and Croatia, respectively. 
Signs that were high on light poles, low and attached to 
barriers, complex, angled to the carriageway in one direc-
tion, multilane speed signs, and cluttered with low-speed 
signs were among the reasons why they were not detected.

5.1 Detection according to the color space
The dominant traffic sign colors are red, blue, and yel-
low, with ideographs primarily black. A prevalent col-
or-based segmentation technique is used to detect regions 
of interest. The RGB (Red-Green-Blue) and HSV (Hue-
Saturation-Value) color spaces are the most frequent ones. 
However, these characteristics show sensitivity to several 
variables, including the variation of light, weather condi-
tions, and the sign's retroreflectivity, making segmentation 
difficult. Authors are working on a variety of color spaces 
to address this issue, including the following: 

• RGB color space, 
• HSV color space 
• and YCbCr color space.

Horak et al. (2016) summarized the characteristics of 
RGB and HSV color spaces, as shown in Fig. 4. The RGB 
space is in the shape of a cube, as seen in Fig. 4 (a). 
The limits of the minimum and maximum values along 
each of the three axes corresponding to the R, G, and 
B channels define the color-based segmentation in this 
space. The limits may be a straightforward orthogonal 
block in the RGB color space or a more complex form like 
an octahedron, ellipsoid, sphere, etc.

The hue saturation value (HSV) space is cone-shaped, 
as shown in Fig. 4 (b), which is closer to how the human 
eye perceives color naturally. Hue is the primary shade of 
the color and ranges in an angle from 0° to 360°. The other 
two elements are numbers from 0 to 1, which denote satu-
ration (purity) and value (brightness).

They performed an assessment of various familiar color 
spaces such as RGB, HSV, and YCbCr to detect traffic 
lights in the European Union. The segmentation process 
was best suited for the HSV color space, and color-based 
models for the traffic light representatives were created. 
To recognize circles, triangles, and squares as the primary 
geometric shapes of traffic signs, the fast radial symme-
try (FRS) approach and the Harris corner detector were 
utilized. The recognition method’s total accuracy reached 
approximately 93%.

Lai et al. (2018) introduced A CNN-SVM-based identi-
fication and classification system. The YCbCr color space 
is used in this technique to divide the color channels and 
extract features. The components of the blue and red differ-
ences are Cb and Cr, respectively, where Y is the illumina-
tion factor. This color space was mainly used for the ongo-
ing processing of images and videos that were taken inside 
the vehicle. The effectiveness of this strategy was 98.6%.

De la Escalera et al. (1997) adopted the intuitive RGB 
color space because the HSI formulas are non-linear, with 
the three elements, red, green, and blue, determining the 
color of each pixel. The authors used the relationship 
between these components of the color threshold as the 
following expression: 
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Fig. 4 (a) RGB and (b) HSV color space (Horak et al., 2016)
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Where the functions that provide the red, green, and 
blue levels of each point in the image are fr(x, y), fg(x, y), 
and fb(x, y), respectively.

Several researchers used the RGB color space thresh-
old (Saadna and Behloul, 2017). However, their tech-
niques are related to the selected points, making compar-
ing their performances a problematic task. Other authors 
(Ellahyani et al., 2016; Mohammed and Horváth, 2021; 
Saadna and Behloul, 2017; Soheilian et al., 2013) have 
argued that several factors influence color segmentation 
algorithms with different parameters, making it challeng-
ing to detect traffic signs in authentic images by utilizing 
a clear boundary directly in the RGB space. These fac-
tors include lighting differences, inclined road signs, chal-
lenging weather conditions, the impact of other objects 
on the street that have the same color as the signs, and 
many different constraints. This prompted many research-
ers to experiment with other spaces. Yakimov (2015) 
emphasized HSV color space as the most suitable for 
extracting red color in images using an improved gener-
alized Hough transform algorithm to detect traffic signs. 
This enables detecting and recognizing signs in Full HD 
1920 × 1080 images from a real-time video sequence.

Cao et al. (2019) utilized the HSV color space to deter-
mine the optimal values for the threshold segmentation, 
which has a faster detection speed, less impact by illumi-
nation, and a better segmentation advantage compared to 
RGB and HSI color spaces. Fig. 5 illustrates the image con-
verted from RGB to HSV using an inverted cone converter.

5.2 Detection according to the shape space
In this method, many authors do not consider color seg-
mentation a discriminatory property due to its susceptibil-
ity to many conditions, including atmospheric conditions, 

target distance, sign reflection, and illumination intensity. 
In contrast, sign shape-based methods are more reliable 
than chromatic procedures because they can process gray-
scale images and manipulate their gradations. However, 
the processing rate is highly dependent on the number of 
edges detected; it is time-consuming and uneconomical. 

Chincholkar and Kumar (2019) used the Hough 
Transform (HT) technique to recognize traffic sign panels 
from video sequences. Before using the Canny edge detec-
tor to verify the shape of the signs, the video frame was 
first processed by transforming RGB color images into 
grayscale images using a preprocessing method. Next, the 
Hough Transform algorithm measured the video's attri-
butes and image regions for further analysis. The SVM 
classifier categorizes the traffic sign board into different 
classes on MATLAB.

Vishwanathan et al. (2017) compared three different 
edge detection methods. Comparisons were made on still 
images and video of the octagonal stop sign under various 
situations. The three methods used are:

• Canny method: It is a frequently used method for 
edge detection (Canny, 1986). This technique's pri-
mary conditions are to lower the error proportion 
and reduce the gap between the points marked by the 
detector and the center of the actual edge.

• Zhang method: This edge detection procedure fol-
lows the principle of linear prediction (Zhang et al., 
2010). The main idea behind this linear prediction 
method is to optimize filter coefficients to minimize 
prediction errors.

• Sobel method: This edge detection technique is 
based on the idea of the image gradient (Sobel, 1970). 
It uses two kernels, each of order (3, 3), convolved 
with the original image to approximate the deriva-
tives along the horizontal and vertical directions.

They concluded that Zhang's method (linear prediction) 
is less sensitive to the conditions of the original images 
than the Canny and Sobel methods. Wherein it accurately 
locates the edges of the STOP sign under various condi-
tions, such as during snow or rain.

Lu et al. (2022) focused on a two-stage structure for 
detecting and recognizing traffic signs. As a first step 
Mask R-CNN was applied to identify the position of traf-
fic signs and their equivalent shapes, which were then 
divided into 23 categories based on their data. The second 
step seeks to solve the classification problem by training 
a second CNN model to learn more about the content of 

(a) (b)

Fig. 5 Color space converting from (a) RGB image to (b) HSV image 
(Cao et al., 2019)
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the detected object using a model called Xception. Finally, 
they were able to achieve an accuracy of 99.73% for the 
circular shape categories and 98.45% for the triangular 
classes, reasoning that this slight variance in precision 
could be attributed to the fact that the number of triangu-
lar traffic signs in the dataset being higher than the circular 
ones, which makes classifying the model more complex.

Behloul and Saadna (2014) propose another method to 
recognize traffic sign shapes; by comparing the detected 
pattern with the BoxOut rectangle that includes it. Fig. 6 
demonstrates the calculation of the degree of intersections 
between the perimeter of the model and the four BoxOut 
lines. Although 2.17% of failed alarms are due to the 
weakness of this approach in noise and occlusions, this 
method can detect 95.65% of sign shapes from the dataset 
consisting of 48 images per a resolution of 360 × 270 pix-
els covering three various traffic signs.

Junaid et al. (2021) Focused on Mask R-CNN to detect 
objects (pedestrians) while the vehicle is traveling on the 
road, and for image manipulation, the inverse gamma cor-
rection method was used, which is directly related to the 
intensity of illumination. Six backbone models of Mask 
R-CNN were tested on the Penn-Fudan database in the 
process of feature extraction and bounding box identifica-
tion. The comparison results (Fig. 7) showed that the best 
model for real-time detection systems is Mask R-CNN 
ResNet50, which performs well in different illumination 
conditions, whether dark or bright.

Recently, a new algorithm (EDCircles) was developed 
by Akinlar and Topal (2013), and Kaplan Berkaya et al. 
(2016) began using this algorithm to detect circular traf-
fic signs. The first step in this technique is to use Edge 
Drawing Parameter Free (EDPF) algorithm to find edges 
in grayscale images. Then the circular arcs are extracted 
from the edges, arcs of similar radius are combined, and 

the contender circles are confirmed. The authors used this 
method on the GTSDB dataset; the detection accuracy rate 
for prohibitive signs achieved 93.78% with only 0.99% 
false alarms, while for mandatory signs, 75.51% accuracy 
with 2.04% false positive detections.

5.3 Detection based on deep learning
The previous techniques had weaknesses in terms of var-
ious factors, for example, scale change, changes in illumi-
nation, occlusions, translations, and rotations. However, 
machine learning may potentially solve these issues, 
although this necessitates a sizable collection of annotated 
data (Saadna and Behloul, 2017). Convolutional Neural 
Networks (CNNs) are a type of artificial neural network 
(ANN) used to evaluate visual images in deep learn-
ing, and it has been in use since the late 1980s. Several 
researchers have used CNN to study the identification 
classification of traffic signs.

Gámez Serna and Ruichek (2018) have reasoned by 
examining several research papers in the field of traffic 
sign recognition that CNNs can solve traffic sign recogni-
tion problems and ranked five networks with the best per-
formance based on rating traffic signs, which are:

1. LeNet-5: They are CNNs mainly used for handwrit-
ing recognition. They consist of seven sheets: three 
convolutional layers, sub-sample layers (excluding 
the final layer), one fully linked layer, and a final out-
put layer composed of Euclidean RBF units. 

2. IDSIA Model: A multi-column deep convolutional 
neural network (MCDNN) is created by combining 
the number of columns of a deep convolutional neu-
ral network DNN. Its network consists of two convo-
lutional layers followed by Max pooling layers. Two 
fully connected hidden layers transmit the output Fig. 6 The proposed detection approach (Behloul and Saadna, 2014)

Fig. 7 Different Mask R-CNN model results applied on 
FudanPed00035.png image when the gamma value (γ) is one, 

adapted from (Junaid et al., 2021)
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to a fully connected final layer with six neurons to 
achieve classification.

3. URV Model: This CNN consists of three convolu-
tion-pooling layers, two completely connected lay-
ers, and a dropout layer to prevent overfitting; after 
each convolutional layer and the first fully con-
nected layer, Rectified Linear Unit (ReLU) activa-
tions are performed.

4. CNN with Asymmetric Kernels: Three convolutional 
layers with symmetric kernels, six convolutional 
layers with asymmetric kernels, and two fully con-
nected layers framework this CNN design. Except for 
the final layer (Softmax classifier), each layer is fol-
lowed by Batch Normalization and ReLu activations.

5. CNN 8-Layers: Although it is not considered a deep 
network, it is highly accurate compared to the most 
up-to-date technologies. The network architecture 
with numerous hidden layers produced the best 
results. However, it is complex and takes a long time 
to compute. As a result, primary networks are uti-
lized for information preprocessing and data aug-
mentation if the dataset contains more examples for 
the learning phase.

The CNN models, as mentioned above, have been 
trained on the GTSDB dataset and the proposed European 
dataset (Germany, Netherlands, Sweden, France, Croatia, 
and Belgium) for traffic signs with intraclass variability; 
the results are shown in Table 3.

Almutairy et al. (2021) focused on Faster R-CNN, 
YOLOv3, and RetinaNet to assess the performance of the 
latest deep learning detectors on datasets in the USA des-
tined for traffic sign recognition tasks such as (LISA) and 
their new dataset, the Automotive Repository of Traffic 
Signs (ARTS). They emphasized that all models have been 
tested and trained on the LISA dataset (the parent and addi-
tive together) and on the new dataset (ARTS). The results 
show that image resolution is the most important key factor 
for performance/accuracy assessment among these deep 
learning algorithms. RetinaNet-50 performs poorly on the 

LISA dataset because it has a high proportion of low-res-
olution images. Another critical factor is the variance of 
the dataset. The experiment found that on the challenging 
dataset, which includes most classes among the three cat-
egories, RetinaNet-50 outperformed YOLOv3 and Faster-
RCNN. Through harnessing the power of the Focal Loss 
function, RetinaNet evolves better with more extensive 
and significantly scattered datasets; the three algorithms 
did reasonably well-configured on the Easy dataset, which 
was discarded in order to make the task simpler. Tables 4 
and 5 illustrate the results.

Zang et al. (2018) applied the Quaternion Convolutional 
Neural Network (QCNN) by integrating Spatiotemporal 
features into a single frame. They used the (MASTIF) traf-
fic dataset. The fastest R-CNN (including 12 convolutional 
layers and four pooling layers) was applied to identify 
the traffic sign areas; then, the detected traffic signs were 
tracked in three frames using the motion constraint method 
of Mean Shift. Finally, three QCNNs, as shown in Table 6, 
were applied, two of them to extract the Spatiotemporal 
features. The feature maps acquired in both domains were 
combined as inputs to the third QCNN to achieve the final 
identification results. In their tests, they reached 99.31% in 
sign detection with 1.19% false positive and 99.15% accu-
racy in classification with 0.17% false alarms.

Farag (2018) developed the (CNN) based classifier 
"WAF-LeNet" as a comprehensive classifier for recog-
nizing and identifying traffic signs. The applied struc-
tural design is a fifteen-layer deep network selected after 
extensive testing to be high-speed and was trained using 
Adam’s optimization algorithm as a modification of the 
Stochastic Gradient Descent (SGD) method. WAF-LeNet 
performed well in recognizing 43 different categories 
of traffic signs selected from the (GTSRB) dataset with 
an accuracy of 96.5% and identifying 100% in the robust-
ness test. Finally, the author summarized several recom-
mendations for improving the outcomes, including deep-
ening CNN by having additional layers, switching to RGB 
color images from grayscale ones, and including "Skip 
Connections" in CNN.

Table 3 Results of accuracy in percentages were obtained for the European and GTSRB test groups (Gámez Serna and Ruichek, 2018)

Model Input size
European GTSRB Time 

milliseconds (ms)Parameters (millions) Accuracy % Parameters (millions) Accuracy %

LeNet-5 32 × 32 × 1 0.35 89.8 0.13 89.1 0.0067

IDSIA 48 × 48 × 3 1.58 95.82 1.54 94.62 0.6

URV 48 × 48 × 3 1.16 96.53 1.12 96.1 0.61

CNN asymmetric 48 × 48 × 3 2.95 98.48 2.92 97.88 0.39

CNN 8-Layers 48 × 48 × 3 1.51 97.88 1.48 98.52 0.15
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In the Arab region, in the paper of Alghmgham et al. 
(2019) convolutional neural networks were used to cre-
ate the Automatic Arabic Traffic Signs Recognition 

System (AATS); the Saudi Arabian Traffic and Road 
Signs (SA-TRS-2018) database was used for Testing and 
Training. The final Deep CNN architecture recommended 
in their work includes two convolutional layers, two 
max-pooling layers, and three dense layers, with 100% 
accuracy achieved for epoch 150 for all batch sizes.

Tabernik and Skočaj (2020), in their study, focused on 
the challenge of detecting and recognizing a wide vari-
ety of traffic sign classes that could be used to automate 
traffic sign inventory management. To address the entire 
pipeline of detection and recognition through end-to-end 
self-learning, they used a convolutional neural network 
Mask R-CNN technology called ResNet-50 on 200 classes 
of traffic signs represented in their new dataset. After 
a comprehensive analysis of their deep learning method 
for traffic sign detection, the average error rate was about 
2–3% of the actual detections.

Tables 7, 8, and 9 offer a comprehensive summary of 
research evaluating different detection modalities for traf-
fic signs, including color-based, shape-based, and deep 
learning-based approaches. Each table provides an over-
view of traffic signs' classification, detection, and recog-
nition, along with the corresponding processing speed 
achieved in the studies. Table 7 focuses on evaluating 
the color-based detection modality, while Table 8 high-
lights the evaluation of the shape-based detection modal-
ity. Lastly, Table 9 summarizes the research conducted on 
deep learning-based detection, encompassing the detec-
tion, recognition, and categorization of traffic signs along-
side the attained processing speed.

6 Traffic sign design challenges
Even though the TSR has advanced significantly in recent 
years, the vast diversity of traffic signs worldwide indi-
cates that the problem of consistent and accurate detec-
tion and identification remains indefinable. Professional 
road designers and planners face a considerable challenge. 
They must reflect on appropriate solutions to changes to 

Table 4 Configuration of the experiment (Almutairy et al., 2021)

Dataset Classes Annotations Images

LISA 
2012+2015

Training 56 6644 5557

Validation 56 2088 1886

Testing 56 2795 2481

ARTS Easy

Training 62 5058 3828

Validation 62 1739 1277

Testing 62 2209 1702

ARTS 
Challenging

Training 175 15198 9012

Validation 175 5024 3005

Testing 175 6959 4006

Table 5 Traffic sign recognition benchmark (Almutairy et al., 2021)

Dataset
Mean Average Precision m.AP50

YOLOv3-416 RetinaNet-50 Faster-RCNN

LISA 2012+2015 81.9% 54.9% 84.0%

ARTS Easy 90.5% 81.09% 86.9%

ARTS Challenging 65.4% 67.3% 36.9%

Table 6 Quaternion convolutional neural network (QCNN) parameter 
settings (Zang et al., 2018)

QCNN 1

Layer 1 Convolution 8 kernels (5 × 5)

Layer 2 Convolution 12 kernels (3 × 3)

Layer 3 Pooling Kernel size (2 × 2)

QCNN 2

Layer 1 Convolution 8 kernels (5 × 5)

Layer 2 Convolution 12 kernels (3 × 3)

Layer 3 Pooling Kernel size (2 × 2)

QCNN 3

Layer 1 Convolution 8 kernels (5 × 5)

Layer 2 Convolution 12 kernels (3 × 3)

Layer 3 Pooling Kernel size (2 × 2)

Layer 4 Full connection 6320 neurons

Table 7 Color space detection approach

Authors Application Method Color space Detection rate % False alarm Used dataset Time

Horak et al. (2016) Detection FRS and 
Harris Corner

RGB 93% -

343 images

200 ms

HSV 97% - 420 ms

YCbCr 82% - 351 ms

Lai et al. (2018) Classification CNN-SVM YCbCr 98.6% - 1000 images -

de la Escalera et al. (1997) Classification CNN RGB 97% - 1620 images 30–40 ms

Yakimov (2015) Detection GHT HSV 97.3% 2.7% GTSDB -

Cao et al. (2019) Recognition LeNet-5 CNN HSV 99.75% - GTSRB 5.4 ms



Aldoski and Koren
Period. Polytech. Transp. Eng., 51(4), pp. 338–350, 2023 |347

the existing road infrastructure to improve traffic safety 
required in the future (Ben-Bassat et al., 2019; Gámez 
Serna and Ruichek, 2018). Traffic signs are one type of road 
traffic engineering equipment; their design change is one 
of those challenges that will affect the road infrastructure. 

Ben-Bassat et al. (2019) studied traffic signs to assess 
the compatibility of traffic signs with similar meanings 
by presenting a small dataset of traffic signs to road engi-
neering experts in several different countries. They found 
that many Vienna Convention signs could be improved 
using ergonomics assessment techniques. It is also pos-
sible to design signs that meet the three essential ergo-
nomics criteria: familiarity, compatibility, and standard-
ization. When improving the signs, the focus should be on 
the global compatibility of signs.

Sayin et al. (2020) have contended that smart road 
signs, which have intelligent codes (such as those visible 
in infrared) on their surface to provide innovative vehi-
cles with more accurate and detailed information, are a 
potential trend in future intelligent transportation sys-
tems. Since humans cannot realize or understand these 
intelligent road signs, they do not participate in their 

identification. These smart codes make the road sign clas-
sification problem more compatible with communication 
settings than the traditional classification.

In their study, Lengyel et al. (2021) presented a set of 
influential printable and publishable labels that can consis-
tently mislead a traffic sign classification algorithm based 
on deep learning. Natural traffic signs and printed physi-
cal labels were used in the laboratory, and a 99.00% NN 
self-generated mobile application was used to assess hos-
tile detection and attack. Suitable test models for vehicles 
have yet to be obtained. Thus, cognitive modules based 
on deep learning that are also vulnerable to adversarial 
attacks are only sometimes clear from the information 
provided by the manufacturers.

7 Conclusion
This paper has argued that traffic signs, are imperative 
for road driving, including autonomous driving systems. 
This study has briefly reviewed the impact of traffic sign 
diversity and recognition by autonomous vehicles and 
focused on classifying traffic sign datasets using differ-
ent methods; these methods are divided into three classes: 

Table 8 Shape space detection approach

Authors Application Method Detection rate % False alarm Used dataset Time

Chincholkar and Kumar (2019) Detection HT 98% - - 2.8 ms

Vishwanathan et al., (2017) Detection Linear Prediction - - Stop Sign -

Lu et al. (2022) Detection Mask R-CNN 98.45% - 11074 images -

Behloul and Saadna (2014)
Detection BoxOut 95.65% - 48 images -

Classification SURF 97.72% - 48 images 80 ms

Junaid et al. (2021) Detection 
(Mask R-CNN)

Alex Net 53.704% -

Penn-Fudan

0.0165 ms

Mobile Net V2 63.487% - 0.0111 ms

ResNet50 99.678% 16.17% 0.003 ms

VGG11 75.949% - 0.0094 ms

VGG13 72.173% - 0.0069 ms

Table 9 Deep learning detection approach

Authors Application Method Detection rate % False alarm Used dataset Time

Gámez Serna and Ruichek (2018) Detection CNN 8 layers 97.88% - GTSDB European 0.15 ms

Almutairy et al. (2021) Recognition YOLOv3-416 90.5% - ARTS Easy -

Zang et al. (2018)
Detection QCNN 99.31% 1.19% MASTIF -

Classification QCNN 99.15% 0.17% MASTIF -

Farag (2018)
Classification WAF-LeNet CNN 96.50% - GTSDB -

Classification WAF-LeNet CNN 100.0% GTSDB -

Alghmgham et al. (2019) Recognition CNN 100.0% - SA-TRS-2018 -

Tabernik and Skočaj (2020)
Detection Mask R-CNN 97.5% STS -

Detection Mask R-CNN 96.5% DFG 200 categories -
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color-based categorization according to color space, 
shape-based detection and deep learning methods. This 
theme improves road safety by transmitting information 
about the vehicle's external environment, such as speed 
limits, drivable lanes, and temporary closures to the vehi-
cle's driving system, which is the decision control cen-
ter. The investigation with CNNs showed that despite 
the various types of deep learning networks in this field, 
many have outstanding advantages for classification accu-
racy and algorithm time consumption; the detection rate 
in modern methods ranges between 90 to 100%. However, 
it is difficult to determine the best approach among them. 
An ADAS application that can detect and classify road 
traffic signs in real-time is still needed to be developed.

Accordingly, the question is: do the current methods of 
detecting traffic signs have the ability to prove the same 
performance in actual applications with different data-
sets? Can these methods detect, distinguish, and make the 
correct decision at the right time in cases of combining 

different types of signs on a single pole, as humans do? 
Therefore, this paper recommends that these issues be 
resolved before AVs start moving and mixing with traffic 
in larger amount. It also urges that all relevant govern-
ments, organizations, road designers, and planners con-
sider changes to the road safety infrastructure and attempt 
to compile and unify a comprehensive global database of 
traffic signs and find appropriate algorithms to identify 
them before proceeding with larger number of AVs on the 
road networks. Future research should investigate: 

1. the Impact of the physical properties of current traf-
fic signs upon AVs equipped with LiDAR's, sensors 
and cameras, 

2. the effects of the traffic sign retroreflectivity on the 
accuracy of traffic sign recognition, 

3. the possibility of using an intelligent barcode traffic 
sign, and 

4. the possibility of combining more than one sign on 
one pole.
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